Download citation
Download citation
link to html
Morpholinium 2-chloro-4-nitro­benzoate, C4H10NO+·C7H3ClNO4, (I), crystallizes in a non-centrosymmetric space group. The cations and anions are connected by N—H...O hydrogen bonds to afford a 21 helical chain. Morpholinium 2-chloro-5-nitro­benzoate, C4H10NO+·C7H3ClNO4, (II), and morpho­linium 4-chloro-3-nitro­benzoate, C4H10NO+·C7H3ClNO4, (III), both crystallize in a centrosymmetric space group. In (II) and (III), two cations and two anions are held together by N—H...O hydrogen bonds to form a centrosymmetric ring with graph-set descriptor R44(12).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101016389/ob1046sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101016389/ob1046Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101016389/ob1046IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101016389/ob1046IIIsup4.hkl
Contains datablock III

CCDC references: 179282; 179283; 179284

Comment top

Chiral crystals composed of two achiral molecules have attracted much interest because of their potential use for absolute asymmetric synthesis (Green et al., 1979; Koshima, Ding et al., 1996; Tanaka & Toda, 2000) and non-linear optics (Koshima, Wang et al., 1996). In the course of our study on D—H···A hydrogen bonding (D: N, O or C; A: N, O or Cl) in chloro- and nitro-substituted benzoic acid–amine systems (Ishida et al., 2001a,b,cd), we found that imidazolium 2-chloro-4-nitrobezoate crystallizes in the non-centrosymmetric space group P21. In the crystal, the cations and anions are connected by N—H···O hydrogen bonds to afford a 21 helical chain (Ishida et al., 2001 d). This is the first example of a chloro- and nitro-substituted benzoic acid–amine system that shows spontaneous resolution of a chiral rotational isomer of the benzoate ion. Thus, we have prepared crystals composed of chloro- and nitro-substituted benzoic acid and amine, with the expectation that such a chiral rotational isomer exists widely in these systems; we have chosen morpholine as the counter-cation and prepared salts with 2-chloro-4-nitro-, (I), 2-chloro-5-nitro-, (II), and 4-chloro-3-nitrobenzoic acid, (III), and determined their crystal structures. Of these salts, (I) crystallizes in the non-centrosymmetric space group P212121.

The asymmetric units of (I), (II) and (III) are composed of C4H10NO+·C7H3ClNO4-. In these crystals, an acid–base interaction involving a proton transfer is observed as expected from the high basicity of the present amine. In (I), the cations and anions are held together by short N—H···O hydrogen bonds (Table 2), forming a 21 helical chain along the c axis (Figs. 1 and 2). One of the O atoms of the carboxylate group, O1, forms two hydrogen bonds with the cations, while the other O atom, O2, forms no hydrogen bond. The C—O bond involved in the hydrogen bond is rather long [C7—O1 1.267 (3) Å] compared with the other C—O bond length [C7—O2 1.223 (4) Å] and the C—O bond lengths in (II) and (III) [1.237 (3)–1.247 (3) Å], where both O atoms of the carboxylate groups are involved in N—H···O hydrogen bonds (see below). The helical chains are linked by three leading C—H···O interactions (Table 2) involving both O atoms of the nitro group and the O atom of the cation (Fig. 2). The carboxylate group is considerably twisted out of the plane of the benzene ring [dihedral angle 72.1 (2)°] compared with the calculated value (41.1°) for the isolated anion in the gas phase using the GAUSSIAN98/HF program (Frisch et al., 1998) with the 6–31G** basis set. On the other hand, the nitro group makes a small angle of 1.8 (2)° with the benzene ring, which is comparable to the calculated angle of 0.5°.

In (II) and (III), two cations and two anions are held together by short N—H···O hydrogen bonds (Tables 4 and 6). Both O atoms of the carboxylate groups are involved in the hydrogen bonds, forming centrosymmetric hydrogen-bonded rings (Figs. 3 and 4) with graph-set descriptor R44(12) (Bernstein et al., 1995), in a similar manner to those observed in morpholinium 4-chloro-2-nitrobenzoate and 5-cholro-2-nitrobenzoate (Ishida et al., 2001b,c). In (II), the dihedral angle between the carboxylate group and the benzene ring is 61.0 (2)° and that between the nitro group and the benzene ring is 11.7 (2)°. In (III), these dihedral angles are 13.2 (2) and 19.3 (2)°, in the same order. There are two and three important C—H···O interactions in (II) and (III), respectively, which connect the macro-rings (Tables 4 and 6).

Related literature top

For related literature, see: Bernstein et al. (1995); Frisch (1998); Green et al. (1979); Ishida et al. (2001a); Koshima, Ding, Chisaka & Matsuura (1996); Koshima, Wang, Matsuura, Mibaka & Imahashi (1996); Tanaka & Toda (2000).

Experimental top

The title compounds were prepared by mixing morpholine with the corresponding benzoic acid (molar ratio of 1:1) in acetonitrile. Single crystals were grown by slow evaporation of the solutions at room temperature.

Refinement top

For (I), H atoms were treated as riding atoms with C—H = 0.93 Å (aromatic H), C—H = 0.97 Å (secondary H) and N—H = 0.89 Å, and Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(N). For (II) and (III), the H atoms were refined isotropically. Refined distances: C—H = 0.86 (3)–0.99 (3) Å and N—H = 0.83 (3)–0.99 (4) Å for (II); C—H = 0.89 (4)–1.05 (4) Å and N—H = 0.93 (3)–1.00 (3) Å for (III).

Computing details top

For all compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1990); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN for Windows (Molecular Structure Corporation, 1997-1999). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990) for (I); SIR92 (Altomare et al., 1993) for (II), (III). For all compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: TEXSAN for Windows.

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) drawing of (I) with the atom-labeling scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. N—H···O hydrogen bonds are indicated by dashed lines [symmetry code: (i) 3/2 - x, 1 - y, z - 1/2].
[Figure 2] Fig. 2. Packing diagram of (I) showing the helical structure formed via N—H···O hydrogen bonds, which are indicated by dashed lines. C—H···O interactions which connect the helical chains are indicated by dotted lines [symmetry codes: (i)-(iv) are as Table 2; (v) 1 - x, y - 1/2, 3/2 - z; (vi) 1 + x, y, z; (vii) 2 - x, y - 1/2, 3/2 - z].
[Figure 3] Fig. 3. ORTEP-3 drawing of (II) showing a hydrogen-bonded ring. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. N—H···O hydrogen bonds are indicated by dashed lines [symmetry code: (i) 1 - x, -y, 1 - z].
[Figure 4] Fig. 4. ORTEP-3 drawing of (III) showing a hydrogen-bonded ring. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. N—H···O hydrogen bonds are indicated by dashed lines [symmetry code: (i) 3/2 - x, 3/2 - y, 1 - z].
(I) top
Crystal data top
C4H10NO+·C7H3ClNO4F(000) = 600
Mr = 288.69Dx = 1.478 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 10.304 (2) Åθ = 11.3–12.4°
b = 19.557 (6) ŵ = 0.31 mm1
c = 6.4387 (13) ÅT = 298 K
V = 1297.5 (5) Å3Prismatic, colorless
Z = 40.40 × 0.30 × 0.20 mm
Data collection top
Rigaku AFC-5R
diffractometer
1769 reflections with I > 2σ(I)
Radiation source: Rigaku rotating anodeRint = 0.058
Graphite monochromatorθmax = 29.0°, θmin = 2.1°
ω–2θ scansh = 314
Absorption correction: ψ scan
(North et al., 1968)
k = 326
Tmin = 0.885, Tmax = 0.940l = 38
4209 measured reflections3 standard reflections every 97 reflections
3101 independent reflections intensity decay: 1.7%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.053 w = 1/[σ2(Fo2) + 0.4754P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.075(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.28 e Å3
3101 reflectionsΔρmin = 0.23 e Å3
173 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0053 (9)
0 constraintsAbsolute structure: (Flack, 1983), 1102 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (8)
Secondary atom site location: difference Fourier map
Crystal data top
C4H10NO+·C7H3ClNO4V = 1297.5 (5) Å3
Mr = 288.69Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.304 (2) ŵ = 0.31 mm1
b = 19.557 (6) ÅT = 298 K
c = 6.4387 (13) Å0.40 × 0.30 × 0.20 mm
Data collection top
Rigaku AFC-5R
diffractometer
1769 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.058
Tmin = 0.885, Tmax = 0.9403 standard reflections every 97 reflections
4209 measured reflections intensity decay: 1.7%
3101 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.075Δρmax = 0.28 e Å3
S = 1.04Δρmin = 0.23 e Å3
3101 reflectionsAbsolute structure: (Flack, 1983), 1102 Friedel pairs
173 parametersAbsolute structure parameter: 0.02 (8)
0 restraints
Special details top

Experimental. The scan width was (1.42 + 0.30tanθ)° with an ω scan speed of 5° per minute (up to 3 scans to achieve I/σ(I) > 10). Stationary background counts were recorded at each end of the scan, and the scan time:background time ratio was 2:1.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.92033 (9)0.26987 (5)1.07561 (13)0.0527 (3)
O10.7367 (2)0.42775 (11)0.8920 (4)0.0563 (7)
O20.6418 (2)0.35904 (11)1.1175 (4)0.0533 (7)
O30.8873 (2)0.10450 (12)0.4440 (4)0.0564 (7)
O40.7277 (3)0.13867 (12)0.2498 (4)0.0608 (8)
O51.1351 (2)0.45873 (13)0.3723 (3)0.0529 (7)
N10.7982 (3)0.14421 (14)0.4035 (5)0.0438 (7)
N20.8939 (2)0.46701 (12)0.5821 (4)0.0379 (6)
C10.7295 (3)0.30998 (15)0.8115 (4)0.0312 (8)
C20.8235 (3)0.26118 (16)0.8542 (4)0.0334 (8)
C30.8469 (3)0.20654 (15)0.7258 (5)0.0354 (8)
C40.7744 (3)0.20165 (15)0.5466 (5)0.0347 (8)
C50.6818 (3)0.24974 (19)0.4936 (5)0.0402 (8)
C60.6616 (3)0.30375 (16)0.6263 (5)0.0389 (8)
C70.7010 (3)0.36942 (16)0.9559 (5)0.0343 (8)
C80.9174 (3)0.41577 (16)0.4179 (5)0.0456 (8)
C91.0180 (4)0.4435 (2)0.2674 (5)0.0544 (11)
C101.1129 (3)0.51107 (19)0.5230 (5)0.0527 (10)
C111.0167 (3)0.48916 (19)0.6842 (4)0.0452 (10)
H10.90940.17400.75850.042*
H20.63450.24570.37120.048*
H30.60080.33700.59120.047*
H40.84100.44930.67730.057*
H50.85480.50330.52690.057*
H60.83720.40620.34460.055*
H70.94830.37350.47940.055*
H81.03460.40990.15980.065*
H90.98490.48450.20160.065*
H101.08110.55180.45360.063*
H111.19440.52250.59010.063*
H121.05220.45170.76490.054*
H130.99910.52690.77790.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0537 (5)0.0565 (6)0.0478 (5)0.0121 (5)0.0151 (5)0.0085 (5)
O10.0744 (17)0.0293 (13)0.0652 (16)0.0018 (13)0.0380 (15)0.0009 (13)
O20.0655 (17)0.0484 (15)0.0460 (15)0.0015 (13)0.0206 (14)0.0016 (12)
O30.0496 (16)0.0448 (15)0.0748 (17)0.0084 (13)0.0070 (15)0.0168 (14)
O40.0779 (19)0.0534 (17)0.0512 (15)0.0068 (15)0.0110 (17)0.0165 (13)
O50.0399 (14)0.0707 (19)0.0482 (15)0.0027 (13)0.0086 (12)0.0011 (14)
N10.0463 (18)0.0379 (18)0.0473 (18)0.0112 (15)0.0133 (18)0.0075 (16)
N20.0385 (15)0.0374 (15)0.0377 (14)0.0023 (12)0.0026 (14)0.0060 (14)
C10.0290 (17)0.0276 (18)0.0368 (18)0.0002 (15)0.0049 (15)0.0029 (14)
C20.0335 (17)0.0354 (19)0.0312 (16)0.0033 (16)0.0021 (14)0.0026 (15)
C30.0347 (18)0.0318 (19)0.0396 (18)0.0034 (15)0.0024 (17)0.0005 (15)
C40.0368 (17)0.0309 (18)0.0364 (18)0.0022 (15)0.0074 (17)0.0028 (15)
C50.0394 (19)0.045 (2)0.0358 (17)0.0006 (16)0.0063 (14)0.0000 (14)
C60.0365 (18)0.037 (2)0.043 (2)0.0073 (16)0.0022 (18)0.0048 (16)
C70.0333 (17)0.0306 (18)0.039 (2)0.0036 (15)0.0011 (17)0.0012 (16)
C80.048 (2)0.0439 (19)0.0448 (19)0.0063 (18)0.006 (2)0.0027 (19)
C90.066 (3)0.062 (3)0.036 (2)0.002 (2)0.013 (2)0.005 (2)
C100.041 (2)0.059 (3)0.058 (2)0.0123 (19)0.0015 (18)0.0005 (19)
C110.054 (2)0.049 (2)0.0324 (19)0.0052 (18)0.0076 (18)0.0005 (17)
Geometric parameters (Å, º) top
Cl—C21.748 (3)O5—C91.414 (4)
O1—C71.267 (3)O5—C101.429 (4)
O2—C71.223 (4)N2—C81.477 (4)
O3—N11.230 (3)N2—C111.490 (4)
O4—N11.232 (3)N2—H40.89
N1—C41.474 (4)N2—H50.89
C1—C21.387 (4)C8—C91.519 (4)
C1—C61.388 (4)C8—H60.97
C1—C71.517 (4)C8—H70.97
C2—C31.372 (4)C9—H80.97
C3—C41.378 (4)C9—H90.97
C3—H10.93C10—C111.499 (4)
C4—C51.382 (4)C10—H100.97
C5—C61.375 (4)C10—H110.97
C5—H20.93C11—H120.97
C6—H30.93C11—H130.97
O1···N22.682 (3)O5···N1ii2.994 (4)
O1···N2i2.747 (3)
O3—N1—O4123.7 (3)O5—C9—H9109.5
O3—N1—C4118.2 (3)C8—C9—H9109.5
O4—N1—C4118.1 (3)H8—C9—H9108.1
C2—C1—C6117.5 (3)O5—C10—C11111.8 (3)
C2—C1—C7122.8 (3)O5—C10—H10109.3
C6—C1—C7119.7 (3)C11—C10—H10109.3
C3—C2—C1122.6 (3)O5—C10—H11109.3
C3—C2—Cl117.9 (2)C11—C10—H11109.3
C1—C2—Cl119.6 (2)H10—C10—H11107.9
C2—C3—C4117.6 (3)N2—C8—C9109.1 (2)
C2—C3—H1121.2N2—C8—H6109.9
C4—C3—H1121.2C9—C8—H6109.9
C3—C4—C5122.3 (3)N2—C8—H7109.9
C3—C4—N1119.1 (3)C9—C8—H7109.9
C5—C4—N1118.6 (3)N2—C11—C10109.8 (2)
C6—C5—C4118.3 (3)N2—C11—H12109.7
C6—C5—H2120.9C10—C11—H12109.7
C4—C5—H2120.9N2—C11—H13109.7
C5—C6—C1121.7 (3)C10—C11—H13109.7
C5—C6—H3119.2H12—C11—H13108.2
C1—C6—H3119.2C8—N2—C11112.0 (2)
O2—C7—O1124.8 (3)C8—N2—H4109.2
O2—C7—C1119.4 (3)C11—N2—H4109.2
O1—C7—C1115.7 (3)C8—N2—H5109.2
H6—C8—H7108.3C11—N2—H5109.2
O5—C9—C8110.6 (3)H4—N2—H5107.9
O5—C9—H8109.5C9—O5—C10109.8 (3)
C8—C9—H8109.5
C6—C1—C2—C32.8 (4)C4—C5—C6—C11.3 (5)
C7—C1—C2—C3178.3 (3)C2—C1—C6—C52.9 (4)
C6—C1—C2—Cl175.3 (2)C7—C1—C6—C5178.2 (3)
C7—C1—C2—Cl3.5 (4)C2—C1—C7—O274.1 (4)
C1—C2—C3—C41.1 (4)C6—C1—C7—O2107.1 (4)
Cl—C2—C3—C4177.1 (2)C2—C1—C7—O1108.9 (3)
C2—C3—C4—C50.6 (4)C6—C1—C7—O169.9 (4)
C2—C3—C4—N1179.1 (3)C11—N2—C8—C953.3 (3)
O3—N1—C4—C33.9 (4)C10—O5—C9—C862.5 (4)
O4—N1—C4—C3176.2 (3)N2—C8—C9—O558.6 (4)
O3—N1—C4—C5174.6 (3)C9—O5—C10—C1161.3 (4)
O4—N1—C4—C55.3 (4)C8—N2—C11—C1052.0 (4)
C3—C4—C5—C60.6 (5)O5—C10—C11—N255.2 (4)
N1—C4—C5—C6179.0 (3)
Symmetry codes: (i) x+3/2, y+1, z+1/2; (ii) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H4···O10.891.802.682 (3)170
N2—H5···O1iii0.891.862.747 (3)174
C6—H3···O3iv0.932.493.378 (4)160
C10—H11···O5v0.972.553.486 (4)161
C11—H12···O4ii0.972.533.340 (4)141
Symmetry codes: (ii) x+1/2, y+1/2, z+1; (iii) x+3/2, y+1, z1/2; (iv) x1/2, y+1/2, z+1; (v) x+5/2, y+1, z+1/2.
(II) top
Crystal data top
C4H10NO+·C7H3ClNO4F(000) = 1200
Mr = 288.69Dx = 1.492 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 18.680 (6) Åθ = 11.2–12.5°
b = 10.498 (3) ŵ = 0.32 mm1
c = 13.125 (3) ÅT = 298 K
β = 93.35 (2)°Prismatic, colorless
V = 2569.5 (13) Å30.40 × 0.30 × 0.20 mm
Z = 8
Data collection top
Rigaku AFC-5R
diffractometer
1741 reflections with I > 2σ(I)
Radiation source: Rigaku rotating anodeRint = 0.025
Graphite monochromatorθmax = 27.5°, θmin = 2.2°
ω–2θ scansh = 124
Absorption correction: ψ scan
(North et al., 1968)
k = 013
Tmin = 0.884, Tmax = 0.940l = 1717
3215 measured reflections3 standard reflections every 97 reflections
2945 independent reflections intensity decay: 1.5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046All H-atom parameters refined
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0219P)2 + 1.024P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
2945 reflectionsΔρmax = 0.26 e Å3
225 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0240 (11)
Crystal data top
C4H10NO+·C7H3ClNO4V = 2569.5 (13) Å3
Mr = 288.69Z = 8
Monoclinic, C2/cMo Kα radiation
a = 18.680 (6) ŵ = 0.32 mm1
b = 10.498 (3) ÅT = 298 K
c = 13.125 (3) Å0.40 × 0.30 × 0.20 mm
β = 93.35 (2)°
Data collection top
Rigaku AFC-5R
diffractometer
1741 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.025
Tmin = 0.884, Tmax = 0.9403 standard reflections every 97 reflections
3215 measured reflections intensity decay: 1.5%
2945 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.121All H-atom parameters refined
S = 1.00Δρmax = 0.26 e Å3
2945 reflectionsΔρmin = 0.24 e Å3
225 parameters
Special details top

Experimental. The scan width was (1.37 + 0.30tanθ)° with an ω scan speed of 4° per minute (up to 4 scans to achieve I/σ(I) > 10). Stationary background counts were recorded at each end of the scan, and the scan time:background time ratio was 2:1.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.58105 (4)0.37294 (7)0.32979 (6)0.0559 (3)
O10.61609 (11)0.00193 (18)0.36764 (15)0.0556 (5)
O20.58973 (9)0.14191 (18)0.48707 (14)0.0506 (5)
O30.92286 (11)0.2335 (3)0.30218 (17)0.0784 (8)
O40.89280 (11)0.0791 (2)0.3986 (2)0.0720 (7)
O50.31960 (10)0.29981 (19)0.43692 (15)0.0550 (5)
N10.87919 (12)0.1750 (3)0.34898 (18)0.0527 (6)
N20.44683 (12)0.1719 (2)0.50853 (18)0.0432 (6)
C10.68165 (12)0.1917 (2)0.37796 (17)0.0335 (5)
C20.66822 (13)0.3131 (2)0.33920 (18)0.0377 (6)
C30.72200 (16)0.3875 (3)0.3022 (2)0.0472 (7)
C40.79118 (16)0.3433 (3)0.3050 (2)0.0477 (7)
C50.80519 (13)0.2243 (2)0.34609 (18)0.0392 (6)
C60.75198 (13)0.1480 (2)0.38116 (18)0.0371 (6)
C70.62345 (12)0.1057 (2)0.41338 (18)0.0373 (6)
C80.41171 (17)0.1445 (3)0.4057 (2)0.0527 (7)
C90.33271 (16)0.1724 (3)0.4082 (2)0.0523 (7)
C100.35140 (16)0.3231 (3)0.5362 (2)0.0524 (7)
C110.43096 (15)0.3038 (3)0.5412 (2)0.0475 (7)
H10.7123 (15)0.460 (3)0.275 (2)0.057 (9)*
H20.8270 (15)0.390 (2)0.283 (2)0.048 (8)*
H30.7624 (12)0.062 (3)0.4072 (18)0.040 (7)*
H40.4906 (16)0.161 (3)0.503 (2)0.049 (8)*
H50.4300 (17)0.108 (3)0.558 (3)0.080 (10)*
H60.4323 (18)0.197 (3)0.361 (3)0.073 (10)*
H70.4214 (15)0.055 (3)0.387 (2)0.064 (9)*
H80.3075 (16)0.159 (3)0.336 (2)0.062 (9)*
H90.3098 (14)0.117 (3)0.454 (2)0.051 (8)*
H100.3438 (15)0.411 (3)0.550 (2)0.060 (9)*
H110.3310 (16)0.268 (3)0.584 (2)0.061 (9)*
H120.4530 (14)0.359 (2)0.495 (2)0.045 (8)*
H130.4546 (16)0.311 (3)0.610 (2)0.064 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0463 (4)0.0548 (4)0.0658 (5)0.0102 (3)0.0024 (3)0.0033 (4)
O10.0674 (13)0.0458 (11)0.0557 (12)0.0179 (10)0.0207 (10)0.0075 (9)
O20.0397 (10)0.0620 (12)0.0520 (11)0.0028 (9)0.0180 (9)0.0051 (9)
O30.0406 (11)0.132 (2)0.0645 (13)0.0101 (13)0.0187 (10)0.0137 (14)
O40.0443 (12)0.0661 (15)0.1056 (19)0.0073 (11)0.0033 (12)0.0037 (14)
O50.0477 (11)0.0564 (12)0.0596 (12)0.0025 (10)0.0091 (9)0.0078 (10)
N10.0351 (12)0.0757 (18)0.0477 (14)0.0077 (12)0.0049 (11)0.0124 (13)
N20.0307 (12)0.0499 (14)0.0497 (13)0.0009 (10)0.0084 (10)0.0079 (11)
C10.0343 (12)0.0373 (13)0.0293 (11)0.0034 (10)0.0042 (10)0.0035 (10)
C20.0350 (12)0.0415 (14)0.0365 (13)0.0023 (11)0.0006 (10)0.0030 (11)
C30.0600 (18)0.0366 (15)0.0451 (15)0.0056 (14)0.0029 (13)0.0048 (13)
C40.0477 (16)0.0530 (17)0.0433 (15)0.0184 (14)0.0092 (13)0.0019 (13)
C50.0341 (13)0.0498 (15)0.0338 (13)0.0044 (12)0.0026 (10)0.0076 (12)
C60.0368 (13)0.0413 (15)0.0335 (12)0.0042 (11)0.0043 (10)0.0028 (11)
C70.0331 (12)0.0429 (14)0.0360 (13)0.0009 (11)0.0032 (10)0.0008 (11)
C80.0596 (19)0.054 (2)0.0457 (16)0.0022 (15)0.0125 (14)0.0003 (14)
C90.0526 (17)0.0575 (19)0.0457 (16)0.0119 (15)0.0055 (14)0.0068 (14)
C100.0476 (17)0.0522 (18)0.0571 (19)0.0045 (14)0.0013 (15)0.0034 (16)
C110.0407 (15)0.0492 (17)0.0522 (17)0.0043 (13)0.0017 (13)0.0008 (14)
Geometric parameters (Å, º) top
Cl—C21.743 (3)O5—C101.421 (3)
O1—C71.247 (3)N1—C51.474 (3)
O2—C71.244 (3)N2—C111.484 (4)
O3—N11.216 (3)N2—C81.494 (4)
O4—N11.218 (3)N2—H40.83 (3)
C1—C21.389 (3)N2—H50.99 (4)
C1—C61.390 (3)C8—C91.507 (4)
C1—C71.508 (3)C8—H60.91 (3)
C2—C31.383 (4)C8—H70.99 (3)
C3—C41.372 (4)C9—H81.04 (3)
C3—H10.86 (3)C9—H90.96 (3)
C4—C51.379 (4)C10—C111.497 (4)
C4—H20.89 (3)C10—H100.95 (3)
C5—C61.376 (3)C10—H110.95 (3)
C6—H30.98 (3)C11—H120.95 (3)
O5—C91.415 (4)C11—H130.99 (3)
O1···N2i2.753 (3)O2···O3ii3.081 (3)
O2···N22.719 (3)O2···C5ii3.181 (3)
O2···N1ii2.918 (3)
O3—N1—O4124.2 (3)O1—C7—C1115.9 (2)
O3—N1—C5117.7 (3)N2—C8—H6107 (2)
O4—N1—C5118.0 (2)C9—C8—H6110 (2)
C11—N2—H4111.3 (19)N2—C8—H7109.2 (17)
C8—N2—H4107 (2)C9—C8—H7112.5 (17)
C11—N2—H5111.1 (19)H6—C8—H7109 (3)
C8—N2—H5108.7 (19)O5—C9—C8112.0 (2)
H4—N2—H5108 (3)O5—C9—H8107.0 (16)
C2—C1—C6117.6 (2)C8—C9—H8110.3 (17)
C2—C1—C7123.0 (2)O5—C9—H9108.6 (16)
C6—C1—C7119.4 (2)C8—C9—H9111.6 (16)
C3—C2—C1121.8 (2)H8—C9—H9107 (2)
C3—C2—Cl117.8 (2)O5—C10—C11112.2 (3)
C1—C2—Cl120.29 (19)O5—C10—H10106.2 (17)
C4—C3—C2120.2 (3)C11—C10—H10106.3 (17)
C4—C3—H1119 (2)O5—C10—H11109.8 (17)
C2—C3—H1121 (2)C11—C10—H11108.9 (18)
C3—C4—C5118.3 (3)H10—C10—H11113 (3)
C3—C4—H2122.0 (17)N2—C8—C9108.8 (2)
C5—C4—H2119.7 (17)N2—C11—C10109.2 (2)
C6—C5—C4122.2 (2)N2—C11—H12106.3 (15)
C6—C5—N1118.8 (2)C10—C11—H12110.8 (16)
C4—C5—N1118.9 (2)N2—C11—H13104.4 (17)
C5—C6—C1119.8 (2)C10—C11—H13114.7 (18)
C5—C6—H3121.4 (14)H12—C11—H13111 (2)
C1—C6—H3118.8 (14)C8—N2—C11110.8 (2)
O2—C7—O1126.5 (2)C9—O5—C10109.7 (2)
O2—C7—C1117.6 (2)
C6—C1—C2—C31.8 (4)N1—C5—C6—C1179.1 (2)
C7—C1—C2—C3176.5 (2)C2—C1—C6—C50.3 (3)
C6—C1—C2—Cl178.40 (18)C7—C1—C6—C5178.0 (2)
C7—C1—C2—Cl0.1 (3)C2—C1—C7—O263.1 (3)
C1—C2—C3—C41.4 (4)C6—C1—C7—O2118.7 (3)
Cl—C2—C3—C4178.1 (2)C2—C1—C7—O1119.8 (3)
C2—C3—C4—C50.5 (4)C6—C1—C7—O158.5 (3)
C3—C4—C5—C61.9 (4)C11—N2—C8—C954.4 (3)
C3—C4—C5—N1179.6 (2)C10—O5—C9—C860.5 (3)
O3—N1—C5—C6167.6 (2)N2—C8—C9—O557.7 (3)
O4—N1—C5—C613.0 (4)C9—O5—C10—C1160.4 (3)
O3—N1—C5—C410.1 (4)C8—N2—C11—C1054.5 (3)
O4—N1—C5—C4169.3 (2)O5—C10—C11—N257.6 (3)
C4—C5—C6—C11.5 (4)
Symmetry codes: (i) x+1, y, z+1; (ii) x+3/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H4···O20.83 (3)1.89 (3)2.719 (3)178 (2)
N2—H5···O1i1.00 (4)1.77 (3)2.753 (3)169 (3)
C4—H2···O1iii0.89 (3)2.58 (3)3.371 (4)148 (2)
C11—H13···O3ii0.98 (3)2.55 (3)3.344 (4)138 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x+3/2, y+1/2, z+1; (iii) x+3/2, y+1/2, z+1/2.
(III) top
Crystal data top
C4H10NO+·C7H3ClNO4F(000) = 1200.0
Mr = 288.69Dx = 1.493 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 19.76 (2) Åθ = 11.1–12.4°
b = 10.085 (7) ŵ = 0.32 mm1
c = 13.639 (5) ÅT = 296 K
β = 109.09 (4)°Prismatic, colorless
V = 2569 (3) Å30.40 × 0.30 × 0.25 mm
Z = 8
Data collection top
Rigaku AFC-5R
diffractometer
1850 reflections with I > 2σ(I)
Radiation source: Rigaku rotating anodeRint = 0.025
Graphite monochromatorθmax = 27.5°, θmin = 2.2°
ω–2θ scansh = 125
Absorption correction: ψ scan
(North et al., 1968)
k = 013
Tmin = 0.884, Tmax = 0.925l = 1716
3198 measured reflections3 standard reflections every 97 reflections
2945 independent reflections intensity decay: none
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + 2.0068P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.116(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.25 e Å3
2945 reflectionsΔρmin = 0.20 e Å3
225 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0053 (4)
Crystal data top
C4H10NO+·C7H3ClNO4V = 2569 (3) Å3
Mr = 288.69Z = 8
Monoclinic, C2/cMo Kα radiation
a = 19.76 (2) ŵ = 0.32 mm1
b = 10.085 (7) ÅT = 296 K
c = 13.639 (5) Å0.40 × 0.30 × 0.25 mm
β = 109.09 (4)°
Data collection top
Rigaku AFC-5R
diffractometer
1850 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.025
Tmin = 0.884, Tmax = 0.9253 standard reflections every 97 reflections
3198 measured reflections intensity decay: none
2945 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.116All H-atom parameters refined
S = 1.03Δρmax = 0.25 e Å3
2945 reflectionsΔρmin = 0.20 e Å3
225 parameters
Special details top

Experimental. The scan width was (1.78 + 0.30tanθ)° with an ω scan speed of 6° per minute (up to 3 scans to achieve I/σ(I) > 10). Stationary background counts were recorded at each end of the scan, and the scan time:background time ratio was 2:1.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl1.17692 (3)0.32746 (7)0.71584 (6)0.0542 (2)
O10.83337 (9)0.49794 (19)0.51908 (17)0.0551 (6)
O20.87669 (10)0.69523 (19)0.57879 (17)0.0600 (6)
O31.13261 (12)0.7507 (2)0.66169 (19)0.0721 (7)
O41.20375 (10)0.6031 (2)0.74928 (19)0.0742 (7)
O50.93652 (10)1.0593 (2)0.6065 (2)0.0685 (7)
N11.14522 (10)0.6378 (2)0.69468 (17)0.0425 (5)
N20.80195 (10)0.9304 (2)0.53913 (18)0.0415 (5)
C10.95747 (11)0.5167 (2)0.60193 (17)0.0292 (5)
C21.01702 (12)0.5977 (2)0.63248 (18)0.0308 (5)
C31.08556 (11)0.5438 (2)0.66716 (17)0.0299 (5)
C41.09512 (11)0.4071 (2)0.67291 (17)0.0327 (5)
C51.03493 (12)0.3269 (3)0.64108 (19)0.0368 (6)
C60.96719 (12)0.3806 (2)0.60579 (18)0.0318 (5)
C70.88264 (11)0.5755 (3)0.56369 (18)0.0344 (5)
C80.83071 (15)0.9979 (4)0.4643 (3)0.0567 (8)
C90.91125 (16)0.9987 (4)0.5074 (3)0.0637 (9)
C100.91069 (17)0.9912 (4)0.6780 (3)0.0596 (9)
C110.83031 (16)0.9912 (4)0.6432 (3)0.0554 (8)
H11.0113 (13)0.691 (3)0.6308 (18)0.041 (7)*
H21.0399 (13)0.228 (3)0.6427 (18)0.042 (7)*
H30.9274 (13)0.322 (2)0.5834 (18)0.037 (7)*
H40.8170 (15)0.842 (3)0.545 (2)0.050 (8)*
H50.7490 (18)0.941 (3)0.516 (2)0.068 (9)*
H60.8137 (19)0.949 (3)0.397 (3)0.084 (12)*
H70.8124 (16)1.093 (3)0.463 (2)0.068 (10)*
H80.9282 (16)0.910 (3)0.516 (2)0.063 (10)*
H90.9276 (17)1.051 (3)0.464 (2)0.074 (11)*
H100.9286 (17)0.893 (4)0.684 (2)0.078 (11)*
H110.927 (2)1.037 (4)0.737 (3)0.108 (15)*
H120.8142 (19)0.951 (3)0.696 (3)0.086 (12)*
H130.8107 (17)1.078 (3)0.634 (2)0.072 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0297 (3)0.0566 (5)0.0721 (5)0.0162 (3)0.0107 (3)0.0181 (4)
O10.0234 (8)0.0544 (13)0.0792 (15)0.0038 (8)0.0055 (9)0.0024 (10)
O20.0403 (10)0.0404 (11)0.0920 (16)0.0157 (9)0.0115 (10)0.0041 (10)
O30.0583 (13)0.0485 (13)0.0971 (18)0.0207 (11)0.0083 (12)0.0153 (12)
O40.0281 (10)0.0741 (16)0.1012 (18)0.0086 (10)0.0053 (11)0.0002 (13)
O50.0377 (11)0.0541 (13)0.0997 (19)0.0195 (10)0.0034 (11)0.0003 (13)
N10.0317 (11)0.0463 (13)0.0469 (13)0.0085 (10)0.0091 (10)0.0020 (10)
N20.0192 (9)0.0354 (12)0.0632 (15)0.0000 (9)0.0043 (9)0.0034 (11)
C10.0251 (10)0.0332 (12)0.0293 (12)0.0042 (9)0.0089 (9)0.0015 (10)
C20.0306 (11)0.0274 (12)0.0343 (13)0.0004 (9)0.0106 (10)0.0004 (10)
C30.0234 (10)0.0346 (13)0.0309 (12)0.0028 (9)0.0076 (9)0.0013 (10)
C40.0251 (10)0.0404 (13)0.0321 (13)0.0077 (10)0.0087 (9)0.0073 (10)
C50.0332 (12)0.0307 (13)0.0464 (15)0.0050 (10)0.0130 (11)0.0064 (11)
C60.0263 (11)0.0319 (12)0.0369 (13)0.0015 (9)0.0099 (10)0.0022 (10)
C70.0241 (11)0.0401 (14)0.0385 (14)0.0060 (10)0.0093 (10)0.0030 (11)
C80.0348 (14)0.070 (2)0.060 (2)0.0003 (14)0.0078 (14)0.0103 (17)
C90.0360 (15)0.076 (2)0.079 (3)0.0007 (16)0.0187 (16)0.025 (2)
C100.0420 (15)0.066 (2)0.059 (2)0.0076 (15)0.0001 (15)0.0185 (17)
C110.0423 (15)0.061 (2)0.062 (2)0.0041 (14)0.0162 (15)0.0108 (17)
Geometric parameters (Å, º) top
Cl—C41.727 (3)O5—C91.416 (4)
O1—C71.242 (3)O5—C101.418 (4)
O2—C71.237 (3)N2—C111.479 (4)
O3—N11.220 (3)N2—C81.486 (4)
O4—N11.204 (3)N2—H40.93 (3)
N1—C31.463 (3)N2—H51.00 (3)
C1—C21.380 (3)C8—C91.505 (4)
C1—C61.384 (3)C8—H61.00 (3)
C1—C71.518 (3)C8—H71.02 (3)
C2—C31.391 (3)C9—H80.95 (3)
C2—H10.95 (3)C9—H90.93 (3)
C3—C41.390 (3)C10—C111.501 (4)
C4—C51.386 (3)C10—H101.05 (4)
C5—C61.377 (3)C10—H110.89 (4)
C5—H21.00 (3)C11—H120.96 (4)
C6—H30.95 (2)C11—H130.95 (3)
O1···N2i2.629 (4)C2···C6ii3.372 (4)
O2···N22.752 (3)C4···C7ii3.400 (4)
O4—N1—O3122.5 (2)O1—C7—C1116.2 (2)
O4—N1—C3120.0 (2)N2—C8—H6109 (2)
O3—N1—C3117.4 (2)C9—C8—H6111 (2)
C11—N2—H4107.7 (16)N2—C8—H7103.2 (18)
C8—N2—H4108.1 (17)C9—C8—H7109.0 (18)
C11—N2—H5106.8 (18)H6—C8—H7116 (3)
C8—N2—H5109.1 (18)O5—C9—C8111.9 (3)
H4—N2—H5114 (2)O5—C9—H8107.0 (18)
C2—C1—C6118.8 (2)C8—C9—H8109.1 (19)
C2—C1—C7120.7 (2)O5—C9—H9106 (2)
C6—C1—C7120.5 (2)C8—C9—H9107 (2)
C1—C2—C3120.7 (2)H8—C9—H9116 (3)
C1—C2—H1119.8 (15)O5—C10—C11111.4 (3)
C3—C2—H1119.5 (15)O5—C10—H10108.7 (18)
C4—C3—C2120.4 (2)C11—C10—H10108.6 (18)
C4—C3—N1123.0 (2)O5—C10—H11105 (3)
C2—C3—N1116.6 (2)C11—C10—H11109 (3)
C5—C4—C3118.3 (2)H10—C10—H11114 (3)
C5—C4—Cl116.5 (2)N2—C8—C9109.1 (3)
C3—C4—Cl125.14 (18)N2—C11—C10109.4 (3)
C6—C5—C4121.1 (2)N2—C11—H12115 (2)
C6—C5—H2118.5 (15)C10—C11—H12110 (2)
C4—C5—H2120.4 (14)N2—C11—H13104.1 (19)
C5—C6—C1120.7 (2)C10—C11—H13113 (2)
C5—C6—H3118.3 (15)H12—C11—H13106 (3)
C1—C6—H3121.0 (15)C8—N2—C11111.1 (2)
O2—C7—O1126.5 (2)C9—O5—C10110.7 (2)
O2—C7—C1117.3 (2)
C6—C1—C2—C30.4 (4)C4—C5—C6—C10.5 (4)
C7—C1—C2—C3179.8 (2)C2—C1—C6—C51.1 (4)
C1—C2—C3—C40.9 (4)C7—C1—C6—C5179.6 (2)
C1—C2—C3—N1178.1 (2)C2—C1—C7—O212.9 (4)
O4—N1—C3—C420.3 (4)C6—C1—C7—O2167.7 (2)
O3—N1—C3—C4160.9 (3)C2—C1—C7—O1166.3 (2)
O4—N1—C3—C2160.8 (2)C6—C1—C7—O113.0 (3)
O3—N1—C3—C218.1 (3)C11—N2—C8—C954.2 (4)
C2—C3—C4—C51.5 (4)C10—O5—C9—C859.7 (4)
N1—C3—C4—C5177.5 (2)N2—C8—C9—O556.4 (4)
C2—C3—C4—Cl179.21 (18)C9—O5—C10—C1159.9 (4)
N1—C3—C4—Cl1.9 (4)C8—N2—C11—C1055.0 (4)
C3—C4—C5—C60.8 (4)O5—C10—C11—N257.5 (4)
Cl—C4—C5—C6179.8 (2)
Symmetry codes: (i) x+3/2, y+3/2, z+1; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H4···O20.93 (3)1.85 (3)2.752 (4)160 (3)
N2—H5···O1i0.99 (4)1.66 (4)2.629 (4)164 (3)
C5—H2···O5iii1.00 (3)2.58 (3)3.269 (5)125.9 (19)
C8—H6···O4iv1.00 (4)2.49 (4)3.335 (6)142 (3)
C10—H10···O21.05 (4)2.48 (4)3.255 (6)131 (2)
Symmetry codes: (i) x+3/2, y+3/2, z+1; (iii) x, y1, z; (iv) x1/2, y+3/2, z1/2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC4H10NO+·C7H3ClNO4C4H10NO+·C7H3ClNO4C4H10NO+·C7H3ClNO4
Mr288.69288.69288.69
Crystal system, space groupOrthorhombic, P212121Monoclinic, C2/cMonoclinic, C2/c
Temperature (K)298298296
a, b, c (Å)10.304 (2), 19.557 (6), 6.4387 (13)18.680 (6), 10.498 (3), 13.125 (3)19.76 (2), 10.085 (7), 13.639 (5)
α, β, γ (°)90, 90, 9090, 93.35 (2), 9090, 109.09 (4), 90
V3)1297.5 (5)2569.5 (13)2569 (3)
Z488
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.310.320.32
Crystal size (mm)0.40 × 0.30 × 0.200.40 × 0.30 × 0.200.40 × 0.30 × 0.25
Data collection
DiffractometerRigaku AFC-5R
diffractometer
Rigaku AFC-5R
diffractometer
Rigaku AFC-5R
diffractometer
Absorption correctionψ scan
(North et al., 1968)
ψ scan
(North et al., 1968)
ψ scan
(North et al., 1968)
Tmin, Tmax0.885, 0.9400.884, 0.9400.884, 0.925
No. of measured, independent and
observed [I > 2σ(I)] reflections
4209, 3101, 1769 3215, 2945, 1741 3198, 2945, 1850
Rint0.0580.0250.025
(sin θ/λ)max1)0.6820.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.075, 1.04 0.046, 0.121, 1.00 0.047, 0.116, 1.03
No. of reflections310129452945
No. of parameters173225225
H-atom treatmentH-atom parameters constrainedAll H-atom parameters refinedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.28, 0.230.26, 0.240.25, 0.20
Absolute structure(Flack, 1983), 1102 Friedel pairs??
Absolute structure parameter0.02 (8)??

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1990), MSC/AFC Diffractometer Control Software, TEXSAN for Windows (Molecular Structure Corporation, 1997-1999), SHELXS97 (Sheldrick, 1990), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), TEXSAN for Windows.

Selected geometric parameters (Å, º) for (I) top
Cl—C21.748 (3)O3—N11.230 (3)
O1—C71.267 (3)O4—N11.232 (3)
O2—C71.223 (4)
O3—N1—C4—C33.9 (4)C2—C1—C7—O274.1 (4)
O4—N1—C4—C3176.2 (3)C2—C1—C7—O1108.9 (3)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N2—H4···O10.891.802.682 (3)170
N2—H5···O1i0.891.862.747 (3)174
C6—H3···O3ii0.932.493.378 (4)160
C10—H11···O5iii0.972.553.486 (4)161
C11—H12···O4iv0.972.533.340 (4)141
Symmetry codes: (i) x+3/2, y+1, z1/2; (ii) x1/2, y+1/2, z+1; (iii) x+5/2, y+1, z+1/2; (iv) x+1/2, y+1/2, z+1.
Selected geometric parameters (Å, º) for (II) top
Cl—C21.743 (3)O3—N11.216 (3)
O1—C71.247 (3)O4—N11.218 (3)
O2—C71.244 (3)
O3—N1—C5—C6167.6 (2)C2—C1—C7—O263.1 (3)
O4—N1—C5—C613.0 (4)C2—C1—C7—O1119.8 (3)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N2—H4···O20.83 (3)1.89 (3)2.719 (3)178 (2)
N2—H5···O1i1.00 (4)1.77 (3)2.753 (3)169 (3)
C4—H2···O1ii0.89 (3)2.58 (3)3.371 (4)148 (2)
C11—H13···O3iii0.98 (3)2.55 (3)3.344 (4)138 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x+3/2, y+1/2, z+1/2; (iii) x+3/2, y+1/2, z+1.
Selected geometric parameters (Å, º) for (III) top
Cl—C41.727 (3)O3—N11.220 (3)
O1—C71.242 (3)O4—N11.204 (3)
O2—C71.237 (3)
O4—N1—C3—C420.3 (4)C2—C1—C7—O212.9 (4)
O3—N1—C3—C4160.9 (3)C2—C1—C7—O1166.3 (2)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N2—H4···O20.93 (3)1.85 (3)2.752 (4)160 (3)
N2—H5···O1i0.99 (4)1.66 (4)2.629 (4)164 (3)
C5—H2···O5ii1.00 (3)2.58 (3)3.269 (5)125.9 (19)
C8—H6···O4iii1.00 (4)2.49 (4)3.335 (6)142 (3)
C10—H10···O21.05 (4)2.48 (4)3.255 (6)131 (2)
Symmetry codes: (i) x+3/2, y+3/2, z+1; (ii) x, y1, z; (iii) x1/2, y+3/2, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds