Download citation
Download citation
link to html
In two linkage isomers, bis[1,3-di­methyl-2,4,6(1H,3H,5H)-pyrimidine­trionato]-C5,O4-(ethyl­enedi­amine-N,N')platinum(II), [Pt(C6H7N2O3)2(C2H8N2)], (I), and bis[1,3-di­methyl-2,4,6(1H,3H,5H)-py­rim­idine­tri­on­ato-C5](ethyl­enediamine-N,N')­plati­num(II) di­hyd­rate, [Pt(C6H7N2O3)2(C2H8N2)]·2H2O, (II), crystal­lized from the same aqueous solution containing [Pt(en)(OH)2] and 1,3-di­methyl­barbituric acid (Hdmbarb) in a 1:2 molar ratio, a pair of monodentate dmbarb- anions coordinate to the Pt atom at tetrahedral C atoms for (II), while one dmbarb- anion coordinates at the carbon and the other at a deprotonated enol oxy­gen for (I). The Pt-C distances in (I) and (II) are comparable: 2.112 (4) Å for (I), and 2.114 (4) and 2.117 (4) Å for (II).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199014109/oa1096sup1.cif
Contains datablocks I, (II), Ptchdo

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199014109/oa1096Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199014109/oa1096IIsup3.hkl
Contains datablock II

CCDC references: 142733; 142734

Comment top

Some water-soluble palladium(II) and platinum(II) complexes involved with ambidentate β-diketonate have been known as organometallic compounds, in those the monodentate β-diketonato ligand is bound to the Pd or Pt atoms at a central C atom, e.g. K[PtCl(acac-C)(acac-O,O')] (Hacac = 2,4-pentanedione) (Mason, Robertson & Pauling, 1969). By using a cyclic β-diketone, 1,3-cyclohexanedione (Hchdo), in place of ambidentate Hacac, we have recently reported the monoalkylplatinum(II) compound [Pt(en)(chdo-C)(chdo-O)]·3H2O (3) (en = 1,2-diaminoethane), crystallized from a solution containing a 1:2 molar ratio of [Pt(en)(OH)2] and Hchdo (Yuge & Miyamoto, 1999); two monodentate chdo ligands are bound to the Pt coordination center at an sp3-carbon and at an enolate oxygen. Any other compounds such as the dialkyl have not been obtained from the solution. The water-soluble dialkylplatinum(II) compound [Pt(en)(dmbarb-C)2]·2H2O (II) via [Pt(en)(dmbarb-C)(dmbarb-O)] (I) was isolated, replacing Hchdo with 1,3-dimethylbarbituric acid (Hdmbarb) as another potential monodentate ligand.

As shown in Figs. 1 and 2, the Pt complexes of (I) and (II) are found to be linkage isomers; two crystallographically independent dmbarb anions coordinate to the Pt atom as monodentate ligands in common. In (I) one of the dmbarb anions is bound at C15 and the other at O24 of the deprotonated enol, similarly to chdo anions in (3). On the contrary in (II) both dmbarb anions coordinate to the Pt atom at C15 and C25 atoms. The C-bound β-diketonate or O-bound enolate forms of the dmba anions were confirmed by the bond lengths and angles. The angles about the donor C atoms are almost tetrahedral: 103.4 (3), 107.2 (3) and 117.1 (4)° for C15 in (I), 109.5 (3), 105.3 (3) and 115.9 (4) ° for C15 in (II) and 104.8 (3), 109.9 (3) and 116.8 (4) ° for C25 in (II). In (I) the enol O24—C24 bond length of 1.275 (5) Å are apparently longer than the carbonyl O22C22 of 1.231 (5) and O26C26 of 1.245 (5) Å. The Pt—C bond lengths, 2.112 (4) Å for (I), and 2.114 (4) and 2.117 (4) Å for (II), are comparable with that of (3), 2.123 (4) Å. Due to trans influence of the sp3-carbon atoms, the Pt—N bond lengths at trans to the Pt—C, 2.098 (3) Å for (I) and 2.087 (3) and 2.098 (3) Å for (II), are longer than that at trans to the Pt—O in (I), 2.015 (3) Å, as observed in (3) [2.070 (3) and 2.025 (3) Å]. The dmbarb ligands in both compounds are approximately planar within 0.04 Å, except for the sp3-carbon atoms, C15 in (I) and C15 and C25 in (II), with the respective deviations of 0.288 (6), 0.309 (6) and 0.242 (6) Å from the least-square planes. Ignoring the sp3-carbon atoms from the molecular planes of the dmbarb ligands, the C-bound are almost perpendicular to the Pt coordination planes with the dihedral angles of 88.8 (1)° for (I), and 85.5 (1) and 84.9 (1)° for (II); the angle for the O-bound in (I) is 59.5 (1)°. In (I) the two-dimensional hydrogen-bond network was formed along the bc plane by the amino N1 and N2 atoms of the en chelate and the carbonyl O16, O22 and O26 atoms of the dmbarb ligands (Table 2), while the closer three-dimensional framework was built up in (II) by the amino groups, the carbonyl groups and water molecules (Table 4).

The 1H– and 13C-NMR spectra of (I) and (II) in D2O solutions show that the molecular structures in the solutions are consistent with those in the solid state, and that (I) changes into (II) in two weeks at room temperature. No changes have been found in the spectrum of (II) afterward, at least for a month. Accordingly the dialkylplatinum(II) compound (II) should be a thermodynamically stable species in an aqueous solution, compared with the monoalkyl (I).

Experimental top

Each isomer was isolated by the following procedure: an aqueous solution of Hdmbarb (0.937 g, 6.001 mmol) was added to the yellow eluate containing [Pt(en)(OH)2], prepared from [Pt(en)(ONO2)2] (1.135 g, 2.993 mmol). After rotoevaporation to 30 ml it was allowed to stand at 278 K for 2 d to form pale-yellow crystals of (I) (0.600 g, 35% yield). Analysis found: C 29.34, H 4.00, N 14.82%; calculated for C14H22N6O6Pt: C 29.74, H 3.92, N 14.86%. 1H NMR (0.01 mol dm−3 in D2O, 300 MHz): δ 5.66 (s, 1H, CH), 4.40 (s, 1H, CH), 3.08 (s, 3H, CH3), 2.99 (s, 3H, CH3), 2.92 (s, 6H, CH3), 2.49 (m, 4H, CH2) p.p.m.; 13C{1H} NMR (75.5 MHz): δ 176.33 (C14, C16), 167.12 (C26), 165.73 (C24), 153.96, 153.23 (C12, C22), 80.07 (C25), 49.39, 45.49 (C1, C2), 47.20 (C15), 27.67, 27.63, 27.53, 26.34 (C11, C13, C21, C23). Another aqueous solution of [Pt(en)(OH)2] prepared from [Pt(en)(ONO2)2] (0.379 g, 0.999 mmol) was rotoevaporated to 10 ml, and was added to 10 ml of an aqueous solution of Hdmbarb (0.312 g, 1.998 mmol). After standing at room temperature for 14 days, yellow crystals of (II) were obtained (0.336 g, 56% yield). Analysis found: C 27.84, H 4.34, N 14.04%; calculated for C14H26N6O8Pt: C 27.96, H 4.36, N 13.97%. 1H NMR (0.01 mol dm−3 in D2O, 300 MHz): δ 4.13 (s, 2H, CH), 3.07 (s, 12H, CH3), 2.43 (s, 4H, CH2), 13C{1H} NMR (75.5 MHz): δ 176.80 (C14, C16, C24, C26), 154.17 (C12, C22), 47.21 (C1, C2, C15, C25), 27.69 (C11, C13, C21, C23).

Compound (I) is more soluble in H2O than (II): up to 0.015 mol dm−3 for (I) and less than 0.01 mol dm−3 for (II) at room temperature. Both compounds were air-stable in the solid state, but (I) dissolved in H2O has been changed into (II) in two weeks. It was difficult to recrystallize (I) from H2O because of the contamination of (II), while (II) could be recrystallized from H2O.

Refinement top

For both compounds H atoms other than those on H2O were included as riding models and positions of the H atoms on H2O in (II) were refined with O—H restrained at 0.82 (3) Å; Uiso(H) = 1.2Ueq(parent atom). The site-occupancy parameters of disordered ethylene chains in (II), were refined to 0.84 (1) for C1 and C2, and 0.16 (1) for C10 and C20.

Computing details top

For both compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993a); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN PROCESS (Molecular Structure Corporation, 1993b); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The asymmetric unit of [Pt(en)(dmbarb-C)(dmbarb-O)], (I), showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. The asymmetric unit of [Pt(en)(dmbarb-C)2]·2H2O, (II). showing displacement ellipsoids at the 50% probability level. One disordered conformer of the en ligand is drawn with open circles and bonds.
(I) top
Crystal data top
[Pt(C2H8N2)(C6H7N2O3)2]Z = 2
Mr = 565.47F(000) = 548
Triclinic, P1Dx = 2.036 Mg m3
Dm = 2.04 Mg m3
Dm measured by flotation in CCl4/CHBr3
a = 9.505 (2) ÅMo Kα radiation, λ = 0.71069 Å
b = 11.2518 (9) ÅCell parameters from 25 reflections
c = 9.464 (2) Åθ = 16.9–17.5°
α = 103.10 (1)°µ = 7.65 mm1
β = 110.52 (1)°T = 296 K
γ = 87.93 (1)°Thin plate, pale yellow
V = 922.2 (2) Å30.20 × 0.10 × 0.07 mm
Data collection top
Rigaku AFC7R
diffractometer
4663 reflections with I > 2σ(I)
Radiation source: rotating Mo anticathodeRint = 0.029
Graphite monochromatorθmax = 30.0°, θmin = 2.3°
ω/2θ scansh = 130
Absorption correction: ψ scan
(North et al., 1968)
k = 1515
Tmin = 0.294, Tmax = 0.585l = 1213
5685 measured reflections3 standard reflections every 150 reflections
5383 independent reflections intensity decay: 0.9%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.061 w = 1/[σ2(Fo2) + (0.0258P)2 + 0.5877P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
5383 reflectionsΔρmax = 1.17 e Å3
245 parametersΔρmin = 1.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0023 (2)
Crystal data top
[Pt(C2H8N2)(C6H7N2O3)2]γ = 87.93 (1)°
Mr = 565.47V = 922.2 (2) Å3
Triclinic, P1Z = 2
a = 9.505 (2) ÅMo Kα radiation
b = 11.2518 (9) ŵ = 7.65 mm1
c = 9.464 (2) ÅT = 296 K
α = 103.10 (1)°0.20 × 0.10 × 0.07 mm
β = 110.52 (1)°
Data collection top
Rigaku AFC7R
diffractometer
4663 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.029
Tmin = 0.294, Tmax = 0.5853 standard reflections every 150 reflections
5685 measured reflections intensity decay: 0.9%
5383 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 1.03Δρmax = 1.17 e Å3
5383 reflectionsΔρmin = 1.14 e Å3
245 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt0.536793 (17)0.341507 (13)0.292565 (16)0.02565 (5)
O121.0320 (5)0.1670 (4)0.4841 (5)0.0697 (12)
O140.7685 (5)0.3327 (4)0.0803 (4)0.0586 (10)
O160.8300 (4)0.5307 (3)0.5862 (4)0.0485 (8)
O220.6747 (4)0.0157 (3)0.7665 (4)0.0509 (9)
O240.6351 (3)0.2269 (3)0.4347 (3)0.0354 (6)
O260.4055 (4)0.3242 (3)0.8130 (3)0.0399 (7)
N10.3161 (4)0.2813 (3)0.2493 (4)0.0311 (7)
H10.31090.19970.23650.037*
H20.28760.31570.33000.037*
N20.4338 (4)0.4354 (3)0.1295 (4)0.0329 (7)
H70.47610.51150.15890.039*
H80.44490.39840.03940.039*
N110.9318 (4)0.3495 (4)0.5363 (4)0.0387 (8)
N130.8904 (5)0.2415 (4)0.2790 (5)0.0447 (9)
N210.5280 (5)0.1487 (3)0.7792 (4)0.0366 (8)
N230.6525 (4)0.1078 (3)0.6006 (4)0.0318 (7)
C10.2156 (5)0.3166 (4)0.1069 (5)0.0406 (10)
H30.11290.31940.10520.049*
H40.21800.25740.01570.049*
C20.2708 (5)0.4413 (4)0.1078 (5)0.0383 (9)
H50.21520.46350.01060.046*
H60.25630.50230.19150.046*
C111.0067 (6)0.3541 (6)0.7020 (6)0.0568 (14)
H1111.06790.28480.71480.068*
H1120.93230.35260.74900.068*
H1131.06890.42790.75080.068*
C120.9547 (5)0.2470 (4)0.4346 (6)0.0445 (11)
C130.9206 (7)0.1357 (5)0.1731 (8)0.0677 (17)
H1310.86970.14240.06810.081*
H1320.88500.06240.18800.081*
H1331.02690.13290.19380.081*
C140.8011 (5)0.3322 (4)0.2170 (5)0.0390 (10)
C150.7476 (5)0.4199 (4)0.3248 (5)0.0319 (8)
H150.73340.49840.29430.038*
C160.8374 (5)0.4397 (4)0.4896 (5)0.0342 (8)
C210.4850 (7)0.1102 (5)0.8964 (6)0.0554 (14)
H2110.42000.16840.92950.067*
H2120.57350.10550.98360.067*
H2130.43320.03150.85320.067*
C220.6214 (5)0.0747 (4)0.7180 (5)0.0354 (9)
C230.7497 (6)0.0287 (4)0.5340 (6)0.0473 (11)
H2310.76370.06030.45350.057*
H2320.70380.05230.49140.057*
H2330.84550.02620.61330.057*
C240.5974 (4)0.2120 (4)0.5465 (4)0.0288 (7)
C250.5121 (5)0.2863 (3)0.6163 (4)0.0302 (8)
H250.47640.35670.58230.036*
C260.4767 (5)0.2590 (4)0.7389 (4)0.0311 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt0.03179 (8)0.02414 (8)0.02707 (8)0.00483 (5)0.01500 (5)0.01076 (5)
O120.056 (2)0.060 (3)0.095 (3)0.030 (2)0.026 (2)0.028 (2)
O140.078 (3)0.068 (3)0.0430 (19)0.001 (2)0.0351 (19)0.0153 (18)
O160.054 (2)0.0437 (19)0.0465 (19)0.0031 (15)0.0232 (16)0.0005 (15)
O220.077 (3)0.0315 (16)0.0486 (19)0.0145 (16)0.0204 (18)0.0221 (14)
O240.0383 (16)0.0381 (16)0.0429 (16)0.0141 (12)0.0219 (13)0.0247 (13)
O260.055 (2)0.0375 (16)0.0335 (15)0.0099 (14)0.0231 (14)0.0100 (12)
N10.0337 (17)0.0283 (16)0.0360 (17)0.0040 (13)0.0151 (14)0.0121 (13)
N20.049 (2)0.0282 (16)0.0264 (15)0.0034 (14)0.0176 (15)0.0089 (13)
N110.0318 (18)0.045 (2)0.042 (2)0.0052 (15)0.0144 (16)0.0128 (16)
N130.043 (2)0.041 (2)0.057 (2)0.0065 (17)0.031 (2)0.0034 (18)
N210.058 (2)0.0277 (17)0.0317 (17)0.0061 (16)0.0211 (17)0.0146 (14)
N230.0377 (18)0.0248 (16)0.0370 (18)0.0072 (13)0.0150 (15)0.0132 (13)
C10.040 (2)0.043 (2)0.036 (2)0.0017 (19)0.0075 (18)0.0115 (18)
C20.040 (2)0.041 (2)0.036 (2)0.0097 (18)0.0103 (18)0.0181 (18)
C110.042 (3)0.073 (4)0.051 (3)0.002 (3)0.007 (2)0.023 (3)
C120.029 (2)0.043 (3)0.067 (3)0.0089 (18)0.022 (2)0.017 (2)
C130.067 (4)0.048 (3)0.090 (5)0.011 (3)0.045 (3)0.006 (3)
C140.038 (2)0.042 (2)0.043 (2)0.0058 (18)0.0232 (19)0.0055 (19)
C150.036 (2)0.0283 (19)0.040 (2)0.0043 (15)0.0200 (17)0.0152 (16)
C160.031 (2)0.035 (2)0.042 (2)0.0008 (16)0.0189 (18)0.0089 (17)
C210.099 (5)0.041 (3)0.044 (3)0.007 (3)0.042 (3)0.019 (2)
C220.050 (3)0.0231 (18)0.0317 (19)0.0013 (17)0.0096 (18)0.0097 (15)
C230.051 (3)0.041 (3)0.057 (3)0.018 (2)0.024 (2)0.019 (2)
C240.0286 (18)0.0287 (18)0.0302 (18)0.0021 (14)0.0080 (15)0.0128 (15)
C250.039 (2)0.0236 (17)0.0315 (19)0.0073 (15)0.0142 (16)0.0118 (15)
C260.036 (2)0.0277 (19)0.0292 (18)0.0008 (15)0.0103 (16)0.0086 (15)
Geometric parameters (Å, º) top
Pt—N12.098 (3)O22—C221.231 (5)
Pt—N22.015 (3)O24—C241.275 (5)
Pt—C152.112 (4)O26—C261.245 (5)
Pt—O242.041 (3)N1—H10.90
N1—C11.483 (5)N1—H20.90
N2—C21.491 (6)N2—H70.90
C1—C21.513 (6)N2—H80.90
N11—C111.467 (6)C1—H30.97
N11—C121.389 (6)C1—H40.97
N11—C161.376 (6)C2—H50.97
N13—C121.370 (7)C2—H60.97
N13—C131.463 (6)C11—H1110.96
N13—C141.402 (6)C11—H1120.96
C14—C151.464 (6)C11—H1130.96
C15—C161.460 (6)C13—H1310.96
O12—C121.212 (6)C13—H1320.96
O14—C141.222 (5)C13—H1330.96
O16—C161.227 (5)C15—H150.98
N21—C221.380 (6)C21—H2110.96
N21—C261.401 (5)C21—H2120.96
N21—C211.461 (5)C21—H2130.96
N23—C221.374 (5)C23—H2310.96
N23—C241.397 (5)C23—H2320.96
N23—C231.463 (5)C23—H2330.96
C24—C251.368 (5)C25—H250.93
C25—C261.413 (5)
N1—Pt—N283.2 (1)C1—N1—H2110.0
N1—Pt—C15173.2 (1)Pt—N1—H2110.0
N1—Pt—O2494.8 (1)H1—N1—H2108.4
N2—Pt—C1590.4 (1)C2—N2—H7109.8
N2—Pt—O24172.6 (1)Pt—N2—H7109.8
C15—Pt—O2491.9 (1)C2—N2—H8109.8
Pt—C15—C14103.4 (3)Pt—N2—H8109.8
Pt—C15—C16107.2 (3)H7—N2—H8108.2
Pt—O24—C24125.1 (3)N1—C1—H3110.2
Pt—N1—C1108.4 (3)C2—C1—H3110.2
Pt—N2—C2109.5 (2)N1—C1—H4110.2
N1—C1—C2107.7 (3)C2—C1—H4110.2
N2—C2—C1107.9 (3)H3—C1—H4108.5
C12—N13—C14123.7 (4)N2—C2—H5110.1
C12—N13—C13117.4 (5)C1—C2—H5110.1
C14—N13—C13118.9 (5)N2—C2—H6110.1
C16—N11—C12123.6 (4)C1—C2—H6110.1
C16—N11—C11119.9 (4)H5—C2—H6108.4
C12—N11—C11116.3 (4)N13—C13—H131109.5
O12—C12—N13121.9 (5)N13—C13—H132109.5
O12—C12—N11120.2 (5)H131—C13—H132109.5
N13—C12—N11117.8 (4)N13—C13—H133109.5
O16—C16—N11119.5 (4)H131—C13—H133109.5
N11—C16—C15117.2 (4)H132—C13—H133109.5
O14—C14—N13120.4 (4)N11—C11—H111109.5
N13—C14—C15115.6 (4)N11—C11—H112109.5
O14—C14—C15124.0 (5)H111—C11—H112109.5
C14—C15—C16117.1 (4)N11—C11—H113109.5
O16—C16—C15123.2 (4)H111—C11—H113109.5
C22—N21—C26124.0 (3)H112—C11—H113109.5
C22—N21—C21117.2 (4)C16—C15—H15109.6
C26—N21—C21118.8 (4)C14—C15—H15109.6
C22—N23—C24123.0 (3)Pt—C15—H15109.6
C22—N23—C23116.6 (3)N21—C21—H211109.5
C24—N23—C23120.4 (3)N21—C21—H212109.5
O22—C22—N23121.7 (4)H211—C21—H212109.5
O22—C22—N21121.9 (4)N21—C21—H213109.5
N23—C22—N21116.4 (3)H211—C21—H213109.5
O24—C24—N23114.3 (3)H212—C21—H213109.5
C25—C24—N23118.6 (3)N23—C23—H231109.5
O26—C26—N21118.3 (4)N23—C23—H232109.5
N21—C26—C25116.0 (4)H231—C23—H232109.5
O24—C24—C25127.1 (4)N23—C23—H233109.5
C24—C25—C26121.7 (4)H231—C23—H233109.5
O26—C26—C25125.8 (4)H232—C23—H233109.5
C1—N1—H1110.0C24—C25—H25119.1
Pt—N1—H1110.0C26—C25—H25119.1
N2—Pt—O24—C24121.8 (9)O24—Pt—C15—C1481.3 (3)
N1—Pt—O24—C2448.1 (3)N1—Pt—C15—C14112.8 (12)
C15—Pt—O24—C24130.2 (3)C12—N13—C14—O14167.4 (4)
N2—Pt—N1—C112.0 (3)C13—N13—C14—O1411.1 (7)
O24—Pt—N1—C1160.9 (3)C12—N13—C14—C1514.8 (6)
C15—Pt—N1—C133.3 (13)C13—N13—C14—C15166.6 (4)
O24—Pt—N2—C291.3 (10)C16—C15—C14—O14156.6 (4)
N1—Pt—N2—C216.9 (3)Pt—C15—C14—O1485.7 (5)
C15—Pt—N2—C2160.6 (3)C16—C15—C14—N1325.7 (5)
Pt—N1—C1—C237.9 (4)Pt—C15—C14—N1391.9 (4)
Pt—N2—C2—C142.5 (4)C24—N23—C22—O22178.0 (4)
N1—C1—C2—N253.1 (4)C23—N23—C22—O221.2 (6)
C14—N13—C12—O12179.7 (5)C24—N23—C22—N211.6 (6)
C13—N13—C12—O121.1 (7)C23—N23—C22—N21179.2 (4)
C14—N13—C12—N111.1 (7)C26—N21—C22—O22173.3 (4)
C13—N13—C12—N11177.4 (4)C21—N21—C22—O224.6 (7)
C16—N11—C12—O12175.2 (4)C26—N21—C22—N236.3 (6)
C11—N11—C12—O120.6 (7)C21—N21—C22—N23175.8 (4)
C16—N11—C12—N136.3 (6)Pt—O24—C24—C2516.4 (6)
C11—N11—C12—N13178.0 (4)Pt—O24—C24—N23164.2 (3)
C12—N11—C16—O16175.9 (4)C22—N23—C24—O24178.6 (4)
C11—N11—C16—O168.5 (6)C23—N23—C24—O242.2 (6)
C12—N11—C16—C155.4 (6)C22—N23—C24—C251.9 (6)
C11—N11—C16—C15170.2 (4)C23—N23—C24—C25177.2 (4)
O16—C16—C15—C14159.9 (4)O24—C24—C25—C26179.4 (4)
N11—C16—C15—C1421.5 (5)N23—C24—C25—C261.2 (6)
O16—C16—C15—Pt84.6 (4)C22—N21—C26—O26172.8 (4)
N11—C16—C15—Pt94.1 (4)C21—N21—C26—O265.1 (6)
N2—Pt—C15—C16144.0 (3)C22—N21—C26—C256.9 (6)
O24—Pt—C15—C1643.0 (3)C21—N21—C26—C25175.1 (4)
N1—Pt—C15—C16122.8 (11)C24—C25—C26—O26176.7 (4)
N2—Pt—C15—C1491.7 (3)C24—C25—C26—N213.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O22i0.902.062.958 (5)172
N1—H2···O16ii0.902.172.939 (5)142
N2—H7···O26ii0.902.112.998 (5)167
N2—H8···O26iii0.902.022.893 (4)163
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x, y, z1.
(II) top
Crystal data top
[Pt(C2H8N2)(C6H7N2O3)2]·2H2OF(000) = 1176
Mr = 601.50Dx = 2.049 Mg m3
Dm = 2.04 Mg m3
Dm measured by flotation in CCl4/CHBr3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
a = 12.840 (2) ÅCell parameters from 25 reflections
b = 10.7834 (9) Åθ = 19.1–19.9°
c = 14.727 (2) ŵ = 7.25 mm1
β = 107.051 (9)°T = 296 K
V = 1949.5 (4) Å3Prism, yellow
Z = 40.16 × 0.16 × 0.07 mm
Data collection top
Rigaku AFC7R
diffractometer
4415 reflections with I > 2σ(I)
Radiation source: rotating Mo anticathodeRint = 0.026
Graphite monochromatorθmax = 30.0°, θmin = 2.4°
ω/2θ scansh = 018
Absorption correction: ψ scan
(North et al., 1968)
k = 150
Tmin = 0.390, Tmax = 0.631l = 2019
5892 measured reflections3 standard reflections every 150 reflections
5664 independent reflections intensity decay: 0.9%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0275P)2 + 0.6P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.003
5664 reflectionsΔρmax = 0.88 e Å3
284 parametersΔρmin = 0.94 e Å3
4 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00092 (9)
Crystal data top
[Pt(C2H8N2)(C6H7N2O3)2]·2H2OV = 1949.5 (4) Å3
Mr = 601.50Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.840 (2) ŵ = 7.25 mm1
b = 10.7834 (9) ÅT = 296 K
c = 14.727 (2) Å0.16 × 0.16 × 0.07 mm
β = 107.051 (9)°
Data collection top
Rigaku AFC7R
diffractometer
4415 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.026
Tmin = 0.390, Tmax = 0.6313 standard reflections every 150 reflections
5892 measured reflections intensity decay: 0.9%
5664 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0274 restraints
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.88 e Å3
5664 reflectionsΔρmin = 0.94 e Å3
284 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pt0.729256 (11)0.195623 (13)0.579509 (9)0.02254 (5)
O121.0368 (3)0.1008 (3)0.4434 (3)0.0523 (9)
O140.9398 (3)0.4185 (4)0.6000 (3)0.0533 (9)
O160.6889 (3)0.2418 (4)0.3382 (2)0.0459 (8)
O220.3835 (3)0.2825 (4)0.6845 (3)0.0525 (10)
O240.6224 (3)0.4887 (3)0.5682 (2)0.0398 (7)
O260.4661 (3)0.1183 (3)0.4317 (2)0.0418 (8)
O11.0471 (4)0.3422 (4)0.3168 (4)0.0695 (13)
H111.108 (3)0.310 (6)0.327 (5)0.083*
H121.063 (6)0.412 (4)0.340 (5)0.083*
O20.2689 (4)0.1927 (4)0.8260 (4)0.0746 (14)
H210.305 (6)0.240 (6)0.804 (5)0.089*
H220.307 (5)0.134 (5)0.855 (4)0.089*
N10.6697 (3)0.0893 (3)0.6718 (2)0.0293 (7)
H10.63590.13880.70350.035*
H20.62080.03410.63830.035*
N20.8719 (3)0.0964 (3)0.6454 (2)0.0318 (7)
H70.90530.07430.60200.038*
H80.91790.14420.68940.038*
N110.8601 (3)0.1640 (3)0.3930 (3)0.0360 (9)
N130.9870 (3)0.2583 (4)0.5237 (3)0.0367 (8)
N210.4327 (3)0.1915 (3)0.5646 (3)0.0319 (7)
N230.5151 (3)0.3778 (3)0.6361 (2)0.0314 (8)
C10.7621 (5)0.0219 (6)0.7413 (5)0.0343 (13)0.840 (12)
H30.79690.07600.79410.041*0.840 (12)
H40.73440.05030.76610.041*0.840 (12)
C20.8427 (4)0.0173 (5)0.6915 (4)0.0335 (14)0.840 (12)
H50.81110.07970.64400.040*0.840 (12)
H60.90710.05190.73650.040*0.840 (12)
C100.747 (3)0.011 (3)0.708 (2)0.028 (7)*0.160 (12)
H300.74320.07280.65960.033*0.160 (12)
H400.73250.05070.76230.033*0.160 (12)
C200.859 (2)0.050 (2)0.7380 (17)0.025 (6)*0.160 (12)
H500.86130.11790.78170.030*0.160 (12)
H600.91540.00950.76760.030*0.160 (12)
C110.8411 (5)0.0824 (6)0.3094 (4)0.0589 (15)
H1110.89630.01940.32160.071*
H1120.84370.13050.25530.071*
H1130.77080.04410.29690.071*
C120.9655 (4)0.1692 (4)0.4527 (3)0.0350 (10)
C131.1026 (4)0.2786 (6)0.5757 (4)0.0636 (18)
H1311.14580.27100.53260.076*
H1321.12580.21790.62520.076*
H1331.11160.36020.60300.076*
C140.9096 (4)0.3347 (4)0.5420 (3)0.0322 (9)
C150.7955 (3)0.3076 (4)0.4924 (3)0.0277 (8)
H150.75510.38590.48000.033*
C160.7753 (4)0.2393 (4)0.4025 (3)0.0322 (9)
C210.3463 (4)0.0982 (5)0.5553 (4)0.0440 (11)
H2110.34350.04470.50260.053*
H2120.27740.13930.54490.053*
H2130.36170.04990.61250.053*
C220.4406 (4)0.2843 (4)0.6320 (3)0.0352 (10)
C230.5185 (4)0.4761 (5)0.7054 (4)0.0481 (13)
H2310.56720.54040.69820.058*
H2320.54370.44240.76840.058*
H2330.44680.50990.69500.058*
C240.5752 (3)0.3907 (4)0.5714 (3)0.0283 (8)
C250.5786 (3)0.2826 (4)0.5119 (3)0.0271 (8)
H250.58050.31220.44950.032*
C260.4900 (3)0.1931 (4)0.4978 (3)0.0285 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt0.02121 (8)0.02483 (8)0.02221 (7)0.00130 (6)0.00738 (5)0.00083 (6)
O120.052 (2)0.044 (2)0.070 (2)0.0140 (18)0.0320 (19)0.0010 (18)
O140.045 (2)0.056 (2)0.061 (2)0.0119 (18)0.0181 (17)0.0272 (19)
O160.0354 (18)0.069 (2)0.0298 (16)0.0067 (17)0.0049 (14)0.0065 (16)
O220.053 (2)0.062 (3)0.056 (2)0.0054 (19)0.0377 (19)0.0109 (18)
O240.0382 (18)0.0294 (16)0.0532 (19)0.0027 (14)0.0157 (15)0.0042 (14)
O260.0394 (19)0.049 (2)0.0376 (17)0.0076 (15)0.0116 (14)0.0142 (15)
O10.067 (3)0.051 (3)0.077 (3)0.000 (2)0.000 (3)0.004 (2)
O20.064 (3)0.046 (3)0.116 (4)0.013 (2)0.029 (3)0.023 (3)
N10.0240 (16)0.0343 (19)0.0300 (16)0.0009 (15)0.0085 (13)0.0024 (15)
N20.0255 (17)0.035 (2)0.0362 (18)0.0052 (15)0.0116 (14)0.0057 (16)
N110.043 (2)0.036 (2)0.0340 (19)0.0038 (17)0.0193 (17)0.0070 (15)
N130.0283 (19)0.045 (2)0.037 (2)0.0011 (17)0.0095 (15)0.0037 (17)
N210.0277 (18)0.0333 (19)0.0360 (18)0.0020 (15)0.0114 (14)0.0048 (16)
N230.0297 (18)0.0338 (19)0.0315 (18)0.0051 (15)0.0105 (14)0.0043 (15)
C10.036 (3)0.036 (3)0.030 (3)0.003 (2)0.008 (2)0.007 (3)
C20.035 (3)0.031 (3)0.035 (3)0.006 (2)0.011 (2)0.007 (2)
C110.067 (4)0.061 (4)0.055 (3)0.010 (3)0.027 (3)0.025 (3)
C120.037 (2)0.035 (2)0.039 (2)0.0028 (18)0.021 (2)0.0049 (18)
C130.031 (3)0.094 (5)0.062 (4)0.001 (3)0.009 (2)0.025 (3)
C140.032 (2)0.031 (2)0.037 (2)0.0012 (17)0.0154 (18)0.0056 (17)
C150.027 (2)0.029 (2)0.0291 (19)0.0002 (17)0.0120 (15)0.0025 (16)
C160.032 (2)0.037 (2)0.031 (2)0.0034 (18)0.0136 (18)0.0047 (17)
C210.029 (2)0.054 (3)0.052 (3)0.007 (2)0.017 (2)0.004 (2)
C220.029 (2)0.040 (3)0.036 (2)0.0041 (18)0.0096 (18)0.0018 (19)
C230.057 (3)0.044 (3)0.048 (3)0.000 (2)0.023 (2)0.017 (2)
C240.0227 (19)0.031 (2)0.031 (2)0.0052 (16)0.0073 (15)0.0002 (16)
C250.0231 (19)0.033 (2)0.0256 (18)0.0065 (16)0.0081 (15)0.0023 (15)
C260.0201 (18)0.036 (2)0.0272 (17)0.0033 (17)0.0035 (14)0.0010 (17)
Geometric parameters (Å, º) top
Pt—N12.087 (3)O26—C261.232 (5)
Pt—N22.098 (3)O1—H110.83 (3)
Pt—C152.114 (4)O1—H120.83 (3)
Pt—C252.117 (4)O2—H210.82 (3)
C1—C21.495 (8)O2—H220.84 (3)
C10—C201.52 (4)N1—H10.90
N1—C101.46 (3)N1—H20.90
N1—C11.507 (6)N2—H70.90
N2—C21.501 (6)N2—H80.90
N2—C201.51 (2)C1—H30.97
N11—C111.475 (6)C1—H40.97
N11—C121.382 (6)C2—H50.97
N11—C161.397 (6)C2—H60.97
N13—C121.387 (6)C10—H300.97
N13—C131.474 (6)C10—H400.97
N13—C141.377 (6)C20—H500.97
C14—C151.462 (6)C20—H600.97
C15—C161.470 (6)C11—H1110.96
O12—C121.214 (5)C11—H1120.96
O14—C141.225 (5)C11—H1130.96
O16—C161.230 (5)C13—H1310.96
N21—C211.474 (6)C13—H1320.96
N21—C221.393 (6)C13—H1330.96
N21—C261.390 (5)C15—H150.98
N23—C221.379 (6)C21—H2110.96
N23—C231.463 (5)C21—H2120.96
N23—C241.396 (5)C21—H2130.96
C24—C251.467 (6)C23—H2310.96
C25—C261.460 (6)C23—H2320.96
O22—C221.212 (5)C23—H2330.96
O24—C241.226 (5)C25—H250.98
N1—Pt—N281.7 (1)H1—N1—H2108.2
N1—Pt—C15177.0 (1)C2—N2—H7109.9
N1—Pt—C2595.2 (1)C20—N2—H7139.2
N2—Pt—C1596.9 (1)Pt—N2—H7109.9
N2—Pt—C25175.6 (1)C2—N2—H8109.9
C15—Pt—C2586.4 (2)C20—N2—H876.2
Pt—C15—C14109.5 (3)Pt—N2—H8109.9
Pt—C15—C16105.3 (3)H7—N2—H8108.3
Pt—C25—C24104.8 (3)C2—C1—H3109.9
Pt—C25—C26109.9 (3)N1—C1—H3109.9
Pt—N1—C1110.0 (3)C2—C1—H4109.9
Pt—N2—C2109.0 (3)N1—C1—H4109.9
N1—C1—C2108.8 (4)H3—C1—H4108.3
N2—C2—C1107.0 (4)C1—C2—H5110.3
Pt—N1—C10107.8 (12)N2—C2—H5110.3
Pt—N2—C20105.9 (10)C1—C2—H6110.3
N1—C10—C20106 (2)N2—C2—H6110.3
N2—C20—C10103 (2)H5—C2—H6108.6
C12—N11—C16124.0 (4)N1—C10—H30110.6
C12—N11—C11116.5 (4)C20—C10—H30110.6
C16—N11—C11119.2 (4)N1—C10—H40110.6
C14—N13—C12124.6 (4)C20—C10—H40110.6
C14—N13—C13118.9 (4)H30—C10—H40108.7
C12—N13—C13116.2 (4)N2—C20—H50111.1
O12—C12—N11122.3 (4)C10—C20—H50111.1
O12—C12—N13121.0 (5)N2—C20—H60111.1
N11—C12—N13116.6 (4)C10—C20—H60111.1
O16—C16—N11119.3 (4)H50—C20—H60109.1
N11—C16—C15116.4 (4)N13—C13—H131109.5
N13—C14—C15117.2 (4)N13—C13—H132109.5
O14—C14—N13118.6 (4)H131—C13—H132109.5
O14—C14—C15124.1 (4)N13—C13—H133109.5
C14—C15—C16115.9 (4)H131—C13—H133109.5
O16—C16—C15124.3 (4)H132—C13—H133109.5
C26—N21—C22123.5 (4)N11—C11—H111109.5
C26—N21—C21118.9 (4)N11—C11—H112109.5
C22—N21—C21116.9 (4)H111—C11—H112109.5
C22—N23—C24123.9 (4)N11—C11—H113109.5
C22—N23—C23115.9 (4)H111—C11—H113109.5
C24—N23—C23119.6 (4)H112—C11—H113109.5
O22—C22—N23121.8 (4)C14—C15—H15108.6
O22—C22—N21120.8 (4)C16—C15—H15108.6
N23—C22—N21117.4 (4)Pt—C15—H15108.6
O24—C24—N23119.4 (4)N21—C21—H211109.5
N23—C24—C25116.6 (4)N21—C21—H212109.5
O26—C26—N21119.3 (4)H211—C21—H212109.5
N21—C26—C25117.4 (4)N21—C21—H213109.5
O24—C24—C25124.0 (4)H211—C21—H213109.5
C24—C25—C26116.8 (4)H212—C21—H213109.5
O26—C26—C25123.3 (4)N23—C23—H231109.5
C22—O22—H21165 (2)N23—C23—H232109.5
H11—O1—H12101 (7)H231—C23—H232109.5
H21—O2—H22111 (7)N23—C23—H233109.5
C10—N1—H1128.9H231—C23—H233109.5
C1—N1—H1109.7H232—C23—H233109.5
Pt—N1—H1109.7C26—C25—H25108.4
C10—N1—H290.2C24—C25—H25108.4
C1—N1—H2109.7Pt—C25—H25108.4
Pt—N1—H2109.7
N2—Pt—N1—C1014.5 (14)C25—Pt—C15—C1685.2 (3)
C15—Pt—N1—C1077 (3)C12—N13—C14—O14172.5 (4)
C25—Pt—N1—C10162.3 (14)C13—N13—C14—O141.1 (7)
N2—Pt—N1—C19.4 (4)C12—N13—C14—C159.3 (7)
C15—Pt—N1—C153 (3)C13—N13—C14—C15177.1 (4)
C25—Pt—N1—C1173.8 (4)C16—C15—C14—O14157.5 (5)
N1—Pt—N2—C219.1 (3)Pt—C15—C14—O1483.6 (5)
C15—Pt—N2—C2163.6 (3)C16—C15—C14—N1324.4 (6)
C25—Pt—N2—C227.2 (19)Pt—C15—C14—N1394.6 (4)
N1—Pt—N2—C2020.6 (11)H21—O22—C22—N23105 (7)
C15—Pt—N2—C20156.7 (11)O2—O22—C22—N23129.7 (10)
C25—Pt—N2—C2067 (2)H21—O22—C22—N2175 (7)
C10—N1—C1—C252 (3)O2—O22—C22—N2150.6 (13)
Pt—N1—C1—C236.6 (6)C24—N23—C22—O22173.6 (4)
N1—C1—C2—N253.0 (6)C23—N23—C22—O221.8 (7)
C20—N2—C2—C147.6 (16)C24—N23—C22—N216.1 (6)
Pt—N2—C2—C144.1 (5)C23—N23—C22—N21177.9 (4)
C1—N1—C10—C2053 (3)C26—N21—C22—O22175.1 (4)
Pt—N1—C10—C2047 (2)C21—N21—C22—O224.9 (7)
C2—N2—C20—C1050.2 (17)C26—N21—C22—N234.6 (6)
Pt—N2—C20—C1050 (2)C21—N21—C22—N23174.8 (4)
N1—C10—C20—N265 (2)C22—N23—C24—O24165.2 (4)
C16—N11—C12—O12178.6 (4)C23—N23—C24—O246.3 (6)
C11—N11—C12—O127.8 (7)C22—N23—C24—C2515.7 (6)
C16—N11—C12—N132.3 (6)C23—N23—C24—C25172.8 (4)
C11—N11—C12—N13171.3 (4)O24—C24—C25—C26157.9 (4)
C14—N13—C12—O12176.4 (4)N23—C24—C25—C2623.1 (5)
C13—N13—C12—O129.9 (7)O24—C24—C25—Pt80.2 (4)
C14—N13—C12—N114.5 (7)N23—C24—C25—Pt98.8 (3)
C13—N13—C12—N11169.3 (5)N1—Pt—C25—C2639.7 (3)
C12—N11—C16—O16168.9 (4)N2—Pt—C25—C266.2 (19)
C11—N11—C16—O164.5 (7)C15—Pt—C25—C26142.9 (3)
C12—N11—C16—C1513.4 (6)N1—Pt—C25—C2486.6 (3)
C11—N11—C16—C15173.2 (4)N2—Pt—C25—C24132.5 (17)
O16—C16—C15—C14156.2 (4)C15—Pt—C25—C2490.8 (3)
N11—C16—C15—C1426.2 (6)C22—N21—C26—O26168.8 (4)
O16—C16—C15—Pt82.6 (5)C21—N21—C26—O261.3 (6)
N11—C16—C15—Pt95.0 (4)C22—N21—C26—C2512.9 (6)
N1—Pt—C15—C1428 (3)C21—N21—C26—C25177.0 (4)
N2—Pt—C15—C1433.5 (3)C24—C25—C26—O26160.0 (4)
C25—Pt—C15—C14149.5 (3)Pt—C25—C26—O2680.9 (4)
N1—Pt—C15—C16154 (3)C24—C25—C26—N2121.9 (5)
N2—Pt—C15—C1691.7 (3)Pt—C25—C26—N2197.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O16i0.902.293.005 (5)136
N1—H2···O26ii0.902.082.969 (5)169
N2—H7···O12iii0.902.202.915 (5)136
N2—H8···O1i0.902.112.923 (6)149
O1—H11···O2iv0.83 (3)2.06 (4)2.837 (7)154 (7)
O1—H12···O14v0.83 (3)2.03 (3)2.840 (6)165 (7)
O2—H21···O220.82 (3)2.31 (5)3.040 (6)149 (7)
O2—H22···O24vi0.84 (3)1.99 (3)2.819 (5)171 (7)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z+1; (iii) x+2, y, z+1; (iv) x+1, y+1/2, z1/2; (v) x+2, y+1, z+1; (vi) x+1, y1/2, z+3/2.

Experimental details

(I)(II)
Crystal data
Chemical formula[Pt(C2H8N2)(C6H7N2O3)2][Pt(C2H8N2)(C6H7N2O3)2]·2H2O
Mr565.47601.50
Crystal system, space groupTriclinic, P1Monoclinic, P21/c
Temperature (K)296296
a, b, c (Å)9.505 (2), 11.2518 (9), 9.464 (2)12.840 (2), 10.7834 (9), 14.727 (2)
α, β, γ (°)103.10 (1), 110.52 (1), 87.93 (1)90, 107.051 (9), 90
V3)922.2 (2)1949.5 (4)
Z24
Radiation typeMo KαMo Kα
µ (mm1)7.657.25
Crystal size (mm)0.20 × 0.10 × 0.070.16 × 0.16 × 0.07
Data collection
DiffractometerRigaku AFC7R
diffractometer
Rigaku AFC7R
diffractometer
Absorption correctionψ scan
(North et al., 1968)
ψ scan
(North et al., 1968)
Tmin, Tmax0.294, 0.5850.390, 0.631
No. of measured, independent and
observed [I > 2σ(I)] reflections
5685, 5383, 4663 5892, 5664, 4415
Rint0.0290.026
(sin θ/λ)max1)0.7040.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.061, 1.03 0.027, 0.065, 1.02
No. of reflections53835664
No. of parameters245284
No. of restraints04
H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.17, 1.140.88, 0.94

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993a), MSC/AFC Diffractometer Control Software, TEXSAN PROCESS (Molecular Structure Corporation, 1993b), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), SHELXL97.

Selected geometric parameters (Å, º) for (I) top
Pt—N12.098 (3)O14—C141.222 (5)
Pt—N22.015 (3)O16—C161.227 (5)
Pt—C152.112 (4)C24—C251.368 (5)
Pt—O242.041 (3)C25—C261.413 (5)
C14—C151.464 (6)O22—C221.231 (5)
C15—C161.460 (6)O24—C241.275 (5)
O12—C121.212 (6)O26—C261.245 (5)
N1—Pt—N283.2 (1)Pt—O24—C24125.1 (3)
N1—Pt—C15173.2 (1)O14—C14—C15124.0 (5)
N1—Pt—O2494.8 (1)C14—C15—C16117.1 (4)
N2—Pt—C1590.4 (1)O16—C16—C15123.2 (4)
N2—Pt—O24172.6 (1)O24—C24—C25127.1 (4)
C15—Pt—O2491.9 (1)C24—C25—C26121.7 (4)
Pt—C15—C14103.4 (3)O26—C26—C25125.8 (4)
Pt—C15—C16107.2 (3)
Pt—O24—C24—C2516.4 (6)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O22i0.902.062.958 (5)172
N1—H2···O16ii0.902.172.939 (5)142
N2—H7···O26ii0.902.112.998 (5)167
N2—H8···O26iii0.902.022.893 (4)163
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x, y, z1.
Selected geometric parameters (Å, º) for (II) top
Pt—N12.087 (3)O14—C141.225 (5)
Pt—N22.098 (3)O16—C161.230 (5)
Pt—C152.114 (4)C24—C251.467 (6)
Pt—C252.117 (4)C25—C261.460 (6)
C14—C151.462 (6)O22—C221.212 (5)
C15—C161.470 (6)O24—C241.226 (5)
O12—C121.214 (5)O26—C261.232 (5)
N1—Pt—N281.7 (1)Pt—C25—C24104.8 (3)
N1—Pt—C15177.0 (1)Pt—C25—C26109.9 (3)
N1—Pt—C2595.2 (1)O14—C14—C15124.1 (4)
N2—Pt—C1596.9 (1)C14—C15—C16115.9 (4)
N2—Pt—C25175.6 (1)O16—C16—C15124.3 (4)
C15—Pt—C2586.4 (2)O24—C24—C25124.0 (4)
Pt—C15—C14109.5 (3)C24—C25—C26116.8 (4)
Pt—C15—C16105.3 (3)O26—C26—C25123.3 (4)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O16i0.902.293.005 (5)136
N1—H2···O26ii0.902.082.969 (5)169
N2—H7···O12iii0.902.202.915 (5)136
N2—H8···O1i0.902.112.923 (6)149
O1—H11···O2iv0.83 (3)2.06 (4)2.837 (7)154 (7)
O1—H12···O14v0.83 (3)2.03 (3)2.840 (6)165 (7)
O2—H21···O220.82 (3)2.31 (5)3.040 (6)149 (7)
O2—H22···O24vi0.84 (3)1.99 (3)2.819 (5)171 (7)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z+1; (iii) x+2, y, z+1; (iv) x+1, y+1/2, z1/2; (v) x+2, y+1, z+1; (vi) x+1, y1/2, z+3/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds