research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and properties of chlorido­tetra­kis­(pyridine-3-carbo­nitrile)­thio­cyanato­iron(II)

crossmark logo

aInstitut für Anorganische Chemie, Universität Kiel, Max-Eyth. Str. 2, 24118 Kiel, Germany
*Correspondence e-mail: cnaether@ac.uni-kiel.de

Edited by X. Hao, Institute of Chemistry, Chinese Academy of Sciences (Received 8 November 2023; accepted 14 November 2023; online 21 November 2023)

Reaction of FeCl2·4H2O with KSCN and 3-cyano­pyridine (pyridine-3-carbo­nitrile) in ethanol accidentally leads to the formation of single crystals of Fe(NCS)(Cl)(3-cyano­pyridine)4 or [FeCl(NCS)(C6H4N2)4]. The asymmetric unit of this compound consists of one FeII cation, one chloride and one thio­cyanate anion that are located on a fourfold rotation axis as well as of one 3-cyano­pyridine coligand in a general position. The FeII cations are sixfold coordinated by one chloride anion and one terminally N-bonding thio­cyanate anion in trans-positions and four 3-cyano­pyridine coligands that coordinate via the pyridine N atom to the FeII cations. The complexes are arranged in columns with the chloride anions, with the thio­cyanate anions always oriented in the same direction, which shows the non-centrosymmetry of this structure. No pronounced inter­molecular inter­actions are observed between the complexes. Initially, FeCl2 and KSCN were reacted in a 1:2 ratio, which lead to a sample that contains the title compound as the major phase together with a small amount of an unknown crystalline phase, as proven by powder X-ray diffraction (PXRD). If FeCl2 and KSCN is reacted in a 1:1 ratio, the title compound is obtained as a nearly pure phase. IR investigations reveal that the CN stretching vibration for the thio­cyanate anion is observed at 2074 cm−1, and that of the cyano group at 2238 cm−1, which also proves that the anionic ligands are only terminally bonded and that the cyano group is not involved in the metal coordination. Measurements with thermogravimetry and differential thermoanalysis reveal that the title compound decomposes at 169°C when heated at a rate of 4°C min−1 and that the 3-cyano­pyridine ligands are emitted in two separate poorly resolved steps. After the first step, an inter­mediate compound with the composition Fe(NCS)(Cl)(3-cyano­pyridine)2 of unknown structure is formed, for which the CN stretching vibration of the thio­cyanate anion is observed at 2025 cm−1, whereas the CN stretching vibration of the cyano group remain constant. This strongly indicates that the FeII cations are linked by μ-1,3-bridg­ing thio­cyanate anions into chains or layers.

1. Chemical context

Thio­cyanate anions are versatile ligands, which show a number of different coordination modes, leading to a pronounced structural variability. This ligand can act as a monocoordinating ligand, which in most cases leads to the formation of complexes that are of inter­est, for example in the field of spin-crossover compounds, which is especially the case with Fe(NCS)2 (Gütlich et al., 2000[Gütlich, P., Garcia, Y. & Goodwin, H. A. (2000). Chem. Soc. Rev. 29, 171-179.]; Naggert et al., 2015[Naggert, H., Rudnik, J., Kipgen, L., Bernien, M., Nickel, F., Arruda, L. M., Kuch, W., Näther, C. & Tuczek, F. (2015). J. Mater. Chem. C3, 7870-7877.]; Senthil Kumar & Ruben Kuppusamy, 2017[Senthil Kumar, K. & Ruben, M. (2017). Coord. Chem. Rev. 346, 176-205.]; Hogue et al., 2018[Hogue, R. W., Singh, S. & Brooker, S. (2018). Chem. Soc. Rev. 47, 7303-7338.]). Moreover, this anionic ligand is able to mediate magnetic exchange and therefore, compounds with bridging thio­cyanate anions are also of inter­est (Palion-Gazda et al., 2015[Palion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380-2388.]; Mekuimemba et al., 2018[Mekuimemba, C. D., Conan, F., Mota, A. J., Palacios, M. A., Colacio, E. & Triki, S. (2018). Inorg. Chem. 57, 2184-2192.]). In this context, compounds based on Co(NCS)2 are of special importance because of the large magnetic anisotropy of CoII (Mautner et al., 2018[Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436-442.]; Wöhlert et al., 2013[Wöhlert, S., Fic, T., Tomkowicz, Z., Ebbinghaus, S. G., Rams, M., Haase, W. & Näther, C. (2013). Inorg. Chem. 52, 12947-12957.]; Rams et al., 2020[Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837-2851.]). All these are reasons why the inter­est in the synthesis, structures and properties of thio­cyanate coordination compounds is still very high. In our own investigations, we are especially inter­ested in coordination compounds with MnII, FeII, CoII and NiII cations.

The synthesis of such thio­cyanate coordination compounds with manganese, cobalt and nickel is usually very easy because their thio­cyanate salts are commercially available or can easily be prepared and stored for a long time, which is not the case for Fe(NCS)2. For the synthesis of coordination compounds with this cation, Fe(NCS)2 is usually prepared in situ, for example by the reaction of an FeII salt such as FeCl2 or FeSO4 with KSCN, which afterwards reacts with the organic ligand to form the desired thio­cyanate compound. The potassium salt formed in this reaction can finally be removed, for example by washing the residue with water. We have used this procedure many times for the preparation of new Fe(NCS)2 compounds, and it usually leads to pure samples (Wöhlert et al., 2013[Wöhlert, S., Fic, T., Tomkowicz, Z., Ebbinghaus, S. G., Rams, M., Haase, W. & Näther, C. (2013). Inorg. Chem. 52, 12947-12957.]; Werner et al., 2015a[Werner, J., Runčevski, T., Dinnebier, R., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015a). Eur. J. Inorg. Chem. pp. 3236-3245.],b[Werner, J., Tomkowicz, Z., Reinert, T. & Näther, C. (2015b). Eur. J. Inorg. Chem. pp. 3066-3075.]).

However, in the course of our systematic investigations we became inter­ested in the synthesis of Fe(NCS)2 precursor complexes with 3-cyano­pyridine as coligand, for which corresponding compounds with MnII and NiII had already been investigated by us (Krebs et al., 2021[Krebs, C., Thiele, S., Ceglarska, M. & Näther, C. (2021). Z. Anorg. Allge Chem. 647, 2122-2129.], 2023[Krebs, C., Foltyn, M., Jess, I., Mangelsen, S., Rams, M. & Näther, C. (2023). Inorg. Chim. Acta, 554, 121495.]). In this work we investigated whether 3-cyano­pyridine-rich complexes with terminally N-bonded thio­cyanate anions can be prepared and transformed into 3-cyano­pyridine-deficient complexes with bridging thio­cyanate anions by thermal decomposition. For a number of complexes with Ni(NCS)2 we found that they transform into a new compound with the composition Ni(NCS)2(3-cyano­pyridine)2, in which the metal cations are linked by the thio­cyanate anions into layers and in which the 3-cyano­pyridine ligand is only terminally bonded (Krebs et al., 2021[Krebs, C., Thiele, S., Ceglarska, M. & Näther, C. (2021). Z. Anorg. Allge Chem. 647, 2122-2129.]). Surprisingly, corresponding complexes with Mn(NCS)2 transform into an unusual compound with the composition {[Mn(NCS)2]3(3-cyano­pyridine)4}n, which is isotypic to the corresponding compound with Cd(NCS)2 already reported in the literature (Jochim et al., 2020a[Jochim, A., Jess, I. & Näther, C. (2020a). Z. Naturforsch. B, 75, 163-172.],b[Jochim, A., Rams, M., Böhme, M., Ceglarska, M., Plass, W. & Näther, C. (2020b). Dalton Trans. 49, 15310-15322.]) and which consists of Mn(NCS)2 chains that are connected by some bridging 3-cyano­pyridine ligands into layers, whereas some others are still terminally bonded (Krebs et al., 2023[Krebs, C., Foltyn, M., Jess, I., Mangelsen, S., Rams, M. & Näther, C. (2023). Inorg. Chim. Acta, 554, 121495.]). The reason for the differences in the thermal behavior is unclear, but the question arises whether cations in between MnII and NiII will show a thermal behavior similar to that of MnII or NiII. We therefore decided to attempt to prepare thio­cyanate complexes based on Fe(NCS)2 and 3-cyano­pyridine.

For the synthesis of such compounds we reacted FeCl2 and FeSO4 with KSCN, which led to the formation of crystalline products that were identified by single-crystal X-ray diffraction. This proves that in the batch obtained from FeCl2·6H2O, a compound with the composition Fe(NCS)(Cl)(3-cyano­pyridine)4 was accidentally obtained, in which both thio­cyanate and chloride anions are present. In contrast, with FeSO4, the desired compounds with composition Fe(NCS)2(3-cyano­pyridine)4 and Fe(NCS)2(3-cyano­pyridine)2(H2O)2·2(3-cyano­pyridine) were obtained (Näther et al., 2023[Näther, C., Müller-Meinhard, A. & Jess, I. (2023). Acta Cryst. E79, 1093-1099.]). In this context, it is noted that compounds with transition metals coordinated by a halide anion and a thio­cyanate anion with 3-cyano­pyridine are unknown. In general, only one Fe compound is found in the CSD (see Database survey) in which the FeII cation is coordinated by one chloride anion, one thio­cyanate anion and an N-donor ligand (Horng & Lee, 1999[Horng, D. N. & Lee, K. M. (1999). J. Chem. Soc. Dalton Trans. pp. 2205-2210.]). Concerning the synthesis of such compounds, most compounds reported in literature were prepared by the reaction of one equivalent of a transition metal–halide salt with one or two equivalents of potassium or ammonium thio­cyanate, very similar to the synthesis of the title compound, but in none of these publications was the purity of the compounds investigated by X-ray powder diffraction (PXRD).

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound, Fe(NCS)(Cl)(3-cyano­pyridine)4, consists of one iron cation, one thio­cyanate anion and one chloride anion that are located on a fourfold rotation axis, as well as of one 3-cyano­pyridine coligand that occupies a general position (Fig. 1[link]). In the crystal structure, the FeII cations are coordinated by one terminally N-bonded thio­cyanate anion and one chloride anion in trans-positions and four symmetry-related 3-cyano­pyridine coligands that are coordinated via the pyridine N atom to the Fe centers (Fig. 1[link]). As a result of symmetry, all four Fe—N bond lengths to the coligands are identical and correspond to literature values. The bonding angles deviate from the ideal values, which is especially the case for the Cl—Fe—N3-cyano­pyridine and the NNCS—Fe—N3-cyano­pyridine angle, whereas the N—Fe—N angles of neighboring 3-cyano­pyridine coligands are close to 90° (Table 1[link]). Therefore, the octa­hedra are slightly distorted. As a result of steric repulsion, the 3-cyano­pyridine ring planes are not coplanar and are rotated by about 70°.

Table 1
Selected geometric parameters (Å, °)

Fe1—N1 2.099 (4) Fe1—N11 2.2480 (18)
Fe1—Cl1 2.3716 (12)    
       
N1—Fe1—Cl1 180.0 N11i—Fe1—N11ii 89.546 (11)
N1—Fe1—N11 84.89 (6) N11i—Fe1—N11 169.79 (12)
N11—Fe1—Cl1 95.11 (6) N11—Fe1—N11iii 89.545 (11)
Symmetry codes: (i) [-x+1, -y+1, z]; (ii) [y, -x+1, z]; (iii) [-y+1, x, z].
[Figure 1]
Figure 1
Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level. Symmetry codes for the generation of equivalent atoms: (i) y, −x + 1, z; (ii) −x + 1, −y + 1, z; (iii) −y + 1, x, z.

3. Supra­molecular features

In the crystal, the discrete complexes are arranged in columns that elongate in the c-axis direction (Fig. 2[link]). From a view along the b-axis, it is obvious that all chloride anions and thio­cyanate anions always point in the same direction, which proves the non-centrosymmetry of this structure (Fig. 3[link]). There are no pronounced directional inter­actions between the complexes, except for two C—H⋯N inter­actions but, from the bond lengths and angles, it is obvious that they do not correspond to significant inter­actions (Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯N12iv 0.95 2.68 3.304 (3) 124
C15—H15⋯N12iv 0.95 2.67 3.313 (3) 126
Symmetry code: (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Crystal structure of the title compound in a view along the crystallographic c-axis direction.
[Figure 3]
Figure 3
Crystal structure of the title compound in a view along the crystallographic b-axis direction, showing the non-centrosymmetry of the structure.

4. Database survey

A search in the Cambridge Structural Database (CSD version 5.43, last update November 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using ConQuest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) revealed that no complexes consisting of a transition-metal cation coordinated by a halide anion, a thio­cyanate anion and a 3-cyano­pyridine ligand are known.

Searching for compounds with iron coordinated by a thio­cyanate and a halide anion, only one structure was found. In (μ2-N,N,N′,N′-tetra­kis­(2-benzimidazolylmeth­yl)-2-oxy-1,3-di­amino­propane)­dichloro­diiso­thio­cyanato­diiron(iii) chloride tetra­hydrate (refcode: HOJLEX, Horng & Lee, 1999[Horng, D. N. & Lee, K. M. (1999). J. Chem. Soc. Dalton Trans. pp. 2205-2210.]), the iron cations are octa­hedrally coordinated by one chloride anion and one thio­cyanate anion in cis-positions, as well as three N and one O atoms of the organic ligand. Pairs of FeII cations are linked by a μ-1,1(O,O)-bridging O atom into dinuclear units.

After expanding the search to compounds in which a transition-metal cation is coordinated by a thio­cyanate anion, a halide anion and a pyridine derivate, some more structures were found, most of them with chloride anions. This includes discrete complexes with the composition M(NCS)(X)(L) (M = Cu, Co, Zn, X = Cl, Br) in which the metal cation is coordinated by one thio­cyanate anion, one halide anion and one tridentate ligand {L = 2,6-bis­(pyridin-2-yl)-3,5-bis­(pyridin-2-yl)pyrazine, refcode: FEPKEU; Al-Assy & Mostafa, 2023[Al-Assy, W. H. & Mostafa, M. M. (2023). J. Mol. Struct. 1273, 134262.]; L = 4-meth­oxy-N-[(pyridin-2-yl)methyl­idene]benzene-1-carbohydrazonato, refcode: FIRPAA; Yu et al., 2018[Yu, H., Guo, S., Cheng, J. Y., Jiang, G., Li, Z., Zhai, W., Li, A., Jiang, Y. & You, Z. (2018). J. Coord. Chem. 71, 4164-4179.]; L = 2-[1-(pyridin-2-yl)ethyl­idene]hydrazinecarboximidamide, refcode: IQEFER; Vojinović-Ješić et al., 2016[Vojinović-Ješić, L. S., Radanović, M. M., Rodić, M. V., Živković-Radovanović, V., Jovanović, L. S. & Leovac, V. M. (2016). Polyhedron, 117, 526-534.]; L = 2-amino-N′-[(pyridin-2-yl)methyl­idene]benzohydrazide, refcode: KEPPII; Zhang et al., 2022[Zhang, L., Feng, X., Gu, Y., Yang, T., Li, X., Yu, H. & You, Z. (2022). J. Struct. Chem. 63, 1358-1370.]; L = 2,2′-(pyridine-2,6-di­yl)bis-1H-benzimidazole, refcode: QEHRAY; Machura et al., 2012[Machura, B., Świtlicka, A. & Penkala, M. (2012). Polyhedron, 45, 221-228.]; L = N,N-dimethyl-N′-(1-pyridinyl­methyl­idene)propane-1,3-di­amine, refcode: YIJYEW; Sun, 2006[Sun, Y. X. (2006). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 36, 621-625.]; L = N-methyl-N′-[1-(2-pyrid­yl)ethyl­idene]ethane-1,2-di­amine-κ3N,N′,N′′, refcode: DUR­FOM; Liu, 2010[Liu, L.-J. (2010). Acta Cryst. E66, m939.]}.

Additional discrete complexes of the composition M(NCS)Cl(L)2 (M = Cu, Co) are found in which the metal cations are octa­hedrally coordinated by one thio­cyanate anion, one chloride anion and two bidentate ligands [L= 2-(pyridin-2-yl)-1H-benzimidazole, refcode: VEJHAW; Kumari et al., 2018[Kumari, B., Adhikari, S., Matalobos, J. S. & Das, D. (2018). J. Mol. Struct. 1151, 169-176.], L = 1,10-phenanthroline, refcode: ZAMDOG; Parker & Brene­man, 1995[Parker, O. J. & Breneman, G. L. (1995). Acta Cryst. C51, 1529-1531.]; L = 2,2′-bi­pyridine, refcode: FERWEH; Tang et al., 2017[Tang, L. Z., Xue, D., Yang, L. F. & Zhan, S. Z. (2017). Transit. Met. Chem. 42, 711-717.]]. In Cu(NCS)I(pyridine)4·pyridine, the copper cations are octa­hedrally coordinated by one thio­cyanate anion, one iodide anion and four pyridine coligands (refcode: ESITOQ; Bowmaker et al., 2011[Bowmaker, G. A., Di Nicola, C., Pettinari, C., Skelton, B. W., Somers, N. & White, A. H. (2011). Dalton Trans. 40, 5102-5115.]). In this compound, disorder is present with the iodide and thio­cyanate anions occupying the same crystallographic position. In a further copper compound, the copper cations are fivefold coordinated by one N and one S-bonding thio­cyanate anion, one chloride anion and two N atoms of the coligand (QETTER; Hu et al., 2018[Hu, J., Liao, C., Mao, R., Zhang, J., Zhao, J. & Gu, Z. (2018). Med. Chem. Commun. 9, 337-343.]). Two CuII cations are linked by pairs of μ-1,3-bridging thio­cyanate anions into dinuclear complexes. In di­aqua-bis­{μ-N′,N′′-[(pyridine-2,6-di­yl)bis­(eth-1-yl-1-yl­idene)]bis­(pyridine-4-car­bohydrazide)}bis­(iso­thio­cyanato)­tetra­chloro­trimanganese(II), one of the crystallographically independent manganese cations is octa­hedrally coordinated by two thio­cyanate anions, two chloride anions and two of the coligands (EWEVEK; Croitor et al., 2021[Croitor, L., Cocu, M., Bulhac, I., Bourosh, P. N. Ch., Kravtsov, V., Petuhov, O. & Danilescu, O. (2021). Polyhedron, 206, 115329.]). One discrete complex with additional hydrate mol­ecules with the composition Mn(NCS)Cl(H2O)L·(H2O) is also reported in which the manganese cation is octa­hedrally coordinated by one thio­cyanate anion, one chloride anion and one tridentate coligand (L = 2,3,5,6-tetra­kis­(pyridin-2-yl)pyrazine, refcode: ZEYWUX; Machura et al., 2013[Machura, B., Palion, J., Mroziński, J., Kalińska, B., Amini, M., Najafpour, M. M. & Kruszynski, R. (2013). Polyhedron, 53, 132-143.]). Two discrete complexes of the composition Zn(NCS)Cl2L exist in which the zinc cations are tetra­hedrally coordinated by two halide anions and one organic ligand (refcode: QINJEF; Kwiatek et al., 2019[Kwiatek, D., Kubicki, M., Skokowski, P., Gruszczyńska, J., Lis, S. & Hnatejko, Z. (2019). J. Mol. Struct. 1178, 669-681.]). The fourth coord­ination site is mixed occupied by chloride and thio­cyanate anions in a 0.67:0.33 ratio. With a slightly modified ligand, a further compound is found that is isotypic to the former and in which the fourth position is exclusively coordinated by only thio­cyanate anions (refcode: QINJUV; Kwiatek et al., 2019[Kwiatek, D., Kubicki, M., Skokowski, P., Gruszczyńska, J., Lis, S. & Hnatejko, Z. (2019). J. Mol. Struct. 1178, 669-681.]). With zinc, a further compound is known with composition Zn(NCS)Cl2(H2O)(phenanthroline) in which the zinc cation is octa­hedrally coordinated by one thio­cyanate anion, two chloride anions, one water ligand and one bidentate phenanthroline coligand (refcode: CUSVUI; Ma et al., 2010[Ma, Q., Zhu, M., Yuan, C., Feng, S., Lu, L. & Wang, Q. (2010). Cryst. Growth Des. 10, 1706-1714.]). Finally, an additional compound with cadmium is known in which one of the two crystallographically independent cadmium cations is octa­hedrally coordinated by one thio­cyanate anion, two chloride anions and one bidentate {μ-2,2′,2′′-[1-(pyridin-2-ylmeth­yl)imidazolidine-2,4,5-tri­yl]tri­pyridine} coligand (refcode: DOWCUP; Ou et al., 2014[Ou, Y. J., Zheng, Z., Hong, X. J., Wan, L. T., Wei, L. M., Lin, X. M. & Cai, Y. P. (2014). Cryst. Growth Des. 14, 5339-5343.]). The CdII cations are linked by μ-1,1-bridging chloride anions into chains.

5. Synthesis and crystallization

Synthesis

FeCl2·4H2O and KSCN were purchased from Sigma Aldrich and 3-cyano­pyridine was purchased from Alfa Aesar.

A microcrystalline powder was obtained by the reaction of 0.25 mmol of FeCl2·4H2O (49.7 mg), 0.25 mmol of KSCN (24.3 mmol) and 2 mmol of 3-cyano­pyridine (208.2 mg) in ethanol. The mixture was stirred for 1 d at room temperature, filtered off and washed with water. Crystals suitable for single-crystal X-ray diffraction were obtained using 0.25 mmol of FeCl2·4H2O (49.7 mg), 0.5 mmol of KSCN (48.6 mmol) and 2 mmol of 3-cyano­pyridine (208.2 mg) in ethanol under hydro­thermal conditions (403 K for 1 d).

Concerning the synthesis of the title complex, it is noted that in the beginning of our synthetic work, this compound was accidentally obtained by the reaction of one equivalent FeCl2·4H2O with two equivalents of KSCN. Comparison of the experimental powder pattern of this batch with that calculated from single-crystal data measured at room temperature shows that the title compound was obtained as the major phase, together with some amount of an unknown crystalline product (Fig. S1). Later on, the ratio between FeCl2·4H2O and KSN was reduced to 1:1, leading to title complex as a nearly pure phase (Fig. 4[link]). However, there are a few additional reflections of low intensity that correspond to a small contamination of an unknown phase, which is different from the byproduct obtained by the reaction with a 1:2 ratio (Fig. 4[link]). In the IR spectrum of the title compound, the CN stretching vibration of the thio­cyanate anions is observed at 2074 cm−1, which is in agreement with the presence of only terminally bonded thio­cyanate anions (Bailey et al., 1971[Bailey, R. A., Kozak, S. L., Michelsen, T. W. & Mills, W. N. (1971). Coord. Chem. Rev. 6, 407-445.]; Fig. 5[link]). Moreover, the band at higher wavenumbers corresponds to the CN stretching vibration of the cyano group, for which a value of 2238 cm−1 is observed (Smith, 2019[Smith, B. C. (2019). Spectroscopy, 34, 18-21.]). This shows that the cyano group is not involved in the metal coordination (Reedijk & Groeneveld, 1967[Reedijk, J. & Groeneveld, W. L. (1967). Recl Trav. Chim. Pays Bas, 86, 1103-1126.]).

[Figure 4]
Figure 4
Experimental (top) and calculated (bottom) PXRD patterns of the title compound. Please note that the powder pattern was calculated using data from a structure determination performed at room temperature.
[Figure 5]
Figure 5
IR spectrum of the title compound. The CN stretching vibrations of the thio­cyanate anion and the cyano group of the 3-cyano­pyridine coligand are given.

Experimental details

The data collection for single-crystal structure analysis and powder X-ray diffraction was performed using an XtaLAB Synergy, Dualflex, HyPix diffractometer from Rigaku with Cu Kα radiation.

The IR spectrum was measured using an ATI Mattson Genesis Series FTIR Spectrometer, control software WINFIRST, from ATI Mattson.

Thermogravimetry and differential thermoanalysis (TG–DTA) measurements were performed in a dynamic air atmosphere in Al2O3 crucibles using a STA-PT 1000 thermobalance from Linseis. The instrument was calibrated using standard reference materials.

6. Thermogravimetry and differential thermoanalysis

The thermal properties of the title compound were investigated by thermogravimetry and differential thermoanalysis (TG–DTA). Upon heating, two mass losses were observed that, according to the DTG curve, are poorly resolved and that are accompanied with two endothermic events in the DTA curve (Fig. S2). The experimental mass loss in the first step is in rough agreement with that calculated for the removal of two 3-cyano­pyridine ligands of 36.8%, whereas the value for the second mass loss is lower. This indicates that a compound with the composition Fe(NCS)(Cl)(3-cyano­pyridine)2 has formed after the first mass loss. Powder X-ray diffraction reveals that in the residue obtained after the first mass loss, no reflections of the pristine compound are present and that a phase of poor crystallinity has formed (Fig. S3). IR measurements of this residue show that the CN stretching vibration of the thio­cyanate anion is shifted to 2025 cm−1, whereas the CN stretching vibration of the cyano group remains constant. This strongly indicates that the μ-1,3-bridging thio­cyanate anions are present and that the cyano group is still not involved in the metal coordination. In most cases, the structures of compounds with such a stoichiometry consist of chains in which the metal centers are octa­hedrally coordinated and linked by pairs of μ-1,3-bridging thio­cyanate anions into chains (Jochim et al., 2018[Jochim, A., Rams, M., Neumann, T., Wellm, C., Reinsch, H., Wójtowicz, G. M. & Näther, C. (2018). Eur. J. Inorg. Chem. pp. 4779-4789.]; Wöhlert et al., 2013[Wöhlert, S., Fic, T., Tomkowicz, Z., Ebbinghaus, S. G., Rams, M., Haase, W. & Näther, C. (2013). Inorg. Chem. 52, 12947-12957.]; Mautner et al., 2018[Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436-442.]). Alternatively, a layered structure has formed in which the metal cations are octa­hedrally coordinated and linked by single bridging anionic ligands into layers (Werner et al., 2015b[Werner, J., Tomkowicz, Z., Reinert, T. & Näther, C. (2015b). Eur. J. Inorg. Chem. pp. 3066-3075.]; Jochim et al., 2020a[Jochim, A., Jess, I. & Näther, C. (2020a). Z. Naturforsch. B, 75, 163-172.],b[Jochim, A., Rams, M., Böhme, M., Ceglarska, M., Plass, W. & Näther, C. (2020b). Dalton Trans. 49, 15310-15322.]) or two metal cations are linked by pairs of thio­cyanate anions into dinuclear units that are further connected into layers by single μ-1,3-bridging anionic ligands (Suckert et al., 2016[Suckert, S., Rams, M., Böhme, M., Germann, L. S., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190-18201.]). Other topologies of thio­cyanate networks are very rare.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C-bound H atoms were positioned with idealized geometry (C—H = 0.95 Å) and refined isotropically with Uiso(H) = 1.2Ueq(C) using a riding model. The absolute structure was determined and is in agreement with the selected setting.

Table 3
Experimental details

Crystal data
Chemical formula [FeCl(NCS)(C6H4N2)4]
Mr 565.83
Crystal system, space group Tetragonal, P4nc
Temperature (K) 100
a, c (Å) 10.79412 (6), 11.15065 (11)
V3) 1299.20 (2)
Z 2
Radiation type Cu Kα
μ (mm−1) 6.62
Crystal size (mm) 0.18 × 0.08 × 0.06
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.686, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11711, 1411, 1406
Rint 0.021
(sin θ/λ)max−1) 0.638
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.065, 1.14
No. of reflections 1411
No. of parameters 88
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.35
Absolute structure Flack x determined using 652 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.0059 (19)
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Chloridotetrakis(pyridine-3-carbonitrile)thiocyanatoiron(II) top
Crystal data top
[FeCl(NCS)(C6H4N2)4]Dx = 1.446 Mg m3
Mr = 565.83Cu Kα radiation, λ = 1.54184 Å
Tetragonal, P4ncCell parameters from 9200 reflections
a = 10.79412 (6) Åθ = 5.7–79.7°
c = 11.15065 (11) ŵ = 6.62 mm1
V = 1299.20 (2) Å3T = 100 K
Z = 2Block, yellow
F(000) = 5760.18 × 0.08 × 0.06 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
1411 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source1406 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.021
Detector resolution: 10.0000 pixels mm-1θmax = 79.9°, θmin = 5.7°
ω scansh = 1312
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
k = 1313
Tmin = 0.686, Tmax = 1.000l = 1413
11711 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0384P)2 + 0.3704P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.065(Δ/σ)max < 0.001
S = 1.14Δρmax = 0.34 e Å3
1411 reflectionsΔρmin = 0.34 e Å3
88 parametersAbsolute structure: Flack x determined using 652 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.0059 (19)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.5000000.5000000.61306 (6)0.01647 (19)
N10.5000000.5000000.4248 (4)0.0230 (11)
C10.5000000.5000000.3226 (6)0.0211 (10)
S10.5000000.5000000.17570 (13)0.0298 (3)
Cl10.5000000.5000000.82574 (10)0.0218 (3)
N110.37363 (17)0.33550 (16)0.59511 (18)0.0205 (4)
C110.38831 (19)0.2322 (2)0.6601 (2)0.0215 (4)
H110.4423300.2337780.7273520.026*
C120.3268 (2)0.12224 (19)0.6321 (2)0.0231 (4)
C130.2477 (2)0.1182 (2)0.5330 (2)0.0247 (5)
H130.2068770.0435600.5110510.030*
C140.2307 (2)0.2254 (2)0.4677 (3)0.0235 (5)
H140.1767200.2265670.4004580.028*
C150.2940 (2)0.3315 (2)0.5023 (2)0.0216 (4)
H150.2803130.4054600.4579850.026*
C160.3447 (2)0.0135 (2)0.7051 (3)0.0278 (5)
N120.3583 (2)0.0743 (2)0.7610 (2)0.0362 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0139 (2)0.0139 (2)0.0216 (4)0.0000.0000.000
N10.0229 (14)0.0229 (14)0.023 (2)0.0000.0000.000
C10.0117 (14)0.0117 (14)0.040 (3)0.0000.0000.000
S10.0322 (5)0.0322 (5)0.0251 (6)0.0000.0000.000
Cl10.0210 (4)0.0210 (4)0.0234 (6)0.0000.0000.000
N110.0171 (8)0.0169 (8)0.0275 (9)0.0010 (6)0.0007 (8)0.0010 (7)
C110.0167 (9)0.0202 (10)0.0276 (10)0.0000 (8)0.0006 (8)0.0007 (9)
C120.0205 (10)0.0177 (10)0.0311 (11)0.0003 (8)0.0030 (8)0.0027 (9)
C130.0220 (10)0.0205 (10)0.0315 (12)0.0043 (8)0.0017 (9)0.0028 (9)
C140.0186 (10)0.0235 (11)0.0283 (10)0.0038 (9)0.0019 (10)0.0016 (10)
C150.0174 (9)0.0198 (10)0.0276 (10)0.0011 (7)0.0037 (9)0.0015 (9)
C160.0223 (10)0.0219 (11)0.0391 (14)0.0026 (8)0.0021 (11)0.0037 (10)
N120.0326 (10)0.0273 (11)0.0488 (12)0.0001 (8)0.0037 (10)0.0107 (10)
Geometric parameters (Å, º) top
Fe1—N12.099 (4)C11—H110.9500
Fe1—Cl12.3716 (12)C11—C121.395 (3)
Fe1—N11i2.2480 (18)C12—C131.397 (3)
Fe1—N11ii2.2480 (18)C12—C161.441 (3)
Fe1—N112.2480 (18)C13—H130.9500
Fe1—N11iii2.2480 (18)C13—C141.379 (3)
N1—C11.140 (8)C14—H140.9500
C1—S11.638 (7)C14—C151.389 (3)
N11—C111.340 (3)C15—H150.9500
N11—C151.346 (3)C16—N121.144 (3)
N1—Fe1—Cl1180.0C11—N11—C15117.71 (19)
N1—Fe1—N11i84.89 (6)C15—N11—Fe1118.75 (14)
N1—Fe1—N11ii84.89 (6)N11—C11—H11119.0
N1—Fe1—N1184.89 (6)N11—C11—C12122.1 (2)
N1—Fe1—N11iii84.89 (6)C12—C11—H11119.0
N11iii—Fe1—Cl195.11 (6)C11—C12—C13119.6 (2)
N11i—Fe1—Cl195.11 (6)C11—C12—C16120.1 (2)
N11ii—Fe1—Cl195.11 (6)C13—C12—C16120.2 (2)
N11—Fe1—Cl195.11 (6)C12—C13—H13120.9
N11ii—Fe1—N11i89.546 (11)C14—C13—C12118.2 (2)
N11—Fe1—N11i89.547 (11)C14—C13—H13120.9
N11ii—Fe1—N11iii89.546 (11)C13—C14—H14120.6
N11i—Fe1—N11iii169.78 (12)C13—C14—C15118.7 (2)
N11ii—Fe1—N11169.79 (12)C15—C14—H14120.6
N11—Fe1—N11iii89.545 (11)N11—C15—C14123.6 (2)
C1—N1—Fe1180.0N11—C15—H15118.2
N1—C1—S1180.0C14—C15—H15118.2
C11—N11—Fe1122.53 (15)N12—C16—C12178.5 (3)
Symmetry codes: (i) y, x+1, z; (ii) x+1, y+1, z; (iii) y+1, x, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···N12iv0.952.683.304 (3)124
C15—H15···N12iv0.952.673.313 (3)126
Symmetry code: (iv) x+1/2, y+1/2, z1/2.
 

Acknowledgements

This work was supported by the State of Schleswig-Holstein.

References

First citationAl-Assy, W. H. & Mostafa, M. M. (2023). J. Mol. Struct. 1273, 134262.  Google Scholar
First citationBailey, R. A., Kozak, S. L., Michelsen, T. W. & Mills, W. N. (1971). Coord. Chem. Rev. 6, 407–445.  CrossRef CAS Web of Science Google Scholar
First citationBowmaker, G. A., Di Nicola, C., Pettinari, C., Skelton, B. W., Somers, N. & White, A. H. (2011). Dalton Trans. 40, 5102–5115.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCroitor, L., Cocu, M., Bulhac, I., Bourosh, P. N. Ch., Kravtsov, V., Petuhov, O. & Danilescu, O. (2021). Polyhedron, 206, 115329.  CSD CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGütlich, P., Garcia, Y. & Goodwin, H. A. (2000). Chem. Soc. Rev. 29, 171–179.  Google Scholar
First citationHogue, R. W., Singh, S. & Brooker, S. (2018). Chem. Soc. Rev. 47, 7303–7338.  CrossRef CAS Google Scholar
First citationHorng, D. N. & Lee, K. M. (1999). J. Chem. Soc. Dalton Trans. pp. 2205–2210.  CSD CrossRef Google Scholar
First citationHu, J., Liao, C., Mao, R., Zhang, J., Zhao, J. & Gu, Z. (2018). Med. Chem. Commun. 9, 337–343.  CSD CrossRef CAS Google Scholar
First citationJochim, A., Jess, I. & Näther, C. (2020a). Z. Naturforsch. B, 75, 163–172.  CSD CrossRef CAS Google Scholar
First citationJochim, A., Rams, M., Böhme, M., Ceglarska, M., Plass, W. & Näther, C. (2020b). Dalton Trans. 49, 15310–15322.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationJochim, A., Rams, M., Neumann, T., Wellm, C., Reinsch, H., Wójtowicz, G. M. & Näther, C. (2018). Eur. J. Inorg. Chem. pp. 4779–4789.  Web of Science CSD CrossRef Google Scholar
First citationKrebs, C., Foltyn, M., Jess, I., Mangelsen, S., Rams, M. & Näther, C. (2023). Inorg. Chim. Acta, 554, 121495.  Web of Science CSD CrossRef Google Scholar
First citationKrebs, C., Thiele, S., Ceglarska, M. & Näther, C. (2021). Z. Anorg. Allge Chem. 647, 2122–2129.  Web of Science CSD CrossRef CAS Google Scholar
First citationKumari, B., Adhikari, S., Matalobos, J. S. & Das, D. (2018). J. Mol. Struct. 1151, 169–176.  CSD CrossRef CAS Google Scholar
First citationKwiatek, D., Kubicki, M., Skokowski, P., Gruszczyńska, J., Lis, S. & Hnatejko, Z. (2019). J. Mol. Struct. 1178, 669–681.  CSD CrossRef CAS Google Scholar
First citationLiu, L.-J. (2010). Acta Cryst. E66, m939.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, Q., Zhu, M., Yuan, C., Feng, S., Lu, L. & Wang, Q. (2010). Cryst. Growth Des. 10, 1706–1714.  Web of Science CSD CrossRef CAS Google Scholar
First citationMachura, B., Palion, J., Mroziński, J., Kalińska, B., Amini, M., Najafpour, M. M. & Kruszynski, R. (2013). Polyhedron, 53, 132–143.  CSD CrossRef CAS Google Scholar
First citationMachura, B., Świtlicka, A. & Penkala, M. (2012). Polyhedron, 45, 221–228.  CSD CrossRef CAS Google Scholar
First citationMautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436–442.  Web of Science CSD CrossRef CAS Google Scholar
First citationMekuimemba, C. D., Conan, F., Mota, A. J., Palacios, M. A., Colacio, E. & Triki, S. (2018). Inorg. Chem. 57, 2184–2192.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNaggert, H., Rudnik, J., Kipgen, L., Bernien, M., Nickel, F., Arruda, L. M., Kuch, W., Näther, C. & Tuczek, F. (2015). J. Mater. Chem. C3, 7870–7877.  Google Scholar
First citationNäther, C., Müller-Meinhard, A. & Jess, I. (2023). Acta Cryst. E79, 1093–1099.  CSD CrossRef IUCr Journals Google Scholar
First citationOu, Y. J., Zheng, Z., Hong, X. J., Wan, L. T., Wei, L. M., Lin, X. M. & Cai, Y. P. (2014). Cryst. Growth Des. 14, 5339–5343.  CSD CrossRef CAS Google Scholar
First citationPalion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380–2388.  CAS Google Scholar
First citationParker, O. J. & Breneman, G. L. (1995). Acta Cryst. C51, 1529–1531.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837–2851.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationReedijk, J. & Groeneveld, W. L. (1967). Recl Trav. Chim. Pays Bas, 86, 1103–1126.  CrossRef CAS Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSenthil Kumar, K. & Ruben, M. (2017). Coord. Chem. Rev. 346, 176–205.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, B. C. (2019). Spectroscopy, 34, 18–21.  Google Scholar
First citationSuckert, S., Rams, M., Böhme, M., Germann, L. S., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190–18201.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSun, Y. X. (2006). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 36, 621–625.  CSD CrossRef CAS Google Scholar
First citationTang, L. Z., Xue, D., Yang, L. F. & Zhan, S. Z. (2017). Transit. Met. Chem. 42, 711–717.  CSD CrossRef CAS Google Scholar
First citationVojinović-Ješić, L. S., Radanović, M. M., Rodić, M. V., Živković-Radovanović, V., Jovanović, L. S. & Leovac, V. M. (2016). Polyhedron, 117, 526–534.  Google Scholar
First citationWerner, J., Runčevski, T., Dinnebier, R., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015a). Eur. J. Inorg. Chem. pp. 3236–3245.  Web of Science CSD CrossRef Google Scholar
First citationWerner, J., Tomkowicz, Z., Reinert, T. & Näther, C. (2015b). Eur. J. Inorg. Chem. pp. 3066–3075.  Web of Science CSD CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWöhlert, S., Fic, T., Tomkowicz, Z., Ebbinghaus, S. G., Rams, M., Haase, W. & Näther, C. (2013). Inorg. Chem. 52, 12947–12957.  Web of Science PubMed Google Scholar
First citationYu, H., Guo, S., Cheng, J. Y., Jiang, G., Li, Z., Zhai, W., Li, A., Jiang, Y. & You, Z. (2018). J. Coord. Chem. 71, 4164–4179.  CSD CrossRef CAS Google Scholar
First citationZhang, L., Feng, X., Gu, Y., Yang, T., Li, X., Yu, H. & You, Z. (2022). J. Struct. Chem. 63, 1358–1370.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds