research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of 1-hy­dr­oxy-4-prop­yl­oxy-9,10-anthra­quinone and its acetyl derivative

CROSSMARK_Color_square_no_text.svg

aDepartment of Materials Science, School of Engineering, The University of Shiga Prefecture, 2500 Hassaka-cho, Hikone, Shiga 522-8533, Japan
*Correspondence e-mail: kitamura.c@mat.usp.ac.jp

Edited by M. Nieger, University of Helsinki, Finland (Received 24 October 2017; accepted 2 November 2017; online 10 November 2017)

1-Hy­droxy-4-prop­yloxy-9,10-anthra­quinone, C17H14O4, (I), and its acetyl derivative, 4-acet­yloxy-4-prop­yloxy-9,10-anthra­quinone, C19H16O5, (II), were synthesized from the commercially available dye quinizarin. In both compounds, the anthra­quinone frameworks are close to planarity. There is a large difference in the conformation of the prop­yloxy group; the mol­ecule of (I) adopts a gauche conformation [O—C—C—C = −64.4 (2)°], although the mol­ecule of (II) takes a trans-planar conformation (zigzag) [O—C—C—C = 176.1 (3)°]. In the mol­ecule of (I), there is an intra­molecular O—H⋯O hydrogen bond. In both crystals, the mol­ecules are linked by C—H ⋯O hydrogen bonds. A difference in the mol­ecular arrangements of (I) and (II) is found along the stacking directions.

1. Chemical context

9,10-Anthra­quinone and its derivatives are important mol­ecules as dyes and pigments. As a part of a project on the study of the substitution effects of the anthra­quinone ring on optical properties in solution as well as in the solid state, we have been synthesizing new anthra­quinone derivatives. Recently, we found that the recrystallization of 1,4-diprop­yloxy-9,10-antha­quinone from hexane solution afforded two polymorphs, red prisms and yellow needles, whose crystal structures were different from each other (Kitamura et al., 2015b[Kitamura, C., Li, S., Takehara, M., Inoue, Y., Ono, K., Kawase, T. & Fujimoto, K. J. (2015b). Bull. Chem. Soc. Jpn, 88, 713-715.]). Then we became inter­ested in the effect of the asymmetric substitution pattern of 9,10-anthra­quinone because 1,4-diprop­yloxy-9,10-anthra­quinone is a symmetric mol­ecule along the direction of the mol­ecular short axis. We thought that mono-alk­oxy­lation from quinizarin (1,4-dihy­droxy-9,10-anthra­quinone) should be effective to gain asymmetric 9,10-anthra­quinones along the mol­ecular short axis. We report herein the synthesis and crystal structures of 1-hy­droxy-4-prop­yloxy-9,10-anthra­quinone (I)[link] and its acetyl derivative, 1-acet­yloxy-4-prop­yloxy-9,10-anthra­quinone (II)[link].

[Scheme 1]

2. Structural commentary

The mol­ecular structures of the title compounds, (I)[link] and (II)[link], are illustrated in Figs. 1[link] and 2[link], respectively. In both mol­ecules, the anthra­quinone frameworks are nearly planar. However, there is a large difference in the conformation of the prop­yloxy group; in compound (I)[link], the the prop­yloxy moiety adopts a gauche conformation [O2—C15—C16—C17 torsion angle = 64.4 (2)°], and in compound (II)[link], it has a trans-planar (zigzag) conformation [O2—C17—C18—C19 = 176.1 (3)°]. In (I)[link], there is an intra­molecular O—H⋯O hydrogen bond forming an S(6) ring motif (Fig. 1[link] and Table 1[link]). In compound (II)[link], the acetyl group plane (O1/O5/C15/C16) is inclined to the anthra­quinone ring system by 71.87 (12)°.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4 0.98 (3) 1.61 (3) 2.525 (2) 153 (2)
C8—H8⋯O3i 0.95 2.51 3.270 (2) 137
C15—H15A⋯O1ii 0.99 2.88 3.359 (2) 111
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x-{\script{3\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
Mol­ecular structure of compound (I)[link], showing the atom labelling and 50% probability displacement ellipsoids. The intra­molecular hydrogen bond is indicated by a dashed line.
[Figure 2]
Figure 2
Mol­ecular structure of compound (II)[link], showing the atom labelling and 50% probability displacement ellipsoids.

3. Supra­molecular features

The crystal packing structures of the title compounds, (I)[link] and (II)[link], are shown in Figs. 3[link] and 4[link], respectively. In both crystals, mol­ecules are linked by inter­molecular C—H⋯O hydrogen bonds. For compound (I)[link], C—H⋯O hydrogen bonds along the lateral direction of the mol­ecules are found (Fig. 3[link] and Table 1[link]): C8—H8⋯O3i, C15—H15A⋯O1ii [symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) x − [{3\over 2}], −y + [{1\over 2}], z − [{1\over 2}]]. In contrast, in compound (II)[link] C—H⋯O inter­actions are formed along all directions (Fig. 4[link] and Table 2[link]): C2—H2⋯O3iii, C10—H10⋯O5iv [symmetry codes: (iii) −x + 1, y − [{1\over 2}], −z + [{3\over 2}]; (iv) x, −y + [{1\over 2}], z − [{1\over 2}]] . To understand the solid-state optical properties of dyes, revealing the characteristics of the stacking patterns of neighboring mol­ecules is important. In both crystals, the anthra­quinone ring systems are arranged nearly parallel, although there is a difference in the mol­ecular arrangement of two neighboring mol­ecules along the stacking directions (Figs. 5[link]–8[link][link][link]). As shown in Figs. 5[link] and 6[link], a small π overlap of the anthra­quinone ring systems is observed for compound (II)[link], on the other hand, compound (I)[link] scarcely shows any π overlap. Regarding the overlap of the anthra­quinone ring systems, in compound (I)[link] there is a translational slip, while in compound (II)[link] there is a rotational slip. The shortest distances for overlapping non-bonded atoms in the anthra­quinone frameworks are 3.297 (2) Å (C11⋯C6v) and 3.558 (2) Å (C13⋯C4v) in compound (I)[link], and 3.363 (4) Å (C8⋯C4iv), 3.423 (4) Å (C11⋯C6iv) and 3.523 (4) Å (C10⋯C14iv) in compound (II)[link] [symmetry code: (v) x + 1, y, z]. As shown in Figs. 7[link] and 8[link], the inter­planar distances between the anthra­quinone planes [3.3895 (12) Å for compound (I)[link] and 3.396 (3) Å for compound (II)] are almost identical. The degree of overlap and the inter­planar distance between two chromophores are considered to be the two factors essential for evaluating inter­molecular inter­actions. Therefore compound (II)[link] would have stronger inter­molecular inter­actions than compound (I)[link].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O3i 0.95 2.6 3.384 (4) 140
C10—H10⋯O5ii 0.95 2.57 3.180 (4) 123
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 3]
Figure 3
Packing of the unit cell of (I)[link], showing short C—H⋯O contacts as blue lines.
[Figure 4]
Figure 4
Packing of the unit cell of (II)[link], showing short C—H⋯O contacts as blue lines.
[Figure 5]
Figure 5
Top view of two neighboring mol­ecules of compound (I)[link] along the stacking direction.
[Figure 6]
Figure 6
Top view of two neighboring mol­ecules of compound (II)[link] along the stacking direction.
[Figure 7]
Figure 7
Side view of two neighboring mol­ecules of compound (I)[link].
[Figure 8]
Figure 8
Side view of two neighboring mol­ecules of compound (II)[link].

4. Database survey

A literature search found no reports of crystal structures of 1-hy­droxy-4-prop­yloxy-9,10-anthra­quinone (I)[link] and 1-acet­yloxy-4-prop­yloxy-9,10-anthra­quinone (II)[link]. Other hy­droxy- or alk­oxy-substituted anthra­quinone compounds have been reported: 4-(3-bromo­prop­yloxy)-1-hy­droxy-9,10-anthra­quin­one (Ohira et al., 2016[Ohira, N., Takehara, M., Inoue, Y. & Kitamura, C. (2016). IUCrData, 1, x160753.]), 1,4-diprop­yloxy-9,10-anthra­quinone (Kitamura et al., 2015b[Kitamura, C., Li, S., Takehara, M., Inoue, Y., Ono, K., Kawase, T. & Fujimoto, K. J. (2015b). Bull. Chem. Soc. Jpn, 88, 713-715.]), 1,4-dihy­droxy-2,3-di­nitro-9,10-anthra­quinone (Furukawa et al., 2016[Furukawa, W., Takehara, M., Inoue, Y. & Kitamura, C. (2016). IUCrData, 1, x160906.]), 1,4-dieth­oxy-9,10-anthra­quinone (Kitamura et al., 2015a[Kitamura, C., Li, S., Takehara, M., Inoue, Y., Ono, K. & Kawase, T. (2015a). Acta Cryst. E71, o504-o505.]), 2-bromo-1,4-dihy­droxy-9,10-anthra­quinone (Furukawa et al., 2014[Furukawa, W., Takehara, M., Inoue, Y. & Kitamura, C. (2014). Acta Cryst. E70, o1130.]), 2,6-dimeth­oxy-9,10-anthra­quinone (Ohta et al., 2012a[Ohta, A., Hattori, K., Kobayashi, T., Naito, H., Kawase, T. & Kitamura, C. (2012a). Acta Cryst. E68, o2843.]), 2,6-diprop­yloxy-9,10-anthra­quinone (Ohta et al., 2012b[Ohta, A., Hattori, K., Kusumoto, Y., Kawase, T., Kobayashi, T., Naito, H. & Kitamura, C. (2012b). Chem. Lett. 41, 674-676.]), 2,3,6,7-tetra­prop­yloxy-9,10-anthra­quinone (Ohta et al., 2012b[Ohta, A., Hattori, K., Kusumoto, Y., Kawase, T., Kobayashi, T., Naito, H. & Kitamura, C. (2012b). Chem. Lett. 41, 674-676.]).

5. Synthesis and crystallization

The title compounds, (I)[link] and (II)[link], were synthesized starting from quinizarin (1,4-dihy­droxy-9,10-anthra­quinone), as shown in Fig. 9[link]

[Figure 9]
Figure 9
Reaction scheme for the synthesis of compounds (I)[link] and (II)[link].

Compound (I)[link]: A mixture of quinizarin (289 mg, 1.20 mmol), 1-bromo­propane (675 mg, 5.49 mmol), K2CO3 (185 mg, 1.34 mmol) in DMF (5 mL) was stirred at 353 K for 3 h under N2. After cooling to room temperature, water (60 mL) was added to the reaction mixture. The brown solid that precipitated was filtered off. The resulting solid was solubilized with CH2Cl2. The organic layer was washed with 1 M NaOH to remove the unreacted quinizarin, then washed sequentially with brine, dried over Na2SO4, and evaporated under reduced pressure. The residual brown solid was purified by chromatography on silica gel with an eluent of CH2Cl2. The title compound (I)[link] was obtained as an orange solid (132 mg, 46%). m.p. 387.5–389 K. 1H NMR (400 MHz, CDCl3): δ 1.14 (t, J = 7.4 Hz, 3H, CH3), 1.91–2.00 (m, 2H, CH2), 4.11 (t, J = 6.6 Hz, 2H, CH2), 7.28–7.32 (m, 1H, ArH), 7.39–7.41 (m, 1H, ArH), 7.73–7.82 (m, 2H, ArH), 8.27–8.31 (m, 2H, ArH), 13.03 (s, 1H, OH). Crystals suitable for X-ray diffraction were grown by slow evaporation of an AcOEt–hexane (>v:v = 1:10) solution.

Compound (II)[link]: A mixture of compound (I)[link] (132 mg, 0.47 mmol), K2CO3 (137 mg, 0.99 mmol) in acetic anhydride (5 mL) was stirred at 383 K for 3 h under air. After cooling to room temperature, water (50 mL) was added into the resulting mixture, then the mixture was stirred for 20 min at room temperature. The mixture was extracted with CH2Cl2. The organic layer was washed with 10% NaHCO3 solution and then brine, and dried over Na2SO4, and evaporated under reduced pressure. The residual yellow solid was purified by recrystallization from a hexa­ne–toluene (>v:v = 3:1) solution to provide title compound (II)[link] as a yellow solid (128 mg, 84%). m.p. 401–403 K. 1H NMR (400 MHz, CDCl3): δ 1.146 (t, J = 7.3 Hz, 3H, CH3), 1.93–2.02 (m, 2H, CH2), 2.48 (s, 3H, CH3), 4.13 (t, J = 6.4 Hz, 2H, CH2), 7.32–7.36 (m, 2H, ArH), 7.68–7.76 (m, 2H, ArH), 8.12–8.22 (m, 2H, ArH). Crystals suitable for X-ray diffraction were grown by slow evaporation of a hexane-toluene (>v:v = 18:1) solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The hydroxyl H atom, H1 of compound (I)[link], was refined isotropically. All other H atoms were positioned geometrically and treated as riding atoms: C—H = 0.95–0.99 Å with Uiso(H) = 1.5Ueq(C) for CH3 and 1.2Ueq(C) for CH2 and aromatic C—H.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C17H14O4 C19H16O5
Mr 282.28 324.32
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/c
Temperature (K) 200 200
a, b, c (Å) 4.7354 (3), 25.9882 (17), 11.0671 (9) 11.7730 (12), 15.514 (2), 8.9609 (10)
β (°) 102.268 (7) 111.153 (8)
V3) 1330.87 (17) 1526.4 (3)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.1 0.10
Crystal size (mm) 0.5 × 0.13 × 0.05 0.55 × 0.1 × 0.05
 
Data collection
Diffractometer R-AXIS RAPID R-AXIS RAPID
No. of measured, independent and observed [I > 2σ(I)] reflections 12176, 3029, 2035 13902, 3439, 1649
Rint 0.039 0.127
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.123, 1.02 0.070, 0.180, 0.96
No. of reflections 3029 3439
No. of parameters 195 219
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.17, −0.20 0.20, −0.24
Computer programs: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]), SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

1-Hydroxy-4-propyloxy-9,10-anthraquinone (I) top
Crystal data top
C17H14O4F(000) = 592
Mr = 282.28Dx = 1.409 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8070 reflections
a = 4.7354 (3) Åθ = 3.0–27.4°
b = 25.9882 (17) ŵ = 0.1 mm1
c = 11.0671 (9) ÅT = 200 K
β = 102.268 (7)°Needle, orange
V = 1330.87 (17) Å30.5 × 0.13 × 0.05 mm
Z = 4
Data collection top
R-AXIS RAPID
diffractometer
2035 reflections with I > 2σ(I)
Radiation source: normal sealed x-ray tubeRint = 0.039
Graphite monochromatorθmax = 27.5°, θmin = 3.0°
Detector resolution: 10 pixels mm-1h = 65
ω scansk = 3332
12176 measured reflectionsl = 1414
3029 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: mixed
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0601P)2 + 0.1583P]
where P = (Fo2 + 2Fc2)/3
3029 reflections(Δ/σ)max < 0.001
195 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.20 e Å3
0 constraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5957 (3)0.24895 (6)0.42197 (15)0.0330 (4)
C20.3444 (4)0.23736 (6)0.33536 (16)0.0358 (4)
H20.29790.20250.3140.043*
C30.1644 (3)0.27569 (6)0.28092 (15)0.0350 (4)
H30.00480.2670.22140.042*
C40.2236 (3)0.32769 (6)0.31091 (15)0.0304 (3)
C50.4712 (3)0.34058 (6)0.40077 (14)0.0288 (3)
C60.5450 (3)0.39481 (6)0.43736 (16)0.0334 (4)
C70.7983 (3)0.40429 (6)0.54037 (15)0.0319 (4)
C80.8576 (4)0.45434 (7)0.58305 (17)0.0409 (4)
H80.73730.48190.54650.049*
C91.0910 (4)0.46402 (8)0.67839 (18)0.0497 (5)
H91.13140.49830.70650.06*
C101.2665 (4)0.42437 (8)0.73352 (19)0.0512 (5)
H101.42560.43140.79960.061*
C111.2107 (4)0.37463 (7)0.69259 (17)0.0434 (4)
H111.33080.34730.73060.052*
C120.9770 (3)0.36437 (6)0.59508 (15)0.0321 (4)
C130.9209 (3)0.31127 (6)0.55027 (15)0.0315 (4)
C140.6585 (3)0.30036 (6)0.45649 (14)0.0296 (3)
C150.1815 (3)0.35323 (7)0.15327 (15)0.0375 (4)
H15A0.32070.32960.17980.045*
H15B0.10160.3360.08810.045*
C160.3300 (4)0.40232 (7)0.10439 (17)0.0445 (4)
H16A0.39970.41980.1720.053*
H16B0.50090.39390.03880.053*
C170.1379 (4)0.43891 (8)0.0523 (2)0.0580 (5)
H17A0.07180.42220.01610.087*
H17B0.02960.44810.11720.087*
H17C0.24690.47010.02210.087*
O10.7687 (3)0.20912 (4)0.46962 (12)0.0422 (3)
O20.0480 (2)0.36605 (4)0.25698 (11)0.0374 (3)
O30.4064 (3)0.43123 (4)0.38701 (13)0.0522 (4)
O41.0922 (2)0.27624 (4)0.59342 (11)0.0396 (3)
H10.930 (6)0.2263 (10)0.525 (2)0.086 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0370 (8)0.0307 (8)0.0344 (9)0.0001 (7)0.0146 (7)0.0027 (6)
C20.0412 (9)0.0306 (8)0.0372 (10)0.0049 (7)0.0122 (7)0.0038 (7)
C30.0325 (8)0.0403 (9)0.0326 (9)0.0083 (7)0.0076 (7)0.0063 (7)
C40.0279 (7)0.0336 (8)0.0299 (9)0.0001 (7)0.0066 (6)0.0004 (6)
C50.0283 (7)0.0311 (7)0.0276 (8)0.0018 (6)0.0073 (6)0.0001 (6)
C60.0332 (8)0.0307 (8)0.0352 (9)0.0002 (7)0.0049 (7)0.0006 (7)
C70.0314 (8)0.0344 (8)0.0300 (9)0.0035 (7)0.0068 (7)0.0012 (7)
C80.0418 (9)0.0356 (8)0.0436 (11)0.0034 (8)0.0051 (8)0.0033 (7)
C90.0521 (11)0.0469 (10)0.0457 (12)0.0109 (9)0.0003 (9)0.0103 (8)
C100.0474 (10)0.0597 (11)0.0396 (11)0.0105 (10)0.0059 (8)0.0062 (9)
C110.0381 (9)0.0520 (10)0.0354 (10)0.0002 (8)0.0026 (7)0.0033 (8)
C120.0305 (8)0.0371 (8)0.0283 (9)0.0009 (7)0.0056 (6)0.0028 (7)
C130.0310 (8)0.0357 (8)0.0290 (9)0.0006 (7)0.0095 (6)0.0058 (6)
C140.0301 (7)0.0316 (7)0.0286 (8)0.0008 (7)0.0099 (6)0.0017 (6)
C150.0286 (8)0.0520 (10)0.0294 (9)0.0023 (8)0.0003 (7)0.0052 (7)
C160.0337 (9)0.0589 (11)0.0376 (11)0.0077 (9)0.0002 (7)0.0031 (8)
C170.0502 (11)0.0622 (12)0.0572 (14)0.0067 (10)0.0019 (10)0.0147 (10)
O10.0472 (7)0.0307 (6)0.0489 (8)0.0055 (6)0.0106 (6)0.0054 (5)
O20.0331 (6)0.0388 (6)0.0357 (7)0.0023 (5)0.0028 (5)0.0018 (5)
O30.0524 (8)0.0329 (6)0.0595 (9)0.0053 (6)0.0150 (6)0.0012 (6)
O40.0382 (6)0.0392 (6)0.0394 (7)0.0067 (5)0.0038 (5)0.0076 (5)
Geometric parameters (Å, º) top
C1—O11.3552 (19)C10—C111.376 (3)
C1—C21.393 (2)C10—H100.95
C1—C141.404 (2)C11—C121.397 (2)
C2—C31.365 (2)C11—H110.95
C2—H20.95C12—C131.471 (2)
C3—C41.406 (2)C13—O41.2449 (18)
C3—H30.95C13—C141.468 (2)
C4—O21.3531 (18)C15—O21.4422 (19)
C4—C51.407 (2)C15—C161.501 (2)
C5—C141.424 (2)C15—H15A0.99
C5—C61.487 (2)C15—H15B0.99
C6—O31.2172 (19)C16—C171.512 (3)
C6—C71.489 (2)C16—H16A0.99
C7—C81.392 (2)C16—H16B0.99
C7—C121.393 (2)C17—H17A0.98
C8—C91.379 (3)C17—H17B0.98
C8—H80.95C17—H17C0.98
C9—C101.382 (3)O1—H10.98 (3)
C9—H90.95
O1—C1—C2117.38 (14)C10—C11—H11120
O1—C1—C14123.06 (15)C12—C11—H11120
C2—C1—C14119.56 (15)C7—C12—C11120.12 (15)
C3—C2—C1120.52 (15)C7—C12—C13120.16 (14)
C3—C2—H2119.7C11—C12—C13119.72 (15)
C1—C2—H2119.7O4—C13—C14120.98 (14)
C2—C3—C4121.52 (15)O4—C13—C12120.02 (14)
C2—C3—H3119.2C14—C13—C12118.98 (14)
C4—C3—H3119.2C1—C14—C5120.30 (14)
O2—C4—C3122.08 (14)C1—C14—C13118.34 (14)
O2—C4—C5118.55 (13)C5—C14—C13121.36 (13)
C3—C4—C5119.36 (15)O2—C15—C16107.86 (14)
C4—C5—C14118.68 (13)O2—C15—H15A110.1
C4—C5—C6122.03 (14)C16—C15—H15A110.1
C14—C5—C6119.28 (14)O2—C15—H15B110.1
O3—C6—C5122.65 (15)C16—C15—H15B110.1
O3—C6—C7119.34 (14)H15A—C15—H15B108.4
C5—C6—C7118.00 (14)C15—C16—C17113.45 (15)
C8—C7—C12119.21 (15)C15—C16—H16A108.9
C8—C7—C6119.08 (15)C17—C16—H16A108.9
C12—C7—C6121.71 (14)C15—C16—H16B108.9
C9—C8—C7120.09 (17)C17—C16—H16B108.9
C9—C8—H8120H16A—C16—H16B107.7
C7—C8—H8120C16—C17—H17A109.5
C8—C9—C10120.70 (17)C16—C17—H17B109.5
C8—C9—H9119.6H17A—C17—H17B109.5
C10—C9—H9119.6C16—C17—H17C109.5
C11—C10—C9119.97 (18)H17A—C17—H17C109.5
C11—C10—H10120H17B—C17—H17C109.5
C9—C10—H10120C1—O1—H1102.8 (14)
C10—C11—C12119.90 (17)C4—O2—C15118.00 (12)
O1—C1—C2—C3178.11 (14)C8—C7—C12—C13179.10 (14)
C14—C1—C2—C32.2 (2)C6—C7—C12—C130.9 (2)
C1—C2—C3—C40.7 (2)C10—C11—C12—C70.9 (3)
C2—C3—C4—O2179.53 (15)C10—C11—C12—C13179.01 (16)
C2—C3—C4—C51.2 (2)C7—C12—C13—O4175.01 (14)
O2—C4—C5—C14179.17 (13)C11—C12—C13—O44.9 (2)
C3—C4—C5—C141.5 (2)C7—C12—C13—C146.2 (2)
O2—C4—C5—C60.3 (2)C11—C12—C13—C14173.89 (15)
C3—C4—C5—C6179.55 (14)O1—C1—C14—C5178.51 (14)
C4—C5—C6—O34.5 (3)C2—C1—C14—C51.9 (2)
C14—C5—C6—O3174.43 (16)O1—C1—C14—C131.2 (2)
C4—C5—C6—C7175.19 (14)C2—C1—C14—C13178.45 (14)
C14—C5—C6—C75.9 (2)C4—C5—C14—C10.0 (2)
O3—C6—C7—C84.9 (2)C6—C5—C14—C1178.97 (14)
C5—C6—C7—C8174.80 (14)C4—C5—C14—C13179.65 (14)
O3—C6—C7—C12175.16 (16)C6—C5—C14—C130.7 (2)
C5—C6—C7—C125.2 (2)O4—C13—C14—C13.8 (2)
C12—C7—C8—C90.0 (3)C12—C13—C14—C1174.90 (13)
C6—C7—C8—C9179.96 (16)O4—C13—C14—C5175.84 (14)
C7—C8—C9—C100.7 (3)C12—C13—C14—C55.4 (2)
C8—C9—C10—C110.6 (3)O2—C15—C16—C1764.4 (2)
C9—C10—C11—C120.2 (3)C3—C4—O2—C159.3 (2)
C8—C7—C12—C110.8 (2)C5—C4—O2—C15171.45 (14)
C6—C7—C12—C11179.20 (15)C16—C15—O2—C4175.86 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O40.98 (3)1.61 (3)2.5249 (18)153 (2)
C8—H8···O3i0.952.513.270 (2)137
C15—H15A···O1ii0.992.883.359 (2)111
Symmetry codes: (i) x+1, y+1, z+1; (ii) x3/2, y+1/2, z1/2.
1-Acetyloxy-4-propyloxy-9,10-anthraquinone (II) top
Crystal data top
C19H16O5F(000) = 680
Mr = 324.32Dx = 1.411 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6030 reflections
a = 11.7730 (12) Åθ = 3.2–27.5°
b = 15.514 (2) ŵ = 0.10 mm1
c = 8.9609 (10) ÅT = 200 K
β = 111.153 (8)°Needle, yellow
V = 1526.4 (3) Å30.55 × 0.1 × 0.05 mm
Z = 4
Data collection top
R-AXIS RAPID
diffractometer
1649 reflections with I > 2σ(I)
Radiation source: normal sealed x-ray tubeRint = 0.127
Graphite monochromatorθmax = 27.5°, θmin = 3.2°
Detector resolution: 10 pixels mm-1h = 1515
ω scansk = 2020
13902 measured reflectionsl = 1011
3439 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0805P)2]
where P = (Fo2 + 2Fc2)/3
3439 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.24 e Å3
0 constraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.73574 (17)0.04963 (13)0.5929 (3)0.0468 (6)
O20.42969 (17)0.16690 (14)0.7620 (3)0.0483 (6)
O30.53107 (19)0.29687 (14)0.6807 (3)0.0540 (6)
O40.8033 (2)0.08785 (16)0.4753 (3)0.0702 (8)
O50.9066 (2)0.0077 (2)0.7902 (3)0.0765 (9)
C10.6653 (2)0.0082 (2)0.6418 (4)0.0408 (7)
C20.5870 (2)0.0265 (2)0.7073 (4)0.0442 (8)
H20.58710.08690.72510.053*
C30.5088 (3)0.0255 (2)0.7471 (4)0.0455 (8)
H30.45430.00040.79120.055*
C40.5070 (2)0.1141 (2)0.7248 (4)0.0422 (8)
C50.5900 (2)0.1519 (2)0.6615 (3)0.0372 (7)
C60.5986 (2)0.2472 (2)0.6488 (3)0.0402 (7)
C70.6959 (2)0.2810 (2)0.5962 (3)0.0377 (7)
C80.7145 (3)0.3696 (2)0.5977 (4)0.0444 (8)
H80.66510.40710.63230.053*
C90.8044 (3)0.4036 (2)0.5493 (4)0.0468 (8)
H90.81580.46420.55010.056*
C100.8774 (3)0.3499 (2)0.4999 (4)0.0485 (8)
H100.93960.37330.4680.058*
C110.8596 (3)0.2620 (2)0.4971 (4)0.0447 (8)
H110.9090.2250.46160.054*
C120.7697 (2)0.2272 (2)0.5461 (4)0.0388 (7)
C130.7508 (3)0.1335 (2)0.5408 (4)0.0426 (8)
C140.6682 (2)0.0963 (2)0.6175 (3)0.0379 (7)
C150.8571 (3)0.0477 (2)0.6697 (5)0.0495 (8)
C160.9202 (3)0.1012 (2)0.5859 (4)0.0603 (10)
H16A0.94950.06420.51870.09*
H16B0.86330.1440.51870.09*
H16C0.98940.13080.66490.09*
C170.3442 (3)0.1282 (2)0.8232 (4)0.0472 (8)
H17A0.38790.10010.92740.057*
H17B0.29490.08410.74760.057*
C180.2633 (3)0.1994 (2)0.8430 (4)0.0536 (9)
H18A0.22490.23010.74020.064*
H18B0.31260.24130.92360.064*
C190.1645 (3)0.1607 (2)0.8970 (5)0.0711 (12)
H19A0.11760.11780.81860.107*
H19B0.10990.20660.90550.107*
H19C0.20280.13291.00150.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0506 (11)0.0288 (13)0.0650 (15)0.0007 (9)0.0258 (12)0.0081 (10)
O20.0496 (12)0.0379 (14)0.0699 (15)0.0019 (10)0.0365 (12)0.0032 (11)
O30.0596 (12)0.0321 (14)0.0861 (17)0.0101 (11)0.0454 (13)0.0047 (12)
O40.1004 (18)0.0341 (15)0.109 (2)0.0120 (13)0.0781 (18)0.0053 (14)
O50.0604 (14)0.077 (2)0.080 (2)0.0213 (14)0.0106 (15)0.0307 (17)
C10.0420 (15)0.0303 (18)0.0516 (19)0.0030 (13)0.0187 (16)0.0029 (15)
C20.0465 (15)0.0286 (19)0.057 (2)0.0033 (13)0.0179 (17)0.0010 (14)
C30.0460 (16)0.038 (2)0.059 (2)0.0036 (14)0.0260 (17)0.0047 (15)
C40.0385 (15)0.041 (2)0.0477 (19)0.0008 (14)0.0166 (16)0.0000 (15)
C50.0378 (14)0.0309 (18)0.0437 (18)0.0024 (12)0.0159 (15)0.0034 (13)
C60.0415 (15)0.0325 (19)0.049 (2)0.0023 (14)0.0195 (16)0.0016 (14)
C70.0410 (15)0.0293 (18)0.0436 (18)0.0054 (13)0.0163 (15)0.0024 (13)
C80.0529 (17)0.0319 (19)0.053 (2)0.0041 (14)0.0251 (17)0.0013 (15)
C90.0514 (17)0.0310 (19)0.060 (2)0.0044 (14)0.0222 (17)0.0013 (15)
C100.0493 (17)0.041 (2)0.061 (2)0.0054 (15)0.0267 (18)0.0030 (16)
C110.0459 (16)0.037 (2)0.056 (2)0.0022 (14)0.0250 (17)0.0027 (15)
C120.0427 (15)0.0307 (19)0.0438 (18)0.0034 (13)0.0166 (15)0.0037 (14)
C130.0493 (16)0.0350 (19)0.050 (2)0.0052 (14)0.0261 (17)0.0005 (15)
C140.0401 (14)0.0304 (18)0.0435 (18)0.0024 (13)0.0155 (15)0.0003 (13)
C150.0510 (18)0.032 (2)0.066 (2)0.0078 (15)0.0228 (19)0.0013 (17)
C160.060 (2)0.047 (3)0.080 (3)0.0102 (17)0.033 (2)0.0139 (19)
C170.0456 (16)0.041 (2)0.064 (2)0.0031 (14)0.0316 (17)0.0025 (16)
C180.0505 (17)0.045 (2)0.077 (2)0.0002 (15)0.0368 (19)0.0024 (17)
C190.071 (2)0.047 (3)0.122 (3)0.0025 (18)0.067 (3)0.004 (2)
Geometric parameters (Å, º) top
O1—C151.344 (4)C9—C101.380 (4)
O1—C11.396 (3)C9—H90.95
O2—C41.353 (3)C10—C111.378 (4)
O2—C171.440 (3)C10—H100.95
O3—C61.213 (3)C11—C121.393 (4)
O4—C131.220 (3)C11—H110.95
O5—C151.198 (4)C12—C131.469 (4)
C1—C21.370 (4)C13—C141.494 (4)
C1—C141.387 (4)C15—C161.486 (4)
C2—C31.364 (4)C16—H16A0.98
C2—H20.95C16—H16B0.98
C3—C41.389 (4)C16—H16C0.98
C3—H30.95C17—C181.510 (4)
C4—C51.421 (4)C17—H17A0.99
C5—C141.417 (4)C17—H17B0.99
C5—C61.488 (4)C18—C191.535 (4)
C6—C71.484 (4)C18—H18A0.99
C7—C81.390 (4)C18—H18B0.99
C7—C121.390 (4)C19—H19A0.98
C8—C91.385 (4)C19—H19B0.98
C8—H80.95C19—H19C0.98
C15—O1—C1117.9 (2)C7—C12—C13120.0 (3)
C4—O2—C17117.8 (3)C11—C12—C13119.8 (3)
C2—C1—C14121.0 (3)O4—C13—C12119.5 (3)
C2—C1—O1116.7 (3)O4—C13—C14121.6 (3)
C14—C1—O1122.2 (2)C12—C13—C14118.9 (2)
C3—C2—C1120.0 (3)C1—C14—C5120.1 (3)
C3—C2—H2120C1—C14—C13120.6 (3)
C1—C2—H2120C5—C14—C13119.3 (3)
C2—C3—C4121.6 (3)O5—C15—O1123.7 (3)
C2—C3—H3119.2O5—C15—C16125.1 (3)
C4—C3—H3119.2O1—C15—C16111.2 (3)
O2—C4—C3122.7 (3)C15—C16—H16A109.5
O2—C4—C5118.0 (3)C15—C16—H16B109.5
C3—C4—C5119.3 (3)H16A—C16—H16B109.5
C14—C5—C4117.9 (3)C15—C16—H16C109.5
C14—C5—C6121.0 (2)H16A—C16—H16C109.5
C4—C5—C6121.0 (3)H16B—C16—H16C109.5
O3—C6—C7119.8 (3)O2—C17—C18107.3 (3)
O3—C6—C5123.0 (3)O2—C17—H17A110.3
C7—C6—C5117.2 (2)C18—C17—H17A110.3
C8—C7—C12118.8 (3)O2—C17—H17B110.3
C8—C7—C6118.9 (3)C18—C17—H17B110.3
C12—C7—C6122.3 (3)H17A—C17—H17B108.5
C9—C8—C7120.6 (3)C17—C18—C19109.5 (3)
C9—C8—H8119.7C17—C18—H18A109.8
C7—C8—H8119.7C19—C18—H18A109.8
C10—C9—C8120.3 (3)C17—C18—H18B109.8
C10—C9—H9119.8C19—C18—H18B109.8
C8—C9—H9119.8H18A—C18—H18B108.2
C11—C10—C9119.7 (3)C18—C19—H19A109.5
C11—C10—H10120.1C18—C19—H19B109.5
C9—C10—H10120.1H19A—C19—H19B109.5
C10—C11—C12120.3 (3)C18—C19—H19C109.5
C10—C11—H11119.8H19A—C19—H19C109.5
C12—C11—H11119.8H19B—C19—H19C109.5
C7—C12—C11120.2 (3)
C15—O1—C1—C2115.1 (3)C8—C7—C12—C110.6 (4)
C15—O1—C1—C1468.5 (4)C6—C7—C12—C11179.7 (3)
C14—C1—C2—C31.2 (5)C8—C7—C12—C13179.0 (3)
O1—C1—C2—C3175.2 (3)C6—C7—C12—C131.3 (4)
C1—C2—C3—C40.8 (5)C10—C11—C12—C70.9 (5)
C17—O2—C4—C31.7 (4)C10—C11—C12—C13179.3 (3)
C17—O2—C4—C5178.8 (3)C7—C12—C13—O4169.4 (3)
C2—C3—C4—O2179.4 (3)C11—C12—C13—O49.0 (5)
C2—C3—C4—C51.1 (5)C7—C12—C13—C1411.2 (4)
O2—C4—C5—C14177.9 (3)C11—C12—C13—C14170.4 (3)
C3—C4—C5—C142.6 (4)C2—C1—C14—C50.3 (5)
O2—C4—C5—C64.8 (4)O1—C1—C14—C5176.6 (3)
C3—C4—C5—C6174.7 (3)C2—C1—C14—C13177.9 (3)
C14—C5—C6—O3177.8 (3)O1—C1—C14—C131.7 (5)
C4—C5—C6—O35.1 (5)C4—C5—C14—C12.2 (4)
C14—C5—C6—C73.0 (4)C6—C5—C14—C1175.0 (3)
C4—C5—C6—C7174.2 (3)C4—C5—C14—C13176.1 (3)
O3—C6—C7—C85.4 (4)C6—C5—C14—C136.7 (4)
C5—C6—C7—C8173.8 (3)O4—C13—C14—C111.5 (5)
O3—C6—C7—C12174.8 (3)C12—C13—C14—C1167.9 (3)
C5—C6—C7—C125.9 (4)O4—C13—C14—C5166.7 (3)
C12—C7—C8—C90.4 (5)C12—C13—C14—C513.9 (4)
C6—C7—C8—C9179.9 (3)C1—O1—C15—O510.3 (5)
C7—C8—C9—C100.5 (5)C1—O1—C15—C16169.8 (3)
C8—C9—C10—C110.7 (5)C4—O2—C17—C18175.8 (3)
C9—C10—C11—C120.9 (5)O2—C17—C18—C19176.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i0.952.63.384 (4)140
C10—H10···O5ii0.952.573.180 (4)123
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y+1/2, z1/2.
 

Funding information

This work was supported financially by JSPS KAKENHI Grant Number 15K05482.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationFurukawa, W., Takehara, M., Inoue, Y. & Kitamura, C. (2014). Acta Cryst. E70, o1130.  CSD CrossRef IUCr Journals
First citationFurukawa, W., Takehara, M., Inoue, Y. & Kitamura, C. (2016). IUCrData, 1, x160906.
First citationKitamura, C., Li, S., Takehara, M., Inoue, Y., Ono, K. & Kawase, T. (2015a). Acta Cryst. E71, o504–o505.  Web of Science CSD CrossRef IUCr Journals
First citationKitamura, C., Li, S., Takehara, M., Inoue, Y., Ono, K., Kawase, T. & Fujimoto, K. J. (2015b). Bull. Chem. Soc. Jpn, 88, 713–715.  Web of Science CSD CrossRef CAS
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals
First citationOhira, N., Takehara, M., Inoue, Y. & Kitamura, C. (2016). IUCrData, 1, x160753.
First citationOhta, A., Hattori, K., Kobayashi, T., Naito, H., Kawase, T. & Kitamura, C. (2012a). Acta Cryst. E68, o2843.  CSD CrossRef IUCr Journals
First citationOhta, A., Hattori, K., Kusumoto, Y., Kawase, T., Kobayashi, T., Naito, H. & Kitamura, C. (2012b). Chem. Lett. 41, 674–676.  Web of Science CSD CrossRef CAS
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds