Download citation
Download citation
link to html
The piperidine ring in the title compound, C22H28N4S, exhibits a chair conformation. The thio­semicarbazone moiety adopts an extended conformation, and the planar phenyl rings are oriented equatorially with respect to the piperidine ring. Two intermol­ecular hydrogen bonds involving the S atom form molecular pairs, and the crystal structure is stabilized by weak C-H...[pi] interactions in addition to van der Waals forces.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010300917X/ob1115sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010300917X/ob1115Isup2.hkl
Contains datablock I

CCDC reference: 214414

Comment top

Thiosemicarbazone (TSC) derivatives of Schiff-base compounds containing N—S donor chromophores and metal complexes exhibit non-linear optical properties (Tian et al., 1997; Duan et al., 1996; Liu et al., 1999). The wide range of biological activities possessed by these substituted thiosemicarbazones include antitumour and antileukemic properties (French & Blanz, 1966; Agarwal et al., 1972), antibacterial and antiviral activities (Nandi et al., 1986; Chattopadhyay et al., 1987), and antimalarial activities (Klayman et al., 1979). The fact that heterocyclic thiosemicarbazones possess antitumour properties is partly related to their ability to inhibit the ribonucleoside diphosphate reductase (RDR) enzyme, which is essential in DNA synthesis (Moore et al., 1970). The biological activity of these N,S donor ligands has been correlated with their metal-chelating abilities (Kirschner et al., 1966) and reductive capacity (Palenik et al., 1974). As a part of our study of thiosemicarbazone derivatives, the title compound, (I), was prepared and the crystal structure was determined to establish the conformational features of various functional groups.

The bond lengths of the thiosemicarbazone moiety (Fig. 1 and Table 1) show resonance character when compared with the typical lengths of single and double bonds in cyclohexanone thiosemicarbazone (Casas et al., 2001). The fact that the least-squares plane consists of atoms C4, N10, N11, C12, N13 and S1 [maximum deviation = −0.064 (19) Å] clearly supports the resonance effect in this moiety (Scheme 2). The thiosemicarbazone moiety adopts an extended conformation, as evidenced by the torsion angles listed in Table 1. The trans configuration of the thiocarbonyl S atom with respect to the hydrazinic N atom is evident from the S1—C12—N11—N10 torsion angle of −175.5 (2)°, in accordance with unprotonated thiosemicarbazones (Chattopadhyay et al., 1987).

The C14–C19 (A) and C20–C25 (B) phenyl rings are planar and oriented at angles of 63.4 (7)° and 81.8 (3)° to the plane of the piperidine ring. The torsion angles, asymmetry parameters and least-squares plane calculation show that the piperidine ring adopts a chair conformation (QT=0.534; Nardelli, 1995). Atoms N1, C2, C4 and C5 constitute the best-fitting plane of the piperidine ring, and atoms C3 and C6 deviate by 0.652 (2) Å and −0.607 (2) Å, respectively, on either side of the plane.

The isopropyl group is equatorially substituted at the 5-position of the piperidine ring, as confirmed by the torsion angles (Table 1). The imine N atom is cis to the isopropyl group, and the N-methyl group is equatorially substituted at the 1-position of the piperidine ring. Parthasarathi et al. (1986) reported a related structure with similar substitution, which leads to equatorial orientation.

Pairs of intermolecular N—H···S hydrogen bond across the center of inversion result in the formation of dimers, a common feature that is observed in similar thiosemicarbazone compounds (Palenik et al., 1974; Restivo & Palenik, 1970). An intramolecular N13—H13A···N10 hydrogen bond (Table 2) facilitates? the formation of a five membered ring. Interestingly, two C—H···π (Desiraju, 1989) interactions stabilize the crystal structure in (I), viz. the C8—H8···Cg1ii and C24—H24···Cg1iii interactions (see Table 2 for symmetry codes and geometric parameters), where Cg1 is the centroid of ring A.

Experimental top

The title compound, (I), was synthesized by the Mannich condensation reaction. Benzaldehyde, 2-methyl-4-pentanone and methylamine in a 2:1:1 molar ratio were treated (Noller & Baliah, 1948) in ethyl alcohol (99%), refluxed for 1 h and left overnight. Colorless crystals were recrystallized from ethanol. The resulting compound was treated with thiosemicarbazide (1 mol) in ethanol and refluxed for 6 h. A purified sample of (I) was recrystallized from ethanol by slow evoporation. Good quality crystals were selected for structural studies.

Refinement top

All the H atoms were fixed geometrically and allowed to ride on their corresponding non-H atoms.

Computing details top

Data collection: SMART (Siemens, 2000); cell refinement: SAINT (Siemens, 2000); data reduction: SAINT (Siemens, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1998) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. ZORTEP (Zsolnai, 1998) diagram of (I), showing displacement ellipsoids at the 50% probability level. Ring A contains atoms C14–C19 and ring B contains atoms C20–C25.
[Figure 2] Fig. 2. The crystal packing of (I), viewed along the b axis. Dashed lines represent hydrogen bonds.
1-N-Methyl-t-3-isopropyl-r-2,c-6-diphenylpiperidone Thiosemicarbazone top
Crystal data top
C22H28N4SF(000) = 816
Mr = 380.55Dx = 1.149 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.1794 (17) ÅCell parameters from 4891 reflections
b = 10.0720 (16) Åθ = 2.0–27.9°
c = 19.591 (3) ŵ = 0.16 mm1
β = 94.317 (3)°T = 293 K
V = 2199.7 (6) Å3Needle, colorless
Z = 40.40 × 0.36 × 0.24 mm
Data collection top
Siemens SMART CCD area detector
diffractometer
3490 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.053
Graphite monochromatorθmax = 27.9°, θmin = 2.0°
ω scansh = 1414
23481 measured reflectionsk = 1213
4891 independent reflectionsl = 2524
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0674P)2 + 0.3252P]
where P = (Fo2 + 2Fc2)/3'
4891 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C22H28N4SV = 2199.7 (6) Å3
Mr = 380.55Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.1794 (17) ŵ = 0.16 mm1
b = 10.0720 (16) ÅT = 293 K
c = 19.591 (3) Å0.40 × 0.36 × 0.24 mm
β = 94.317 (3)°
Data collection top
Siemens SMART CCD area detector
diffractometer
3490 reflections with I > 2σ(I)
23481 measured reflectionsRint = 0.053
4891 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.07Δρmax = 0.31 e Å3
4891 reflectionsΔρmin = 0.14 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.87389 (5)0.62864 (5)0.05643 (3)0.0602 (2)
N11.20047 (15)1.23460 (16)0.18267 (8)0.0489 (4)
C21.09113 (19)1.15872 (19)0.19209 (11)0.0508 (5)
H21.11171.08410.22290.061*
C31.03793 (19)1.1038 (2)0.12424 (12)0.0541 (6)
H3A0.96921.04860.13210.065*
H3B1.01061.17660.09460.065*
C41.12863 (18)1.02354 (19)0.08989 (10)0.0475 (5)
C51.24152 (17)1.09914 (19)0.07923 (10)0.0457 (5)
H51.21641.17450.05000.055*
C61.29236 (18)1.1608 (2)0.14770 (10)0.0481 (5)
H61.32321.08900.17790.058*
C71.33780 (18)1.0258 (2)0.04102 (10)0.0502 (5)
H71.40431.08880.03880.060*
C81.3921 (2)0.9021 (2)0.07686 (13)0.0641 (6)
H8A1.41960.92390.12310.096*
H8B1.45840.87110.05280.096*
H8C1.33230.83370.07710.096*
C91.2935 (2)0.9976 (2)0.03316 (11)0.0618 (6)
H9A1.26151.07760.05400.093*
H9B1.23210.93090.03430.093*
H9C1.35920.96670.05780.093*
N101.11988 (15)0.90296 (16)0.06982 (9)0.0504 (4)
N111.01446 (15)0.83461 (16)0.07729 (10)0.0572 (5)
H110.95660.87120.09690.069*
C121.00414 (19)0.70923 (19)0.05313 (11)0.0488 (5)
N131.10012 (17)0.66045 (19)0.02694 (12)0.0795 (7)
H13A1.16390.70800.02610.095*
H13B1.09900.58110.01070.095*
C140.99709 (19)1.2431 (2)0.22341 (10)0.0501 (5)
C150.9337 (2)1.1945 (2)0.27554 (12)0.0643 (6)
H150.95091.11030.29300.077*
C160.8448 (2)1.2696 (3)0.30220 (13)0.0770 (8)
H160.80241.23500.33720.092*
C170.8187 (2)1.3935 (3)0.27775 (14)0.0755 (8)
H170.75981.44430.29640.091*
C180.8798 (2)1.4423 (3)0.22569 (13)0.0719 (7)
H180.86111.52630.20820.086*
C190.9689 (2)1.3692 (2)0.19852 (12)0.0614 (6)
H191.01031.40440.16330.074*
C201.39508 (19)1.2528 (2)0.13467 (11)0.0513 (5)
C211.3733 (2)1.3710 (2)0.10059 (13)0.0678 (7)
H211.29491.39630.08770.081*
C221.4679 (3)1.4525 (3)0.08530 (15)0.0937 (10)
H221.45291.53230.06240.112*
C231.5828 (3)1.4151 (4)0.1040 (2)0.1087 (14)
H231.64611.46900.09300.130*
C241.6058 (3)1.3001 (4)0.1386 (2)0.1006 (11)
H241.68451.27610.15170.121*
C251.5123 (2)1.2189 (3)0.15409 (13)0.0730 (7)
H251.52841.14030.17790.088*
C261.2535 (2)1.2789 (3)0.25018 (13)0.0772 (8)
H26A1.32451.33000.24430.116*
H26B1.27391.20280.27820.116*
H26C1.19651.33270.27200.116*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0608 (4)0.0414 (3)0.0807 (4)0.0143 (3)0.0213 (3)0.0090 (3)
N10.0543 (10)0.0453 (10)0.0481 (10)0.0085 (8)0.0096 (8)0.0110 (8)
C20.0606 (13)0.0401 (11)0.0531 (13)0.0011 (10)0.0140 (10)0.0016 (9)
C30.0505 (12)0.0467 (12)0.0663 (14)0.0079 (9)0.0124 (10)0.0162 (10)
C40.0479 (12)0.0423 (11)0.0530 (12)0.0065 (9)0.0091 (9)0.0108 (9)
C50.0497 (12)0.0399 (11)0.0482 (12)0.0070 (9)0.0075 (9)0.0049 (9)
C60.0526 (12)0.0430 (11)0.0490 (12)0.0047 (9)0.0058 (9)0.0042 (9)
C70.0485 (12)0.0508 (12)0.0528 (12)0.0093 (9)0.0131 (9)0.0101 (10)
C80.0555 (14)0.0642 (15)0.0737 (16)0.0035 (11)0.0127 (12)0.0046 (12)
C90.0636 (15)0.0675 (15)0.0563 (13)0.0081 (12)0.0169 (11)0.0127 (12)
N100.0472 (10)0.0420 (9)0.0634 (11)0.0091 (8)0.0139 (8)0.0128 (8)
N110.0504 (10)0.0423 (10)0.0818 (13)0.0105 (8)0.0233 (9)0.0195 (9)
C120.0532 (12)0.0365 (10)0.0574 (13)0.0041 (9)0.0082 (10)0.0039 (9)
N130.0587 (12)0.0473 (11)0.136 (2)0.0126 (9)0.0293 (12)0.0362 (12)
C140.0598 (13)0.0449 (12)0.0468 (12)0.0069 (10)0.0115 (10)0.0074 (9)
C150.0787 (17)0.0579 (14)0.0585 (14)0.0093 (12)0.0207 (12)0.0015 (11)
C160.0758 (18)0.095 (2)0.0641 (16)0.0142 (16)0.0313 (14)0.0131 (15)
C170.0673 (17)0.088 (2)0.0724 (18)0.0100 (15)0.0142 (13)0.0278 (15)
C180.0868 (19)0.0620 (15)0.0671 (16)0.0153 (14)0.0066 (14)0.0114 (13)
C190.0786 (16)0.0525 (13)0.0552 (14)0.0020 (12)0.0195 (12)0.0042 (11)
C200.0531 (13)0.0519 (13)0.0488 (12)0.0120 (10)0.0036 (10)0.0137 (10)
C210.0764 (17)0.0596 (15)0.0667 (16)0.0237 (13)0.0007 (13)0.0032 (12)
C220.120 (3)0.083 (2)0.080 (2)0.049 (2)0.0182 (19)0.0046 (16)
C230.096 (3)0.122 (3)0.114 (3)0.067 (2)0.045 (2)0.054 (2)
C240.0555 (17)0.121 (3)0.126 (3)0.0268 (19)0.0084 (17)0.059 (2)
C250.0597 (16)0.0779 (17)0.0801 (18)0.0076 (13)0.0038 (13)0.0273 (14)
C260.0761 (17)0.097 (2)0.0591 (15)0.0133 (15)0.0084 (12)0.0270 (14)
Geometric parameters (Å, º) top
S1—C121.673 (2)C12—N131.319 (3)
N1—C21.465 (2)N13—H13A0.8600
N1—C261.477 (3)N13—H13B0.8600
N1—C61.478 (2)C14—C151.376 (3)
C2—C141.517 (3)C14—C191.388 (3)
C2—C31.519 (3)C15—C161.382 (3)
C2—H20.9800C15—H150.9300
C3—C41.496 (3)C16—C171.361 (4)
C3—H3A0.9700C16—H160.9300
C3—H3B0.9700C17—C181.361 (4)
C4—N101.278 (2)C17—H170.9300
C4—C51.502 (3)C18—C191.378 (3)
C5—C71.544 (3)C18—H180.9300
C5—C61.547 (3)C19—H190.9300
C5—H50.9800C20—C211.378 (3)
C6—C201.512 (3)C20—C251.379 (3)
C6—H60.9800C21—C221.389 (3)
C7—C91.526 (3)C21—H210.9300
C7—C81.534 (3)C22—C231.362 (5)
C7—H70.9800C22—H220.9300
C8—H8A0.9600C23—C241.356 (5)
C8—H8B0.9600C23—H230.9300
C8—H8C0.9600C24—C251.380 (4)
C9—H9A0.9600C24—H240.9300
C9—H9B0.9600C25—H250.9300
C9—H9C0.9600C26—H26A0.9600
N10—N111.382 (2)C26—H26B0.9600
N11—C121.350 (2)C26—H26C0.9600
N11—H110.8600
C2—N1—C26109.10 (17)C12—N11—H11120.7
C2—N1—C6114.30 (15)N10—N11—H11120.7
C26—N1—C6108.73 (17)N13—C12—N11115.74 (18)
N1—C2—C14111.66 (16)N13—C12—S1124.78 (16)
N1—C2—C3110.81 (17)N11—C12—S1119.47 (16)
C14—C2—C3108.68 (17)C12—N13—H13A120.0
N1—C2—H2108.5C12—N13—H13B120.0
C14—C2—H2108.5H13A—N13—H13B120.0
C3—C2—H2108.5C15—C14—C19118.0 (2)
C4—C3—C2110.88 (18)C15—C14—C2120.8 (2)
C4—C3—H3A109.5C19—C14—C2121.10 (19)
C2—C3—H3A109.5C14—C15—C16120.8 (2)
C4—C3—H3B109.5C14—C15—H15119.6
C2—C3—H3B109.5C16—C15—H15119.6
H3A—C3—H3B108.1C17—C16—C15120.7 (2)
N10—C4—C3127.83 (18)C17—C16—H16119.7
N10—C4—C5118.99 (17)C15—C16—H16119.7
C3—C4—C5113.18 (16)C16—C17—C18119.2 (2)
C4—C5—C7116.65 (16)C16—C17—H17120.4
C4—C5—C6109.91 (16)C18—C17—H17120.4
C7—C5—C6112.84 (17)C17—C18—C19120.9 (3)
C4—C5—H5105.5C17—C18—H18119.5
C7—C5—H5105.5C19—C18—H18119.5
C6—C5—H5105.5C18—C19—C14120.4 (2)
N1—C6—C20109.46 (16)C18—C19—H19119.8
N1—C6—C5112.40 (16)C14—C19—H19119.8
C20—C6—C5109.49 (16)C21—C20—C25118.5 (2)
N1—C6—H6108.5C21—C20—C6120.2 (2)
C20—C6—H6108.5C25—C20—C6121.3 (2)
C5—C6—H6108.5C20—C21—C22120.4 (3)
C9—C7—C8111.93 (18)C20—C21—H21119.8
C9—C7—C5111.27 (18)C22—C21—H21119.8
C8—C7—C5115.67 (18)C23—C22—C21119.8 (3)
C9—C7—H7105.7C23—C22—H22120.1
C8—C7—H7105.7C21—C22—H22120.1
C5—C7—H7105.7C24—C23—C22120.7 (3)
C7—C8—H8A109.5C24—C23—H23119.7
C7—C8—H8B109.5C22—C23—H23119.7
H8A—C8—H8B109.5C23—C24—C25119.8 (3)
C7—C8—H8C109.5C23—C24—H24120.1
H8A—C8—H8C109.5C25—C24—H24120.1
H8B—C8—H8C109.5C20—C25—C24120.8 (3)
C7—C9—H9A109.5C20—C25—H25119.6
C7—C9—H9B109.5C24—C25—H25119.6
H9A—C9—H9B109.5N1—C26—H26A109.5
C7—C9—H9C109.5N1—C26—H26B109.5
H9A—C9—H9C109.5H26A—C26—H26B109.5
H9B—C9—H9C109.5N1—C26—H26C109.5
C4—N10—N11119.13 (16)H26A—C26—H26C109.5
C12—N11—N10118.66 (17)H26B—C26—H26C109.5
C26—N1—C2—C1462.3 (2)N10—N11—C12—N133.1 (3)
C6—N1—C2—C14175.77 (17)N10—N11—C12—S1175.54 (15)
C26—N1—C2—C3176.42 (18)N1—C2—C14—C15135.7 (2)
C6—N1—C2—C354.5 (2)C3—C2—C14—C15101.8 (2)
N1—C2—C3—C454.9 (2)N1—C2—C14—C1947.0 (3)
C14—C2—C3—C4177.99 (17)C3—C2—C14—C1975.5 (2)
C2—C3—C4—N10124.0 (2)C19—C14—C15—C160.1 (4)
C2—C3—C4—C555.9 (2)C2—C14—C15—C16177.5 (2)
N10—C4—C5—C72.8 (3)C14—C15—C16—C170.5 (4)
C3—C4—C5—C7177.23 (18)C15—C16—C17—C181.2 (4)
N10—C4—C5—C6127.2 (2)C16—C17—C18—C191.3 (4)
C3—C4—C5—C652.7 (2)C17—C18—C19—C140.7 (4)
C2—N1—C6—C20174.42 (17)C15—C14—C19—C180.0 (3)
C26—N1—C6—C2063.4 (2)C2—C14—C19—C18177.3 (2)
C2—N1—C6—C552.5 (2)N1—C6—C20—C2153.8 (3)
C26—N1—C6—C5174.69 (18)C5—C6—C20—C2169.8 (2)
C4—C5—C6—N149.9 (2)N1—C6—C20—C25128.6 (2)
C7—C5—C6—N1178.01 (16)C5—C6—C20—C25107.8 (2)
C4—C5—C6—C20171.78 (17)C25—C20—C21—C221.1 (3)
C7—C5—C6—C2056.1 (2)C6—C20—C21—C22176.6 (2)
C4—C5—C7—C965.9 (2)C20—C21—C22—C230.1 (4)
C6—C5—C7—C9165.44 (17)C21—C22—C23—C241.2 (5)
C4—C5—C7—C863.3 (3)C22—C23—C24—C251.0 (5)
C6—C5—C7—C865.4 (2)C21—C20—C25—C241.3 (3)
C3—C4—N10—N112.4 (3)C6—C20—C25—C24176.3 (2)
C5—C4—N10—N11177.67 (18)C23—C24—C25—C200.3 (4)
C4—N10—N11—C12177.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N13—H13B···S1i0.862.523.362 (2)167
N13—H13A···N100.862.212.587 (3)106
C8—H8···Cg1ii0.963.214.004142
C24—H24···Cg1iii0.933.073.884148
Symmetry codes: (i) x+2, y+1, z; (ii) x+1/2, y1/2, z+1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC22H28N4S
Mr380.55
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.1794 (17), 10.0720 (16), 19.591 (3)
β (°) 94.317 (3)
V3)2199.7 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.40 × 0.36 × 0.24
Data collection
DiffractometerSiemens SMART CCD area detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
23481, 4891, 3490
Rint0.053
(sin θ/λ)max1)0.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.154, 1.07
No. of reflections4891
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.14

Computer programs: SMART (Siemens, 2000), SAINT (Siemens, 2000), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ZORTEP (Zsolnai, 1998) and PLATON (Spek, 2003), SHELXL97 and PARST (Nardelli, 1995).

Selected geometric parameters (Å, º) top
S1—C121.673 (2)N11—C121.350 (2)
C4—N101.278 (2)C12—N131.319 (3)
N10—N111.382 (2)
C4—N10—N11119.13 (16)N13—C12—S1124.78 (16)
C12—N11—N10118.66 (17)N11—C12—S1119.47 (16)
N13—C12—N11115.74 (18)
C26—N1—C2—C3176.42 (18)C7—C5—C6—C2056.1 (2)
N10—C4—C5—C72.8 (3)C4—N10—N11—C12177.1 (2)
C3—C4—C5—C7177.23 (18)N10—N11—C12—N133.1 (3)
C26—N1—C6—C5174.69 (18)N10—N11—C12—S1175.54 (15)
C7—C5—C6—N1178.01 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N13—H13B···S1i0.862.523.362 (2)167
N13—H13A···N100.862.212.587 (3)106
C8—H8···Cg1ii0.963.214.004142
C24—H24···Cg1iii0.933.073.884148
Symmetry codes: (i) x+2, y+1, z; (ii) x+1/2, y1/2, z+1/2; (iii) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds