Download citation
Download citation
link to html
In the title compound, [PdCl2(C20H26O2S2)], the Pd atom has a distorted square-planar coordination geometry, with Pd-S distances of 2.3121 (18) and 2.3102 (18) Å, Pd-Cl distances of 2.291 (2) and 2.314 (2) Å, and S-Pd-Cl angles of 94.98 (7) and 86.25 (7)°. Upon complexation, an 11-membered ring is formed by the S-Pd-S linkage in the ligand chain.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010000946X/ob1036sup1.cif
Contains datablocks sad, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010000946X/ob1036Isup2.hkl
Contains datablock I

CCDC reference: 152591

Comment top

The ligands with mixed O/S donor sets have attracted much interest especially in recent years (Cameron et al., 1997; Casabó et al., 1995; Grant et al., 1998). According to our preliminary results, the acyclic S2O2 donor-type ligand in the title compound shows the superior performances as a silver(I) ionophore than its cyclic analog compounds in the areas of solvent extraction, membrane transport and ion-selective electrodes (Lee et al., 2000).

As a part of our continuing interest on the complexation properties of cyclic and acyclic oxathia mixed donor ligands with thiaphilic metal ions (Chung et al., 1997; Jung et al., 1999; Yoon et al., 2000), the preparation and crystal structure of the PdII complex with the acyclic S2O2 donor-type ligand, (I), are presented here. \sch

As shown in Fig. 1, the Pd atom is in a trans-type square-planar arrangement coordinated by two S atoms of the dithiadioxa chelate and two Cl ions. On the other hand, the distances of a Pd···O2 [3.084 (5) Å] is significantly shorter than those of a Pd···O1 [3.750 (6) Å]. The Pd···O2 distance is slightly less than the sum of the van der Waals radii (3.10 Å) (Huheey et al., 1993) of atoms concerned. Assuming the distorted pseudo square-pyramidal geometry, the basal square plane consisting of Pd, Cl1, Cl2, S1 and S2 rotates approximately 18° around the S1—Pd—S2 axis, keeping the Pd—S bond distance. In addition, there are intramolecular interactions between Cl and H atoms attached to C7 and C14 atoms [Cl1···H14A (2.75 Å) and Cl2···H7A (2.94 Å)]. These interactions above mentioned may be related to the asymmetric conformation of the chelate ring, although the chemical diagram suggests that the chelate ring has a chemical twofold axis passing through the midpoint of the O1—C10—C11—O2 bond and the Pd atom.

The molecular structures of a number of palladium(II) complexes with trans-dichloro and S-ligands have been determined (Flower & Griffiths, 1978; Clark et al., 1991; Parvez et al., 1995). But, to our knowledge, all of the S-ligands in these complexes were monodentate.

A comparison of bond lengths and angles around the Pd atom in the title compound with the data corresponding trans-dichlorobis(L)PdII complexes, where L are monodentate S-ligands, such as thiomorpholine-3-one (Flower & Griffiths, 1978), 2,3-dihydrobenzo[b]thiophene-S (Clark et al., 1991), 2,3-dihydro-methylbenzo[b]thiophenes (Clark et al., 1993), and 7-thiabicyclo[2.2.1]-heptane (Parvez et al., 1995) reveals that there are no significant differences in the dimensions around the square-planar Pd atom. The dimensions Pd—S, Pd—Cl and S—Pd—Cl in the above listed trans-dichlorobis(L)PdII complexes are 2.293–2.330 (3), 2.283–2.309 (3) Å and 84.1–95.9 (1)°, respectively.

Experimental top

The ligand used in this work was synthesized in this laboratory and the synthetic procedure will be described elsewhere. The title compound was prepared by the reaction of equimolar amounts of the ligand and PdCl2(PhCN)2 in benzene. The yellow precipitate that formed immediately was filtered off and recrystallized from acetonitrile by slow evaporation to give orange single crystals melting at 411–413 K.

Refinement top

H atoms were added at calculated positions and refined using a riding model. Anisotropic displacement parameters were used for all non-H atoms. H atoms were given isotropic displacement parameters equal to 1.2 times the equivalent isotropic displacement parameter of the atom to which they are attached. Since the large positive (1.46 e Å−3) and negative (−1.40 e Å−3) difference Fourier peaks are located at short distances form Pd (1.06 and 0.88 Å), these peaks can be attributed to ghosts of the heavy Pd atom.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SHELXTL (Siemens, 1996); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. Perspective view of (I) with atom displacement ellipsoids at the 50% probability level.
trans-Dichloro(1,10-bis(mercaptobenzylyl)-4,7-dioxadecane)palladium(II) top
Crystal data top
[PdCl2(C20H26O2S2)]F(000) = 1096
Mr = 539.83Dx = 1.573 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 22.155 (2) ÅCell parameters from 13914 reflections
b = 7.7440 (8) Åθ = 0.9–28.3°
c = 13.6293 (15) ŵ = 1.24 mm1
β = 102.906 (2)°T = 298 K
V = 2279.2 (4) Å3Plate, orange
Z = 40.4 × 0.3 × 0.1 mm
Data collection top
CCD area detector
diffractometer
5520 independent reflections
Radiation source: fine-focus sealed tube3499 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
phi and ω scansθmax = 28.3°, θmin = 0.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2928
Tmin = 0.601, Tmax = 0.928k = 109
13914 measured reflectionsl = 1714
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.200H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0863P)2 + 8.8015P]
where P = (Fo2 + 2Fc2)/3
5520 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 1.46 e Å3
0 restraintsΔρmin = 1.40 e Å3
Crystal data top
[PdCl2(C20H26O2S2)]V = 2279.2 (4) Å3
Mr = 539.83Z = 4
Monoclinic, P21/cMo Kα radiation
a = 22.155 (2) ŵ = 1.24 mm1
b = 7.7440 (8) ÅT = 298 K
c = 13.6293 (15) Å0.4 × 0.3 × 0.1 mm
β = 102.906 (2)°
Data collection top
CCD area detector
diffractometer
5520 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3499 reflections with I > 2σ(I)
Tmin = 0.601, Tmax = 0.928Rint = 0.073
13914 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.200H-atom parameters constrained
S = 1.06Δρmax = 1.46 e Å3
5520 reflectionsΔρmin = 1.40 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd0.20054 (3)0.51171 (6)0.54504 (4)0.03181 (18)
Cl10.22565 (11)0.7496 (2)0.46249 (15)0.0503 (5)
Cl20.17285 (12)0.2723 (3)0.62661 (15)0.0571 (6)
S10.18707 (9)0.3705 (2)0.39221 (13)0.0390 (4)
S20.21411 (9)0.6469 (2)0.69953 (13)0.0377 (4)
O10.0582 (3)0.5180 (9)0.3358 (5)0.0617 (17)
O20.0774 (2)0.7052 (8)0.5324 (4)0.0470 (13)
C10.3396 (6)0.2830 (18)0.5219 (11)0.098 (4)
H10.32190.27450.58070.118*
C20.4025 (9)0.336 (3)0.5318 (18)0.153 (8)
H20.42830.35860.59800.183*
C30.4265 (9)0.355 (2)0.448 (2)0.153 (10)
H30.46860.39530.45380.183*
C40.3911 (8)0.316 (2)0.3575 (17)0.128 (6)
H40.40860.32470.29840.154*
C50.3309 (5)0.2654 (16)0.3465 (10)0.083 (3)
H50.30600.24330.27960.100*
C60.3049 (4)0.2449 (11)0.4288 (7)0.056 (2)
C70.2390 (4)0.1877 (11)0.4150 (7)0.052 (2)
H7A0.23380.12700.47480.063*
H7B0.22890.10850.35850.063*
C80.1140 (4)0.2533 (12)0.3745 (6)0.054 (2)
H8A0.10210.21220.30570.065*
H8B0.11930.15370.41870.065*
C90.0635 (4)0.3665 (14)0.3966 (7)0.062 (3)
H9A0.02450.30420.38230.075*
H9B0.07310.39830.46720.075*
C100.0190 (4)0.6472 (17)0.3640 (7)0.074 (3)
H10A0.01100.59190.39570.089*
H10B0.00350.70560.30400.089*
C110.0549 (5)0.7786 (14)0.4353 (7)0.067 (3)
H11A0.08950.82010.40910.080*
H11B0.02840.87620.44060.080*
C120.1066 (4)0.8303 (11)0.6046 (7)0.053 (2)
H12A0.07580.90890.61980.063*
H12B0.13620.89710.57760.063*
C130.1391 (4)0.7388 (11)0.6987 (6)0.048 (2)
H13A0.11230.64670.71190.058*
H13B0.14390.81980.75420.058*
C140.2631 (4)0.8373 (10)0.7098 (6)0.0446 (18)
H14A0.25230.90390.64810.054*
H14B0.25660.90940.76470.054*
C150.3298 (4)0.7849 (12)0.7285 (7)0.052 (2)
C160.3643 (5)0.8104 (19)0.6555 (9)0.087 (4)
H160.34430.85810.59060.104*
C170.4260 (7)0.769 (3)0.6745 (13)0.132 (7)
H170.45010.79400.62480.159*
C180.4534 (6)0.692 (3)0.7637 (16)0.128 (7)
H180.49650.65750.77630.154*
C190.4202 (6)0.665 (2)0.8341 (13)0.112 (5)
H190.44010.61380.89800.134*
C200.3582 (5)0.7103 (17)0.8167 (10)0.084 (3)
H200.33500.68820.86790.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd0.0413 (3)0.0270 (3)0.0276 (3)0.0030 (2)0.0088 (2)0.0001 (2)
Cl10.0758 (14)0.0362 (10)0.0417 (10)0.0131 (10)0.0191 (9)0.0033 (8)
Cl20.0936 (17)0.0378 (10)0.0410 (11)0.0189 (11)0.0176 (11)0.0039 (8)
S10.0528 (11)0.0332 (9)0.0317 (9)0.0070 (8)0.0108 (8)0.0039 (7)
S20.0486 (11)0.0345 (9)0.0300 (9)0.0043 (8)0.0086 (8)0.0030 (7)
O10.056 (4)0.088 (5)0.042 (3)0.000 (3)0.012 (3)0.000 (3)
O20.045 (3)0.056 (3)0.038 (3)0.001 (3)0.007 (2)0.000 (2)
C10.086 (9)0.100 (10)0.095 (9)0.028 (8)0.007 (7)0.021 (8)
C20.087 (13)0.150 (18)0.19 (2)0.004 (12)0.048 (12)0.014 (16)
C30.077 (12)0.089 (12)0.28 (3)0.014 (9)0.017 (16)0.011 (17)
C40.081 (11)0.104 (12)0.20 (2)0.001 (9)0.029 (11)0.005 (13)
C50.071 (8)0.081 (8)0.096 (9)0.007 (6)0.018 (6)0.010 (7)
C60.069 (6)0.038 (4)0.059 (6)0.015 (4)0.012 (5)0.001 (4)
C70.070 (6)0.038 (4)0.053 (5)0.004 (4)0.021 (4)0.013 (4)
C80.063 (6)0.053 (5)0.044 (5)0.016 (4)0.007 (4)0.013 (4)
C90.056 (6)0.085 (7)0.044 (5)0.029 (5)0.009 (4)0.009 (5)
C100.049 (6)0.129 (11)0.043 (5)0.013 (6)0.005 (4)0.004 (6)
C110.063 (6)0.070 (7)0.064 (6)0.017 (5)0.006 (5)0.018 (5)
C120.043 (5)0.052 (5)0.065 (6)0.001 (4)0.015 (4)0.011 (4)
C130.043 (4)0.057 (5)0.048 (5)0.008 (4)0.019 (4)0.009 (4)
C140.050 (5)0.037 (4)0.048 (5)0.013 (4)0.014 (4)0.012 (3)
C150.046 (5)0.051 (5)0.058 (5)0.010 (4)0.008 (4)0.015 (4)
C160.055 (6)0.142 (12)0.066 (7)0.030 (7)0.020 (5)0.019 (7)
C170.079 (10)0.22 (2)0.107 (12)0.031 (12)0.032 (9)0.056 (13)
C180.048 (8)0.165 (17)0.172 (17)0.010 (9)0.024 (10)0.064 (14)
C190.057 (8)0.129 (13)0.131 (13)0.009 (8)0.020 (8)0.002 (10)
C200.060 (7)0.096 (9)0.093 (9)0.001 (6)0.009 (6)0.012 (7)
Geometric parameters (Å, º) top
Pd—Cl12.291 (2)C8—H8B0.9700
Pd—S22.3102 (18)C9—H9A0.9700
Pd—S12.3121 (18)C9—H9B0.9700
Pd—Cl22.314 (2)C10—C111.505 (15)
S1—C71.807 (9)C10—H10A0.9700
S1—C81.824 (8)C10—H10B0.9700
S2—C131.805 (8)C11—H11A0.9700
S2—C141.818 (7)C11—H11B0.9700
O1—C91.425 (12)C12—C131.501 (12)
O1—C101.432 (12)C12—H12A0.9700
O2—C111.424 (10)C12—H12B0.9700
O2—C121.429 (10)C13—H13A0.9700
C1—C61.361 (15)C13—H13B0.9700
C1—C21.43 (2)C14—C151.497 (12)
C1—H10.9700C14—H14A0.9700
C2—C31.38 (3)C14—H14B0.9700
C2—H20.9700C15—C201.356 (14)
C3—C41.34 (3)C15—C161.397 (13)
C3—H30.9700C16—C171.371 (18)
C4—C51.367 (18)C16—H160.9700
C4—H40.9700C17—C181.37 (2)
C5—C61.380 (14)C17—H170.9700
C5—H50.9700C18—C191.35 (2)
C6—C71.497 (13)C18—H180.9700
C7—H7A0.9700C19—C201.384 (16)
C7—H7B0.9700C19—H190.9700
C8—C91.504 (13)C20—H200.9700
C8—H8A0.9700
Cl1—Pd—S294.98 (7)H9A—C9—H9B108.2
Cl1—Pd—S186.25 (7)O1—C10—C11112.4 (8)
S2—Pd—S1178.72 (7)O1—C10—H10A109.1
Cl1—Pd—Cl2178.70 (9)C11—C10—H10A109.1
S2—Pd—Cl285.40 (7)O1—C10—H10B109.1
S1—Pd—Cl293.39 (7)C11—C10—H10B109.1
C7—S1—C898.4 (4)H10A—C10—H10B107.9
C7—S1—Pd105.5 (3)O2—C11—C10110.8 (8)
C8—S1—Pd106.7 (3)O2—C11—H11A109.5
C13—S2—C14102.4 (4)C10—C11—H11A109.5
C13—S2—Pd103.9 (3)O2—C11—H11B109.5
C14—S2—Pd113.0 (3)C10—C11—H11B109.5
C9—O1—C10113.3 (7)H11A—C11—H11B108.1
C11—O2—C12112.3 (7)O2—C12—C13109.0 (7)
C6—C1—C2119.0 (16)O2—C12—H12A109.9
C6—C1—H1120.5C13—C12—H12A109.9
C2—C1—H1120.5O2—C12—H12B109.9
C3—C2—C1120.1 (18)C13—C12—H12B109.9
C3—C2—H2119.9H12A—C12—H12B108.3
C1—C2—H2119.9C12—C13—S2117.2 (6)
C4—C3—C2119.1 (19)C12—C13—H13A108.0
C4—C3—H3120.4S2—C13—H13A108.0
C2—C3—H3120.4C12—C13—H13B108.0
C3—C4—C5122 (2)S2—C13—H13B108.0
C3—C4—H4119.2H13A—C13—H13B107.2
C5—C4—H4119.2C15—C14—S2110.0 (6)
C4—C5—C6121.2 (14)C15—C14—H14A109.7
C4—C5—H5119.4S2—C14—H14A109.7
C6—C5—H5119.4C15—C14—H14B109.7
C1—C6—C5118.8 (11)S2—C14—H14B109.7
C1—C6—C7120.9 (10)H14A—C14—H14B108.2
C5—C6—C7120.3 (9)C20—C15—C16118.1 (10)
C6—C7—S1110.9 (6)C20—C15—C14120.8 (9)
C6—C7—H7A109.5C16—C15—C14121.1 (9)
S1—C7—H7A109.5C17—C16—C15121.0 (13)
C6—C7—H7B109.5C17—C16—H16119.5
S1—C7—H7B109.5C15—C16—H16119.5
H7A—C7—H7B108.1C18—C17—C16119.6 (15)
C9—C8—S1111.2 (6)C18—C17—H17120.2
C9—C8—H8A109.4C16—C17—H17120.2
S1—C8—H8A109.4C19—C18—C17119.7 (14)
C9—C8—H8B109.4C19—C18—H18120.1
S1—C8—H8B109.4C17—C18—H18120.1
H8A—C8—H8B108.0C18—C19—C20121.1 (15)
O1—C9—C8109.4 (7)C18—C19—H19119.5
O1—C9—H9A109.8C20—C19—H19119.5
C8—C9—H9A109.8C15—C20—C19120.4 (13)
O1—C9—H9B109.8C15—C20—H20119.8
C8—C9—H9B109.8C19—C20—H20119.8
S1—C8—C9—O155.6 (8)O2—C12—C13—S280.6 (8)
O1—C10—C11—O271.7 (11)

Experimental details

Crystal data
Chemical formula[PdCl2(C20H26O2S2)]
Mr539.83
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)22.155 (2), 7.7440 (8), 13.6293 (15)
β (°) 102.906 (2)
V3)2279.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.24
Crystal size (mm)0.4 × 0.3 × 0.1
Data collection
DiffractometerCCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.601, 0.928
No. of measured, independent and
observed [I > 2σ(I)] reflections
13914, 5520, 3499
Rint0.073
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.200, 1.06
No. of reflections5520
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.46, 1.40

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXTL (Siemens, 1996), SHELXTL.

Selected geometric parameters (Å, º) top
Pd—Cl12.291 (2)Pd—S12.3121 (18)
Pd—S22.3102 (18)Pd—Cl22.314 (2)
Cl1—Pd—S294.98 (7)S2—Pd—Cl285.40 (7)
Cl1—Pd—S186.25 (7)S1—Pd—Cl293.39 (7)
S1—C8—C9—O155.6 (8)O2—C12—C13—S280.6 (8)
O1—C10—C11—O271.7 (11)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds