Download citation
Download citation
link to html
The title compound, {[Cu4(C3H4NS2)4]·2H2O}n, was produced by diffusing a solution of 2-mercapto­thia­zoline in tetra­hydro­furan into a solution of CuCl in CH3CN at room temperature. The structure is characterized by self-assembled one-dimensional chains that are condensed from butterfly-like [Cu(C3H4NS2)]4 tetrameric units via double S-bridging at opposite ends. The Cu-Cu distances within the Cu4 butterfly cluster are in the range 2.7103 (10)-2.9764 (10) Å, while the shortest Cu...Cu intercluster distance is 3.468 (1) Å, much longer than the sum of the van der Waals radii.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102009198/ob1063sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102009198/ob1063Isup2.hkl
Contains datablock I

CCDC reference: 192948

Comment top

Polynuclear d10 metal complexes are potential luminescent sensor materials due to their interesting photochemical and photophysical properties (Ford et al., 1999; Yam & Lo, 1999). In a recent effort to investigate the dependence of the optical properties of coinage metal complexes on molecular structure and metal-metal interactions (Zhou et al., 2002), a variety of novel polynuclear compounds have been obtained through the selective use of different chelating ligands. Copper complexes with 2-mercaptothiazoline (or 2-thiazolidine-2-thione) ligands have been reported previously, e.g. for mononuclear [Cu(C3H5NS2)3Cl] (Zhao et al., 1985) and [(PPh3)2Cu(C3H4NS2)] (Aslanidis et al., 1998), as well as for polymeric [Cu(C3H4NS2)]4·C7H8, which was prepared electrochemically (Raper et al., 1995). In this paper, we report the solution synthesis and single-crystal structure of the title compound, (I), which features similar tetracopper(I) chain structures but with different dimensions, due to solvation effects. \sch

The marked structural feature of (I) is the formation of one-dimensional chains that are built up from butterfly-like [Cu(C3H4NS2)]4 tetrameric units. As shown in Fig. 1, each building block consists of four Cu atoms divided into two categories, with Cu1 and Cu2 in a distorted S3N tetrahedral coordination geometry, and Cu3 and Cu4 in a distorted S2N triangle. The distance between atoms Cu1 and Cu2 on the `wing-tip' [3.775 (1) Å] is much longer than that between the `spinal' atoms Cu3 and Cu4 [2.9764 (10) Å], yielding a butterfly-like shape.

These butterfly-like tetramers link with neighbouring units through the wing-tip atoms Cu1 and Cu2 via S bridging atoms (S21 and S11) at opposite ends, leading to an infinite one-dimensional structure along the [110] direction (Fig. 2). The chain extension at both ends is actually generated through centrosymmetrically related Cu2S2 motifs. The intra-tetramer Cu—Cu distances are in the range 2.7103 (10)–2.9764 (10) Å, slightly longer than the range of 2.692 (4)–2.882 (5) Å reported in [Cu(C3H4NS2)]4·C7H8 (Raper et al., 1995).

The intercluster distances of 3.468 (1) Å for Cu1—Cu1i and 3.487 (1) Å for Cu2—Cu2ii (Fig. 1) [symmetry codes: (i) 1 - x, 1 - y, -z; (ii) -x, 2 - y, -z Are these the correct symmetry codes?], are significantly longer in comparison with the intracluster distances, and are well above the sum of the van der Waals radii, implying no direct metal-metal interaction between tetramers. It is worth noting that the Cu—Cu distances around atom Cu3 are slightly longer than those around atom Cu4, presumably because 2-mercaptothiazoline is a very asymmetric bidendate ligand. Uncoordinated water molecules are located between the polymeric chains to serve for efficient solvation and packing.

While each C3H4NS2 moiety serves as a bidendate ligand through the N and thionato S atoms, the four ligands around the tetrameric CuI unit are grouped into two types in accordance with the butterfly-like configuration. Ligands 3 and 4 are coordinated to only one tetramer, whereas ligands 1 and 2 play additional roles to bridge two neighbouring tetramers via the thionato S atoms. The bond distances associated with the centrosymmetrically related Cu2S2 units are Cu1—S21 2.4393 (14) and 2.6702 (14) Å, and Cu2—S11 2.4463 (14) and 2.5880 (14) Å, which are slightly shorter than those in [Cu(C3H4NS2)]4·C7H8 [2.539 (3) and 2.790 (3) Å], presumably due to the presence of the water solvent molecules, which are smaller than the toluene. The remaining Cu—S distances are in the range 2.2191 (13)–2.3163 (14) Å, with Cu—N distances ranging from 1.991 (4) to 2.021 (4) Å; both are in good agreement with those reported in [Cu(C3H4NS2)]4·C7H8 (Raper et al., 1995) and [Cu(1-methylimidazoline-2(3H)-thionate)]4 (Raper et al., 1991).

Experimental top

Block-like pale-yellow crystals of (I) were obtained by diffusing a solution of 2-mercaptothiazoline (0.160 g) in tetrahydrofuran (6 ml) into a solution of CuCl (0.033 g) in CH3CN (6 ml) at room temperature for four weeks.

Refinement top

The H atoms on the ligands were located at geometrically calculated positions with H-atom parameters constrained (C—H = 0.97 Å). The aqua H atoms were not located in the structure. The highest residual peak (1.60 e Å-3) is located at the position (0.142, 0.816, 0.460), which is 0.59 Å from O (which O atom?); the deepest hole (-0.67 e Å-3) is located at the position (0.185, 0.582, 0.070), which is 0.80 Å from Cu.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: XCAD4 (Harms, 1996); data reduction: XCAD4; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The tetrameric CuI building blocks in polymeric (I). Displacement ellipsoids are drawn at the 50% probability level, and H atoms and the hydrate water molecules have been omitted for clarity [symmetry codes: (i) 1 - x, 1 - y, -z; (ii) -x, 2 - y, -z].
[Figure 2] Fig. 2. The one-dimensional chain in the polymer of (I). H and O atoms have been omitted for clarity and displacement ellipsoids are drawn at the 30% probability level.
catena-Poly[[[bis(µ-4,5-dihydrothiazole-2-thiolato)-tetrahedro-tetracopper(I)]- di-µ-4,5-dihydrothiazole-2-thiolato] dihydrate] top
Crystal data top
[Cu4(C3H4NS2)4]·2H2OZ = 2
Mr = 763.08F(000) = 760
Triclinic, P1Dx = 2.059 Mg m3
a = 9.8888 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.7259 (10) ÅCell parameters from 25 reflections
c = 13.1808 (10) Åθ = 1–26°
α = 69.45 (1)°µ = 4.11 mm1
β = 82.737 (10)°T = 293 K
γ = 70.075 (10)°Block, yellow
V = 1230.67 (19) Å30.32 × 0.30 × 0.30 mm
Data collection top
Query
diffractometer
4777 independent reflections
Radiation source: fine-focus sealed tube4208 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Detector resolution: none pixels mm-1θmax = 26.0°, θmin = 2.2°
ω/2θ scansh = 012
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
k = 1213
Tmin = 0.287, Tmax = 0.292l = 1616
5061 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H-atom parameters constrained
S = 0.88 w = 1/[σ2(Fo2) + (0.1535P)2 + 1.4219P]
where P = (Fo2 + 2Fc2)/3
4777 reflections(Δ/σ)max = 0.001
272 parametersΔρmax = 1.60 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
[Cu4(C3H4NS2)4]·2H2Oγ = 70.075 (10)°
Mr = 763.08V = 1230.67 (19) Å3
Triclinic, P1Z = 2
a = 9.8888 (10) ÅMo Kα radiation
b = 10.7259 (10) ŵ = 4.11 mm1
c = 13.1808 (10) ÅT = 293 K
α = 69.45 (1)°0.32 × 0.30 × 0.30 mm
β = 82.737 (10)°
Data collection top
Query
diffractometer
4777 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
4208 reflections with I > 2σ(I)
Tmin = 0.287, Tmax = 0.292Rint = 0.014
5061 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.170H-atom parameters constrained
S = 0.88Δρmax = 1.60 e Å3
4777 reflectionsΔρmin = 0.67 e Å3
272 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.40027 (8)0.58871 (7)0.08625 (6)0.0443 (2)
Cu20.03274 (7)0.83752 (7)0.01586 (5)0.0385 (2)
Cu30.15483 (7)0.53354 (7)0.05125 (5)0.0388 (2)
Cu40.15312 (6)0.70915 (6)0.18339 (5)0.0322 (2)
S110.16403 (12)0.91962 (11)0.07883 (10)0.0296 (3)
S120.35015 (14)1.04639 (13)0.09779 (12)0.0417 (3)
S210.32517 (12)0.56377 (11)0.07297 (9)0.0275 (3)
S220.34792 (17)0.77038 (15)0.29250 (11)0.0477 (4)
S310.08035 (12)0.67158 (12)0.04980 (9)0.0297 (3)
S320.24033 (16)0.57429 (17)0.25791 (12)0.0453 (4)
S410.33675 (13)0.50400 (12)0.26153 (10)0.0340 (3)
S420.2492 (2)0.25320 (16)0.39916 (11)0.0533 (4)
O10.5545 (5)0.8390 (6)0.4233 (3)0.0653 (14)
O20.1788 (4)1.2147 (4)0.4323 (4)0.0476 (10)
N10.4213 (4)0.7789 (4)0.0122 (3)0.0279 (8)
N20.1495 (4)0.8335 (4)0.1528 (3)0.0296 (8)
N30.0275 (4)0.6690 (4)0.2459 (3)0.0301 (8)
N40.1846 (4)0.3809 (4)0.1954 (3)0.0311 (8)
C110.3235 (5)0.8964 (5)0.0026 (4)0.0268 (9)
C120.5160 (6)0.9403 (5)0.1417 (5)0.0403 (12)
H12A0.50730.94410.21530.048*
H12B0.59480.97360.13920.048*
C130.5429 (5)0.7883 (5)0.0624 (4)0.0351 (11)
H13A0.55720.72500.10320.042*
H13B0.62960.75940.02150.042*
C210.1163 (6)0.9622 (5)0.2467 (4)0.0391 (11)
H21A0.11731.03980.22550.047*
H21B0.02060.98350.27230.047*
C220.2233 (8)0.9467 (7)0.3364 (5)0.066 (2)
H22A0.27431.01440.35220.079*
H22B0.17460.96320.40150.079*
C230.2584 (5)0.7337 (4)0.1666 (4)0.0255 (9)
C310.1041 (5)0.6436 (5)0.1888 (4)0.0292 (9)
C320.2003 (11)0.5979 (15)0.3781 (6)0.100 (4)
H32A0.27760.67370.39360.120*
H32B0.19050.51260.43950.120*
C330.0692 (7)0.6305 (7)0.3602 (5)0.0467 (13)
H33A0.00670.54970.40160.056*
H33B0.08010.70760.38600.056*
C410.2502 (5)0.3833 (5)0.2718 (4)0.0303 (10)
C420.1206 (6)0.2692 (6)0.2286 (4)0.0401 (11)
H42A0.16990.20110.19250.048*
H42B0.02040.30800.20710.048*
C430.1303 (12)0.1979 (9)0.3485 (6)0.077 (3)
H43A0.16590.09680.36520.093*
H43B0.03590.22280.38160.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0570 (5)0.0301 (4)0.0443 (4)0.0191 (3)0.0131 (3)0.0100 (3)
Cu20.0435 (4)0.0421 (4)0.0310 (4)0.0195 (3)0.0090 (3)0.0108 (3)
Cu30.0369 (4)0.0362 (4)0.0290 (4)0.0051 (3)0.0055 (3)0.0024 (3)
Cu40.0321 (3)0.0307 (3)0.0339 (4)0.0122 (2)0.0044 (2)0.0102 (3)
S110.0255 (5)0.0252 (5)0.0361 (6)0.0064 (4)0.0050 (4)0.0109 (5)
S120.0352 (7)0.0250 (6)0.0524 (8)0.0067 (5)0.0096 (6)0.0044 (5)
S210.0300 (6)0.0225 (5)0.0264 (6)0.0061 (4)0.0032 (4)0.0070 (4)
S220.0520 (8)0.0389 (7)0.0300 (7)0.0010 (6)0.0136 (6)0.0029 (5)
S310.0282 (6)0.0316 (6)0.0267 (6)0.0090 (5)0.0011 (4)0.0073 (5)
S320.0471 (8)0.0612 (9)0.0383 (7)0.0341 (7)0.0122 (6)0.0170 (6)
S410.0317 (6)0.0314 (6)0.0353 (7)0.0079 (5)0.0005 (5)0.0087 (5)
S420.0799 (11)0.0517 (9)0.0268 (7)0.0334 (8)0.0073 (7)0.0031 (6)
O10.068 (3)0.119 (4)0.031 (2)0.068 (3)0.012 (2)0.019 (2)
O20.049 (2)0.045 (2)0.053 (2)0.0259 (18)0.0185 (18)0.0049 (18)
N10.0269 (18)0.0264 (18)0.032 (2)0.0108 (15)0.0029 (15)0.0110 (16)
N20.032 (2)0.0270 (19)0.0251 (19)0.0082 (16)0.0004 (15)0.0039 (15)
N30.0289 (19)0.034 (2)0.0262 (19)0.0099 (16)0.0026 (15)0.0093 (16)
N40.0297 (19)0.0280 (19)0.029 (2)0.0082 (16)0.0026 (16)0.0035 (16)
C110.025 (2)0.026 (2)0.031 (2)0.0099 (17)0.0004 (17)0.0105 (18)
C120.038 (3)0.035 (3)0.045 (3)0.013 (2)0.013 (2)0.012 (2)
C130.023 (2)0.033 (2)0.047 (3)0.0071 (19)0.009 (2)0.015 (2)
C210.042 (3)0.029 (2)0.034 (3)0.006 (2)0.000 (2)0.000 (2)
C220.074 (4)0.040 (3)0.041 (3)0.008 (3)0.020 (3)0.007 (3)
C230.030 (2)0.023 (2)0.023 (2)0.0102 (17)0.0009 (17)0.0060 (17)
C310.030 (2)0.023 (2)0.029 (2)0.0070 (17)0.0027 (18)0.0049 (18)
C320.105 (7)0.207 (12)0.042 (4)0.113 (8)0.035 (4)0.055 (6)
C330.057 (3)0.059 (3)0.031 (3)0.029 (3)0.006 (2)0.015 (2)
C410.030 (2)0.023 (2)0.027 (2)0.0006 (18)0.0001 (18)0.0042 (18)
C420.048 (3)0.038 (3)0.036 (3)0.019 (2)0.002 (2)0.011 (2)
C430.129 (7)0.081 (5)0.039 (3)0.076 (5)0.006 (4)0.002 (3)
Geometric parameters (Å, º) top
Cu1—N11.999 (4)S42—C411.768 (5)
Cu1—S412.2599 (15)S42—C431.773 (8)
Cu1—S212.4393 (14)N1—C111.275 (6)
Cu1—S21i2.6702 (14)N1—C131.463 (6)
Cu1—Cu42.7390 (10)N2—C231.282 (6)
Cu1—Cu32.8120 (11)N2—C211.458 (6)
Cu2—N22.021 (4)N3—C311.280 (7)
Cu2—S312.2796 (14)N3—C331.458 (7)
Cu2—S112.4463 (14)N4—C411.275 (7)
Cu2—S11ii2.5880 (14)N4—C421.451 (7)
Cu2—Cu42.7103 (10)C12—C131.546 (7)
Cu2—Cu32.9041 (10)C12—H12A0.9700
Cu3—N42.002 (4)C12—H12B0.9700
Cu3—S212.2191 (13)C13—H13A0.9700
Cu3—S312.2912 (13)C13—H13B0.9700
Cu3—Cu42.9764 (10)C21—C221.505 (8)
Cu4—N31.991 (4)C21—H21A0.9700
Cu4—S112.2250 (13)C21—H21B0.9700
Cu4—S412.3163 (14)C22—H22A0.9700
S11—C111.753 (5)C22—H22B0.9700
S11—Cu2ii2.5880 (14)C32—C331.420 (10)
S12—C111.764 (5)C32—H32A0.9700
S12—C121.809 (5)C32—H32B0.9700
S21—C231.755 (4)C33—H33A0.9700
S21—Cu1i2.6702 (14)C33—H33B0.9700
S22—C231.762 (5)C42—C431.487 (9)
S22—C221.802 (6)C42—H42A0.9700
S31—C311.746 (5)C42—H42B0.9700
S32—C311.763 (5)C43—H43A0.9700
S32—C321.799 (8)C43—H43B0.9700
S41—C411.741 (5)
N1—Cu1—S41125.77 (12)C31—S32—C3288.9 (3)
N1—Cu1—S2196.57 (12)C41—S41—Cu1107.98 (17)
S41—Cu1—S21128.74 (5)C41—S41—Cu498.81 (16)
N1—Cu1—S21i97.88 (12)Cu1—S41—Cu473.52 (5)
S41—Cu1—S21i105.14 (5)C41—S42—C4390.0 (3)
S21—Cu1—S21i94.64 (4)C11—N1—C13114.2 (4)
N1—Cu1—Cu489.21 (11)C11—N1—Cu1126.1 (3)
S41—Cu1—Cu454.19 (4)C13—N1—Cu1117.6 (3)
S21—Cu1—Cu4106.21 (4)C23—N2—C21114.1 (4)
S21i—Cu1—Cu4157.10 (4)C23—N2—Cu2127.7 (3)
N1—Cu1—Cu3120.24 (12)C21—N2—Cu2117.9 (3)
S41—Cu1—Cu382.14 (4)C31—N3—C33112.4 (4)
S21—Cu1—Cu349.37 (3)C31—N3—Cu4119.3 (3)
S21i—Cu1—Cu3127.17 (4)C33—N3—Cu4126.6 (3)
Cu4—Cu1—Cu364.83 (3)C41—N4—C42113.2 (4)
N2—Cu2—S31115.27 (12)C41—N4—Cu3121.5 (3)
N2—Cu2—S11103.50 (12)C42—N4—Cu3124.8 (3)
S31—Cu2—S11130.34 (5)N1—C11—S11125.2 (4)
N2—Cu2—S11ii102.35 (11)N1—C11—S12117.1 (4)
S31—Cu2—S11ii107.51 (5)S11—C11—S12117.6 (3)
S11—Cu2—S11ii92.35 (5)C13—C12—S12106.2 (3)
N2—Cu2—Cu4122.25 (12)C13—C12—H12A110.5
S31—Cu2—Cu481.69 (4)S12—C12—H12A110.5
S11—Cu2—Cu450.81 (3)C13—C12—H12B110.5
S11ii—Cu2—Cu4125.58 (4)S12—C12—H12B110.5
N2—Cu2—Cu384.73 (11)H12A—C12—H12B108.7
S31—Cu2—Cu350.73 (3)N1—C13—C12110.9 (4)
S11—Cu2—Cu3107.18 (4)N1—C13—H13A109.5
S11ii—Cu2—Cu3157.22 (4)C12—C13—H13A109.5
Cu4—Cu2—Cu363.92 (3)N1—C13—H13B109.5
N4—Cu3—S21125.04 (12)C12—C13—H13B109.5
N4—Cu3—S31105.99 (12)H13A—C13—H13B108.0
S21—Cu3—S31128.84 (5)N2—C21—C22111.2 (4)
N4—Cu3—Cu189.37 (12)N2—C21—H21A109.4
S21—Cu3—Cu156.54 (4)C22—C21—H21A109.4
S31—Cu3—Cu1127.56 (4)N2—C21—H21B109.4
N4—Cu3—Cu2133.67 (12)C22—C21—H21B109.4
S21—Cu3—Cu287.35 (4)H21A—C21—H21B108.0
S31—Cu3—Cu250.38 (4)C21—C22—S22107.6 (4)
Cu1—Cu3—Cu282.64 (3)C21—C22—H22A110.2
N4—Cu3—Cu482.90 (12)S22—C22—H22A110.2
S21—Cu3—Cu4104.91 (4)C21—C22—H22B110.2
S31—Cu3—Cu475.77 (4)S22—C22—H22B110.2
Cu1—Cu3—Cu456.40 (2)H22A—C22—H22B108.5
Cu2—Cu3—Cu454.87 (2)N2—C23—S21126.5 (4)
N3—Cu4—S11124.54 (12)N2—C23—S22116.4 (3)
N3—Cu4—S41105.20 (12)S21—C23—S22117.1 (3)
S11—Cu4—S41129.78 (5)N3—C31—S31124.8 (4)
N3—Cu4—Cu290.31 (12)N3—C31—S32116.2 (4)
S11—Cu4—Cu258.44 (4)S31—C31—S32119.0 (3)
S41—Cu4—Cu2134.30 (4)C33—C32—S32108.7 (5)
N3—Cu4—Cu1138.32 (12)C33—C32—H32A109.9
S11—Cu4—Cu188.94 (4)S32—C32—H32A109.9
S41—Cu4—Cu152.30 (4)C33—C32—H32B109.9
Cu2—Cu4—Cu187.69 (3)S32—C32—H32B109.9
N3—Cu4—Cu384.11 (12)H32A—C32—H32B108.3
S11—Cu4—Cu3111.28 (4)C32—C33—N3112.1 (5)
S41—Cu4—Cu377.66 (4)C32—C33—H33A109.2
Cu2—Cu4—Cu361.21 (2)N3—C33—H33A109.2
Cu1—Cu4—Cu358.77 (2)C32—C33—H33B109.2
C11—S11—Cu4108.42 (15)N3—C33—H33B109.2
C11—S11—Cu298.03 (16)H33A—C33—H33B107.9
Cu4—S11—Cu270.75 (4)N4—C41—S41125.8 (4)
C11—S11—Cu2ii117.38 (16)N4—C41—S42116.3 (4)
Cu4—S11—Cu2ii131.58 (5)S41—C41—S42117.9 (3)
Cu2—S11—Cu2ii87.65 (5)N4—C42—C43111.1 (5)
C11—S12—C1291.3 (2)N4—C42—H42A109.4
C23—S21—Cu3107.26 (16)C43—C42—H42A109.4
C23—S21—Cu1107.08 (16)N4—C42—H42B109.4
Cu3—S21—Cu174.09 (4)C43—C42—H42B109.4
C23—S21—Cu1i119.62 (16)H42A—C42—H42B108.0
Cu3—S21—Cu1i132.59 (5)C42—C43—S42108.0 (5)
Cu1—S21—Cu1i85.36 (4)C42—C43—H43A110.1
C23—S22—C2290.7 (2)S42—C43—H43A110.1
C31—S31—Cu2106.20 (17)C42—C43—H43B110.1
C31—S31—Cu398.64 (16)S42—C43—H43B110.1
Cu2—S31—Cu378.89 (5)H43A—C43—H43B108.4
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+2, z.

Experimental details

Crystal data
Chemical formula[Cu4(C3H4NS2)4]·2H2O
Mr763.08
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.8888 (10), 10.7259 (10), 13.1808 (10)
α, β, γ (°)69.45 (1), 82.737 (10), 70.075 (10)
V3)1230.67 (19)
Z2
Radiation typeMo Kα
µ (mm1)4.11
Crystal size (mm)0.32 × 0.30 × 0.30
Data collection
DiffractometerQuery
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.287, 0.292
No. of measured, independent and
observed [I > 2σ(I)] reflections
5061, 4777, 4208
Rint0.014
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.170, 0.88
No. of reflections4777
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.60, 0.67

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), XCAD4 (Harms, 1996), XCAD4, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Cu1—N11.999 (4)Cu2—Cu32.9041 (10)
Cu1—S412.2599 (15)Cu3—N42.002 (4)
Cu1—S212.4393 (14)Cu3—S212.2191 (13)
Cu1—S21i2.6702 (14)Cu3—S312.2912 (13)
Cu1—Cu42.7390 (10)Cu3—Cu42.9764 (10)
Cu1—Cu32.8120 (11)Cu4—N31.991 (4)
Cu2—N22.021 (4)Cu4—S112.2250 (13)
Cu2—S312.2796 (14)Cu4—S412.3163 (14)
Cu2—S112.4463 (14)S11—Cu2ii2.5880 (14)
Cu2—S11ii2.5880 (14)S21—Cu1i2.6702 (14)
Cu2—Cu42.7103 (10)
N1—Cu1—S41125.77 (12)N4—Cu3—S21125.04 (12)
N1—Cu1—S2196.57 (12)N4—Cu3—S31105.99 (12)
S41—Cu1—S21128.74 (5)S21—Cu3—S31128.84 (5)
N1—Cu1—S21i97.88 (12)N4—Cu3—Cu189.37 (12)
S41—Cu1—S21i105.14 (5)S21—Cu3—Cu156.54 (4)
S21—Cu1—S21i94.64 (4)S31—Cu3—Cu1127.56 (4)
N1—Cu1—Cu489.21 (11)N4—Cu3—Cu2133.67 (12)
S41—Cu1—Cu454.19 (4)S21—Cu3—Cu287.35 (4)
S21—Cu1—Cu4106.21 (4)S31—Cu3—Cu250.38 (4)
S21i—Cu1—Cu4157.10 (4)Cu1—Cu3—Cu282.64 (3)
N1—Cu1—Cu3120.24 (12)N4—Cu3—Cu482.90 (12)
S41—Cu1—Cu382.14 (4)S21—Cu3—Cu4104.91 (4)
S21—Cu1—Cu349.37 (3)S31—Cu3—Cu475.77 (4)
S21i—Cu1—Cu3127.17 (4)Cu1—Cu3—Cu456.40 (2)
Cu4—Cu1—Cu364.83 (3)Cu2—Cu3—Cu454.87 (2)
N2—Cu2—S31115.27 (12)N3—Cu4—S11124.54 (12)
N2—Cu2—S11103.50 (12)N3—Cu4—S41105.20 (12)
S31—Cu2—S11130.34 (5)S11—Cu4—S41129.78 (5)
N2—Cu2—S11ii102.35 (11)N3—Cu4—Cu290.31 (12)
S31—Cu2—S11ii107.51 (5)S11—Cu4—Cu258.44 (4)
S11—Cu2—S11ii92.35 (5)S41—Cu4—Cu2134.30 (4)
N2—Cu2—Cu4122.25 (12)N3—Cu4—Cu1138.32 (12)
S31—Cu2—Cu481.69 (4)S11—Cu4—Cu188.94 (4)
S11—Cu2—Cu450.81 (3)S41—Cu4—Cu152.30 (4)
S11ii—Cu2—Cu4125.58 (4)Cu2—Cu4—Cu187.69 (3)
N2—Cu2—Cu384.73 (11)N3—Cu4—Cu384.11 (12)
S31—Cu2—Cu350.73 (3)S11—Cu4—Cu3111.28 (4)
S11—Cu2—Cu3107.18 (4)S41—Cu4—Cu377.66 (4)
S11ii—Cu2—Cu3157.22 (4)Cu2—Cu4—Cu361.21 (2)
Cu4—Cu2—Cu363.92 (3)Cu1—Cu4—Cu358.77 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds