organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2718-o2719

1-{[Dimeth­yl(phen­yl)sil­yl]meth­yl}-3-(2-phenyl­eth­yl)-1H-benzimidazol-3-ium bromide monohydrate

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Chemistry, Faculty of Arts and Sciences, Ínönü University, 44280 Malatya, Turkey, cDepartment of Chemistry, Faculty of Education, Adiyaman University, 02040 Adiyaman, Turkey, and dDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 30 July 2012; accepted 7 August 2012; online 15 August 2012)

The title compound, C24H27N2Si+·Br·H2O, was synthesized from 1-(dimethyl­phenyl­silylmeth­yl)-1H-benzimidazole and (2-bromo­eth­yl)benzene in dimethyl­formamide. The benzimidazole ring system is nearly planar, with a maximum deviation of 0.015 (5) Å, and forms dihedral angles of 73.0 (3) and 39.6 (2)°, with the phenyl rings. In the crystal, mol­ecules are linked by O—H⋯Br, C—H⋯Br and C—H⋯O hydrogen bonds. In addition, the structure features ππ stacking inter­actions, with a face-to-face separation of 3.644 (3) Å between parallel benzimidazole ring systems.

Related literature

For general background to benzimidazole derivatives, see: Lukevics et al. (2001[Lukevics, E., Arsenyan, P., Shestakova, I., Domracheva, I., Nesterova, A. & Pudova, O. (2001). Eur. J. Med. Chem. 36, 507-515.]); Tavman et al. (2005[Tavman, A., Birteksöz, S. & Ötük, G. (2005). Folia Mirobio. 50, 467-472.]); Küçükbay et al. (1995[Küçükbay, H., Çetinkaya, E. & Durmaz, R. (1995). Arzneim. Forsch. Drug Res. 45, 1331-1334.], 2004[Küçükbay, H., Durmaz, R., Okuyucu, N., Günal, S. & Kazaz, C. (2004). Arzneim. Forsch. Drug Res. 54, 64-68.], 2010[Küçükbay, H., Günal, S., Orhan, E. & Durmaz, R. (2010). Asian J. Chem. 22, 7376-7382.], 2011[Küçükbay, H., Yılmaz, Ü., Şireci, N. & Önganer, A. N. (2011). Turk. J. Chem. 35, 561-571.]); Yılmaz et al. (2011[Yılmaz, Ü., Küçükbay, H., Şireci, N., Akkurt, M., Günal, S., Durmaz, R. & Tahir, M. N. (2011). Appl. Organomet. Chem. 25, 366-373.]); Çetinkaya et al. (1996[Çetinkaya, B., Çetinkaya, E., Küçükbay, H. & Durmaz, R. (1996). Arzneim. Forsch. Drug Res. 46, 821-823.]). For similar structures, see: Akkurt et al. (2010a[Akkurt, M., Çelik, Í., Küçükbay, H., Şireci, N. & Büyükgüngör, O. (2010a). Acta Cryst. E66, o1770-o1771.],b[Akkurt, M., Yalçın, Ş. P., Şireci, N., Küçükbay, H. & Tahir, M. N. (2010b). Acta Cryst. E66, m253-m254.]); Baktır et al. (2010[Baktır, Z., Akkurt, M., Şireci, N. & Küçükbay, H. (2010). Acta Cryst. E66, o2393-o2394.]).

[Scheme 1]

Experimental

Crystal data
  • C24H27N2Si+·Br·H2O

  • Mr = 469.48

  • Monoclinic, P 21 /c

  • a = 15.1750 (11) Å

  • b = 8.9097 (6) Å

  • c = 17.9440 (14) Å

  • β = 96.235 (6)°

  • V = 2411.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.77 mm−1

  • T = 296 K

  • 0.26 × 0.20 × 0.13 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.656, Tmax = 0.803

  • 19519 measured reflections

  • 5536 independent reflections

  • 3023 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.173

  • S = 1.03

  • 5536 reflections

  • 244 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.82 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
OW1—HW1⋯Br1 0.83 (6) 2.57 (7) 3.365 (5) 160 (6)
OW1—HW2⋯Br1i 0.83 (6) 2.56 (7) 3.384 (5) 175 (6)
C7—H7⋯Br1 0.93 2.85 3.597 (5) 138
C8—H8A⋯Br1ii 0.97 2.89 3.822 (5) 160
C16—H16B⋯OW1iii 0.97 2.55 3.494 (7) 164
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y-1, z; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Heterocyclic compounds play an important role in biological systems and in many industrial fields. One of the these type heterocyclic compounds, benzimidazole is also an important pharmacophore in new drug designed and synthesized (Tavman et al., 2005; Küçükbay et al., 2004). Benzimidazol containing compounds o display a wide range of pharmacological activities, and are used for therapeutic purposes as anti-fungal, anti-bacterial, anti-helmintic, hypotensive, vasodilator, spasmolytic and anti-ulser activities. We also investigated their some anti-microbial activities (Küçükbay et al., 1995; Çetinkaya et al., 1996; Küçükbay et al., 2010; Küçükbay et al., 2011; Yılmaz et al., 2011). Alkylsilyl substituted benzimidazole derivatives exhibit important in vitro cytotoxic activity. For example, 1-(3-trimethylsilylpropyl)benzimidazole inhibits carcinoma S180 tumour growth in dose 1 mg.kg-1 by 62% (on ICR mice) (Lukevics et al., 2001). The objective of this study is to synthesize and to elucidate the crystal structure of a new silyl benzimidazole compound.

In the title compound (I), (Fig. 1), the benzimidazole ring system (N1/N2/C1–C7) is nearly planar with a maximum deviation of 0.015 (5) Å for C6. The dihedral angle between the two terminal phenyl rings (C10–C15 and C19–C24) is 77.1 (3)°. The orientation of the two phenyl rings towards the benzimidazole-ring is remarkable [73.0 (3)° and 39.6 (2)°, respectively]. The values of the bond lengths and bond angles in (I) are in normal range, and they are in a good agreement with those found in similar compounds (Akkurt et al., 2010a,b; Baktır et al., 2010). The Si atom adopts distorted tetrahedral geometries in (I) and the angles around the Si atoms vary from 108.4 (3)° to 112.12 (17)°.

In the crystal, molecules are linked by O···H···Br, C—H···Br and C—H···O hydrogen bonds (Table 1 and Fig. 2). Furthermore, face-to-face π-π stacking interactions between parallel benzimidazole ring systems [Fig.3; Cg1···Cg2(1 - x, 1 - y, -z) = 3.644 (3) Å; where Cg1 and Cg2 are the centroids of the N1/N2/C1/C6/C7 and C1–C6 rings, respectively] help to the stabilization of the crystal structure.

Related literature top

For general background to benzimidazole derivatives, see: Lukevics et al. (2001); Tavman et al. (2005); Küçükbay et al. (1995, 2004, 2010, 2011); Yılmaz et al. (2011); Çetinkaya et al. (1996). For similar structures, see: Akkurt et al. (2010a,b); Baktır et al. (2010).

Experimental top

A mixture of 1-(dimethylphenylsilylmethyl)benzimidazole (1.34 g, 5.0 mmol) and (2-bromoethyl)benzene (0.7 ml, 5.1 mmol) in dimethylformamide (5 ml) was refluxed for 3 h. The mixture was then cooled and the volatiles were removed under vacuum. The residue was crystallized from a dimethylformamide/ethanol (1:1). White crystals of the title compound (2.05 g, 87%) were obtained, mp 415–416 K: υ(C=N) = 1557 cm-1. Anal. found: C 61.12, H 6.21, N 5.56%. Calculated for C24H29BrN2OSi: C 61.40, H 6.23, N 5.97%. 1H NMR (δ, DMSO-d6): 9.51 (s, 1H, NCHN), 8.02–7.99 (m, 2H, C6H4 ), 7.84–7.81 (m, 2H, C6H4 ), 7.62–7.19 (m, 10H, C6H5 phenethyl and 5H C6H5Si), 4.78 (t, 2H, CH2 phenethyl, J= 7.2 Hz), 4.38 (s, 2H, CH2Si), 3,20 (t, 2H, CH2 phenethyl, J= 7.2 Hz) and 0.31 (s, 6H, Si(CH3)2). 13C NMR (δ, DMSO-d6): 141.3 (NCHN), 137.3, 134.7, 134.3, 131.9, 131.1, 130.5, 129.2, 129.1, 128.5, 127.4, 126.9, 126.5, 114.3 and 114.0 (C6H4—ArH; C6H5– phenethyl and C6H5Si), 47.9 (CH2 phenethyl), 37.9 (CH2Si) 35.1 (CH2 phenethyl), and -3.9 (Si(CH3)2).

Refinement top

The water H atoms were located from a difference Fourier map and refined with distance restraints of O—H = 0.83 (2) Å and H···H = 1.35 (2) Å, and with Uiso(H) = 1.5 Ueq(O). The H atoms bonded to carbon atoms were positioned geometrically, with C—H = 0.93 Å (aromatic), 0.96 Å (methyl) and 0.97 Å (methylene) H atoms, respectively, and refined as riding with Uiso(H) = 1.5 Ueq(C) for the methyl groups and Uiso(H) = 1.2 Ueq(C) for others groups. Nine poorly fitted reflections (-2 0 2, -2 1 1, 7 2 0, 3 2 1, 0 1 6, 16 0 0, -4 0 2, -2 4 4, -2 1 7) were omitted from the refinement.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
The molecule of the title compound (I), showing the atom labelling scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

View of the packing and hydrogen bonding interactions of (I) along the a axis in the unitcell. All hydrogen atoms not involved in hydrogen bonding, two phenyl rings and two ethyl groups have been omitted for clarity.

A view of the intermolecular face-to-face ππ stacking interactions between parallel benzimidazole ring systems, along the b axis in the crystal structure of (I). All hydrogen atoms, bromide ions and water molecules has been omitted for clarity. [Cg1 and Cg2 are the centroids of the N1/N2/C1/C6/C7 and C1–C6 rings, respectively. Symmetry code: (i) = 1 - x, 1 - y, -z].
1-{[Dimethyl(phenyl)silyl]methyl}-3-(2-phenylethyl)-1H-benzimidazol- 3-ium bromide monohydrate top
Crystal data top
C24H27N2Si+·Br·H2OF(000) = 976
Mr = 469.48Dx = 1.293 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 16623 reflections
a = 15.1750 (11) Åθ = 1.9–28.0°
b = 8.9097 (6) ŵ = 1.77 mm1
c = 17.9440 (14) ÅT = 296 K
β = 96.235 (6)°Prism, colourless
V = 2411.8 (3) Å30.26 × 0.20 × 0.13 mm
Z = 4
Data collection top
Stoe IPDS 2
diffractometer
5536 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus3023 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.074
Detector resolution: 6.67 pixels mm-1θmax = 27.7°, θmin = 2.3°
ω scansh = 1919
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1111
Tmin = 0.656, Tmax = 0.803l = 2322
19519 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0795P)2 + 0.0123P]
where P = (Fo2 + 2Fc2)/3
5536 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.82 e Å3
3 restraintsΔρmin = 0.53 e Å3
Crystal data top
C24H27N2Si+·Br·H2OV = 2411.8 (3) Å3
Mr = 469.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.1750 (11) ŵ = 1.77 mm1
b = 8.9097 (6) ÅT = 296 K
c = 17.9440 (14) Å0.26 × 0.20 × 0.13 mm
β = 96.235 (6)°
Data collection top
Stoe IPDS 2
diffractometer
5536 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
3023 reflections with I > 2σ(I)
Tmin = 0.656, Tmax = 0.803Rint = 0.074
19519 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0693 restraints
wR(F2) = 0.173H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.82 e Å3
5536 reflectionsΔρmin = 0.53 e Å3
244 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.78140 (10)0.80539 (15)0.01520 (8)0.0622 (5)
N10.6284 (2)0.4424 (4)0.1286 (2)0.0494 (11)
N20.6390 (2)0.6253 (4)0.0489 (2)0.0504 (11)
C10.6113 (3)0.3800 (5)0.0576 (3)0.0485 (14)
C20.5887 (3)0.2349 (5)0.0337 (3)0.0615 (19)
C30.5739 (4)0.2140 (6)0.0423 (3)0.071 (2)
C40.5800 (4)0.3300 (6)0.0928 (3)0.0676 (19)
C50.6016 (3)0.4728 (6)0.0695 (3)0.0598 (17)
C60.6175 (3)0.4968 (5)0.0065 (3)0.0479 (14)
C70.6444 (3)0.5879 (5)0.1201 (3)0.0550 (17)
C80.6288 (3)0.3604 (6)0.1995 (3)0.0611 (17)
C90.7112 (3)0.3908 (4)0.2537 (2)0.092 (3)
C100.7978 (3)0.3669 (4)0.2238 (2)0.0805 (14)
C110.8658 (3)0.4673 (4)0.2459 (2)0.0805 (14)
C120.9508 (5)0.4492 (9)0.2211 (5)0.103 (3)
C130.9606 (5)0.3318 (9)0.1751 (5)0.104 (3)
C140.8930 (5)0.2323 (9)0.1538 (5)0.105 (3)
C150.8145 (5)0.2532 (7)0.1779 (3)0.0805 (14)
C160.6585 (3)0.7756 (5)0.0205 (3)0.0600 (16)
C170.8383 (5)0.8082 (7)0.1119 (3)0.088 (3)
C180.7921 (2)0.9879 (4)0.03326 (19)0.090 (3)
C190.8198 (2)0.6457 (4)0.03916 (19)0.0629 (17)
C200.7951 (2)0.6338 (4)0.11654 (19)0.073 (2)
C210.8174 (4)0.5106 (8)0.1566 (4)0.087 (3)
C220.8647 (5)0.3947 (8)0.1216 (4)0.093 (3)
C230.8905 (5)0.4028 (7)0.0465 (5)0.102 (3)
C240.8673 (4)0.5258 (7)0.0051 (4)0.085 (3)
Br10.59570 (4)0.93585 (6)0.20869 (3)0.0720 (2)
OW10.5856 (3)0.6540 (5)0.3323 (3)0.0960 (19)
H20.583900.156700.067400.0740*
H30.559300.118500.060600.0850*
H40.569000.310300.143800.0810*
H50.605500.550400.103700.0720*
H70.657600.654800.159500.0660*
H8A0.625000.253600.189000.0740*
H8B0.576700.388600.223200.0740*
H9A0.708800.493900.270700.1100*
H9B0.709100.326800.297200.1100*
H110.855500.547100.277200.0970*
H120.997200.514500.235800.1230*
H131.015100.317500.157100.1240*
H140.902400.151500.122800.1260*
H150.769000.186600.162500.0970*
H16A0.637200.851000.053200.0720*
H16B0.626900.788700.029000.0720*
H17A0.817200.891800.138700.1320*
H17B0.901000.817900.110100.1320*
H17C0.826100.716500.136900.1320*
H18A0.771501.067300.003400.1350*
H18B0.757100.985700.081200.1350*
H18C0.853101.004900.040300.1350*
H200.762900.711200.141300.0870*
H210.800200.505900.207900.1050*
H220.879200.311200.148900.1110*
H230.923800.325500.022800.1230*
H240.883700.528000.046400.1030*
HW10.589 (5)0.705 (8)0.294 (3)0.1450*
HW20.542 (4)0.598 (8)0.325 (4)0.1450*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0692 (9)0.0560 (7)0.0610 (9)0.0105 (7)0.0047 (7)0.0011 (6)
N10.052 (2)0.0482 (18)0.049 (2)0.0002 (17)0.0098 (16)0.0020 (17)
N20.051 (2)0.0471 (18)0.054 (2)0.0046 (16)0.0102 (18)0.0005 (17)
C10.038 (2)0.055 (2)0.053 (3)0.0007 (18)0.007 (2)0.005 (2)
C20.058 (3)0.053 (3)0.074 (4)0.003 (2)0.010 (3)0.004 (2)
C30.074 (4)0.064 (3)0.074 (4)0.009 (3)0.004 (3)0.021 (3)
C40.067 (3)0.082 (4)0.054 (3)0.003 (3)0.007 (3)0.015 (3)
C50.056 (3)0.069 (3)0.055 (3)0.002 (2)0.009 (2)0.004 (2)
C60.037 (2)0.055 (2)0.052 (3)0.0032 (19)0.0064 (19)0.003 (2)
C70.059 (3)0.048 (3)0.059 (3)0.001 (2)0.011 (2)0.007 (2)
C80.064 (3)0.067 (3)0.054 (3)0.010 (2)0.014 (2)0.001 (2)
C90.100 (5)0.103 (5)0.073 (4)0.004 (4)0.014 (4)0.014 (3)
C100.088 (3)0.081 (2)0.070 (2)0.0050 (18)0.0026 (19)0.0080 (16)
C110.088 (3)0.081 (2)0.070 (2)0.0050 (18)0.0026 (19)0.0080 (16)
C120.074 (5)0.111 (6)0.122 (6)0.013 (4)0.005 (4)0.024 (5)
C130.070 (4)0.119 (6)0.120 (6)0.014 (4)0.003 (4)0.017 (5)
C140.095 (5)0.107 (5)0.116 (6)0.003 (4)0.020 (4)0.015 (4)
C150.088 (3)0.081 (2)0.070 (2)0.0050 (18)0.0026 (19)0.0080 (16)
C160.074 (3)0.046 (2)0.061 (3)0.004 (2)0.012 (3)0.002 (2)
C170.098 (5)0.087 (4)0.076 (4)0.004 (3)0.010 (3)0.011 (3)
C180.112 (5)0.068 (3)0.092 (5)0.018 (3)0.019 (4)0.015 (3)
C190.054 (3)0.069 (3)0.065 (3)0.017 (2)0.004 (2)0.002 (3)
C200.062 (4)0.086 (4)0.071 (4)0.004 (3)0.012 (3)0.000 (3)
C210.072 (4)0.114 (5)0.077 (4)0.008 (4)0.012 (3)0.018 (4)
C220.081 (5)0.093 (4)0.105 (6)0.011 (4)0.016 (4)0.031 (4)
C230.110 (6)0.080 (4)0.114 (6)0.012 (4)0.001 (5)0.010 (4)
C240.101 (5)0.076 (4)0.075 (4)0.004 (3)0.007 (3)0.005 (3)
Br10.0904 (4)0.0581 (3)0.0677 (4)0.0022 (3)0.0101 (3)0.0092 (3)
OW10.100 (4)0.092 (3)0.092 (3)0.004 (2)0.008 (3)0.005 (2)
Geometric parameters (Å, º) top
Si1—C161.896 (5)C22—C231.364 (11)
Si1—C171.853 (6)C23—C241.391 (10)
Si1—C181.859 (4)C2—H20.9300
Si1—C191.854 (4)C3—H30.9300
OW1—HW10.83 (6)C4—H40.9300
OW1—HW20.83 (6)C5—H50.9300
N1—C81.467 (6)C7—H70.9300
N1—C11.388 (6)C8—H8B0.9700
N1—C71.331 (6)C8—H8A0.9700
N2—C61.394 (6)C9—H9B0.9700
N2—C71.314 (6)C9—H9A0.9700
N2—C161.474 (6)C11—H110.9300
C1—C21.393 (6)C12—H120.9300
C1—C61.397 (7)C13—H130.9300
C2—C31.371 (8)C14—H140.9300
C3—C41.384 (8)C15—H150.9300
C4—C51.368 (8)C16—H16B0.9700
C5—C61.376 (8)C16—H16A0.9700
C8—C91.523 (6)C17—H17A0.9600
C9—C101.488 (6)C17—H17B0.9600
C10—C111.391 (6)C17—H17C0.9600
C10—C151.347 (7)C18—H18A0.9600
C11—C121.419 (9)C18—H18C0.9600
C12—C131.351 (12)C18—H18B0.9600
C13—C141.378 (11)C20—H200.9300
C14—C151.324 (11)C21—H210.9300
C19—C241.392 (7)C22—H220.9300
C19—C201.402 (5)C23—H230.9300
C20—C211.374 (8)C24—H240.9300
C21—C221.370 (10)
C16—Si1—C17108.4 (3)C6—C5—H5121.00
C16—Si1—C18106.39 (18)N2—C7—H7124.00
C16—Si1—C19106.61 (19)N1—C7—H7124.00
C17—Si1—C18111.8 (2)N1—C8—H8A109.00
C17—Si1—C19111.2 (2)C9—C8—H8A109.00
C18—Si1—C19112.12 (17)C9—C8—H8B109.00
HW1—OW1—HW2109 (7)H8A—C8—H8B108.00
C1—N1—C8125.4 (4)N1—C8—H8B109.00
C7—N1—C8127.0 (4)C8—C9—H9A108.00
C1—N1—C7107.7 (4)C10—C9—H9A108.00
C6—N2—C7108.0 (4)C10—C9—H9B108.00
C6—N2—C16127.0 (4)C8—C9—H9B108.00
C7—N2—C16124.9 (4)H9A—C9—H9B107.00
N1—C1—C2132.0 (5)C12—C11—H11120.00
N1—C1—C6106.6 (4)C10—C11—H11120.00
C2—C1—C6121.4 (5)C11—C12—H12122.00
C1—C2—C3116.1 (5)C13—C12—H12122.00
C2—C3—C4122.3 (5)C12—C13—H13119.00
C3—C4—C5121.7 (5)C14—C13—H13119.00
C4—C5—C6117.3 (5)C15—C14—H14120.00
N2—C6—C1106.4 (4)C13—C14—H14120.00
N2—C6—C5132.4 (4)C14—C15—H15119.00
C1—C6—C5121.2 (4)C10—C15—H15119.00
N1—C7—N2111.4 (4)Si1—C16—H16A109.00
N1—C8—C9113.0 (4)Si1—C16—H16B109.00
C8—C9—C10116.1 (3)N2—C16—H16B109.00
C9—C10—C11117.5 (3)H16A—C16—H16B108.00
C11—C10—C15118.4 (5)N2—C16—H16A109.00
C9—C10—C15124.1 (5)Si1—C17—H17B109.00
C10—C11—C12120.6 (5)Si1—C17—H17C109.00
C11—C12—C13116.4 (7)H17A—C17—H17B109.00
C12—C13—C14122.7 (7)H17A—C17—H17C110.00
C13—C14—C15119.2 (7)H17B—C17—H17C110.00
C10—C15—C14122.8 (7)Si1—C17—H17A109.00
Si1—C16—N2112.3 (3)Si1—C18—H18A109.00
Si1—C19—C20120.9 (3)Si1—C18—H18C110.00
Si1—C19—C24122.4 (4)H18A—C18—H18B109.00
C20—C19—C24116.5 (4)H18A—C18—H18C110.00
C19—C20—C21121.6 (4)H18B—C18—H18C109.00
C20—C21—C22120.6 (6)Si1—C18—H18B109.00
C21—C22—C23119.5 (7)C21—C20—H20119.00
C22—C23—C24120.5 (7)C19—C20—H20119.00
C19—C24—C23121.3 (6)C20—C21—H21120.00
C1—C2—H2122.00C22—C21—H21120.00
C3—C2—H2122.00C23—C22—H22120.00
C2—C3—H3119.00C21—C22—H22120.00
C4—C3—H3119.00C22—C23—H23120.00
C5—C4—H4119.00C24—C23—H23120.00
C3—C4—H4119.00C19—C24—H24119.00
C4—C5—H5121.00C23—C24—H24119.00
C18—Si1—C19—C24140.9 (4)C2—C1—C6—C50.1 (7)
C17—Si1—C19—C20170.9 (3)C2—C1—C6—N2178.6 (4)
C17—Si1—C16—N267.2 (4)N1—C1—C6—C5178.2 (4)
C16—Si1—C19—C2071.1 (3)C1—C2—C3—C40.7 (8)
C19—Si1—C16—N252.7 (4)C2—C3—C4—C50.2 (9)
C17—Si1—C19—C2415.0 (5)C3—C4—C5—C60.3 (8)
C18—Si1—C16—N2172.5 (3)C4—C5—C6—N2178.7 (5)
C16—Si1—C19—C24103.0 (4)C4—C5—C6—C10.3 (7)
C18—Si1—C19—C2044.9 (3)N1—C8—C9—C1053.3 (5)
C7—N1—C1—C60.4 (5)C8—C9—C10—C11141.8 (4)
C8—N1—C1—C22.1 (7)C8—C9—C10—C1539.3 (6)
C1—N1—C8—C9130.7 (4)C11—C10—C15—C140.8 (8)
C7—N1—C8—C949.0 (6)C9—C10—C11—C12178.4 (5)
C8—N1—C1—C6179.9 (4)C15—C10—C11—C120.6 (7)
C1—N1—C7—N20.0 (5)C9—C10—C15—C14178.1 (6)
C7—N1—C1—C2178.2 (5)C10—C11—C12—C130.7 (10)
C8—N1—C7—N2179.8 (4)C11—C12—C13—C141.1 (12)
C16—N2—C6—C1175.7 (4)C12—C13—C14—C151.3 (13)
C16—N2—C6—C55.8 (8)C13—C14—C15—C101.2 (11)
C16—N2—C7—N1176.0 (4)Si1—C19—C20—C21175.0 (4)
C7—N2—C6—C5178.0 (5)C24—C19—C20—C210.5 (6)
C6—N2—C7—N10.3 (5)Si1—C19—C24—C23175.9 (5)
C7—N2—C6—C10.5 (5)C20—C19—C24—C231.5 (8)
C6—N2—C16—Si192.5 (5)C19—C20—C21—C220.2 (8)
C7—N2—C16—Si183.1 (5)C20—C21—C22—C230.7 (10)
N1—C1—C2—C3178.1 (5)C21—C22—C23—C241.6 (11)
C6—C1—C2—C30.6 (7)C22—C23—C24—C192.0 (10)
N1—C1—C6—N20.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—HW1···Br10.83 (6)2.57 (7)3.365 (5)160 (6)
OW1—HW2···Br1i0.83 (6)2.56 (7)3.384 (5)175 (6)
C7—H7···Br10.932.853.597 (5)138
C8—H8A···Br1ii0.972.893.822 (5)160
C16—H16B···OW1iii0.972.553.494 (7)164
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y1, z; (iii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC24H27N2Si+·Br·H2O
Mr469.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)15.1750 (11), 8.9097 (6), 17.9440 (14)
β (°) 96.235 (6)
V3)2411.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.77
Crystal size (mm)0.26 × 0.20 × 0.13
Data collection
DiffractometerStoe IPDS 2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.656, 0.803
No. of measured, independent and
observed [I > 2σ(I)] reflections
19519, 5536, 3023
Rint0.074
(sin θ/λ)max1)0.654
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.173, 1.03
No. of reflections5536
No. of parameters244
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.82, 0.53

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—HW1···Br10.83 (6)2.57 (7)3.365 (5)160 (6)
OW1—HW2···Br1i0.83 (6)2.56 (7)3.384 (5)175 (6)
C7—H7···Br10.932.853.597 (5)138
C8—H8A···Br1ii0.972.893.822 (5)160
C16—H16B···OW1iii0.972.553.494 (7)164
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y1, z; (iii) x, y+3/2, z1/2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund). HK and NŞ also thank the İnönü University Research Fund (project No. 2011/144) and the Adıyaman University Research Fund (ADYÜBAP-EFBAP2011–0008) for financial support of this study.

References

First citationAkkurt, M., Çelik, Í., Küçükbay, H., Şireci, N. & Büyükgüngör, O. (2010a). Acta Cryst. E66, o1770–o1771.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Yalçın, Ş. P., Şireci, N., Küçükbay, H. & Tahir, M. N. (2010b). Acta Cryst. E66, m253–m254.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBaktır, Z., Akkurt, M., Şireci, N. & Küçükbay, H. (2010). Acta Cryst. E66, o2393–o2394.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÇetinkaya, B., Çetinkaya, E., Küçükbay, H. & Durmaz, R. (1996). Arzneim. Forsch. Drug Res. 46, 821–823.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKüçükbay, H., Çetinkaya, E. & Durmaz, R. (1995). Arzneim. Forsch. Drug Res. 45, 1331–1334.  CAS Google Scholar
First citationKüçükbay, H., Durmaz, R., Okuyucu, N., Günal, S. & Kazaz, C. (2004). Arzneim. Forsch. Drug Res. 54, 64–68.  Google Scholar
First citationKüçükbay, H., Günal, S., Orhan, E. & Durmaz, R. (2010). Asian J. Chem. 22, 7376–7382.  Google Scholar
First citationKüçükbay, H., Yılmaz, Ü., Şireci, N. & Önganer, A. N. (2011). Turk. J. Chem. 35, 561–571.  Google Scholar
First citationLukevics, E., Arsenyan, P., Shestakova, I., Domracheva, I., Nesterova, A. & Pudova, O. (2001). Eur. J. Med. Chem. 36, 507–515.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTavman, A., Birteksöz, S. & Ötük, G. (2005). Folia Mirobio. 50, 467-472.  Web of Science CrossRef CAS Google Scholar
First citationYılmaz, Ü., Küçükbay, H., Şireci, N., Akkurt, M., Günal, S., Durmaz, R. & Tahir, M. N. (2011). Appl. Organomet. Chem. 25, 366–373.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2718-o2719
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds