metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-hy­dr­oxy­ethanaminium) tetra­chloridopalladate(II)

aDepartment of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA, and bDepartment of Chemistry, University of Johannesburg, Auckland Park Kingsway Campus, Auckland Park 2006, South Africa
*Correspondence e-mail: iguzei@chem.wisc.edu

(Received 26 October 2010; accepted 5 November 2010; online 13 November 2010)

In the title compound, (C2H8NO)2[PdCl4], 2-hy­droxy­ethanaminium cations and tetra­chloridopalladate(II) dianions crystallize in a 2:1 ratio with the anion residing on a crystallographic inversion center. The cations and anions are linked in a complex three-dimensional framework by three types of strong hydrogen bonds (N—H⋯O, N—H⋯Cl, and O—H⋯Cl), which form various ring and chain patterns of up to the ternary graph-set level.

Related literature

For the hydrolysis of imines in Schiff base first-row transition metal complexes, see: Chattopadhyay et al. (2007[Chattopadhyay, S., Brew, M. D. G. & Gosh, A. (2007). Polyhedron, 26, 3513-3522.]); Czaun et al. (2010[Czaun, M., Nelana, S. M., Hasselgren, C., Jagner, S., Oskarsson, A., Lisensky, G., Darkwa, J. & Nordlander, E. (2010). Inorg. Chim. Acta, 363, 3002-3112.]); Guzei et al. (2010[Guzei, I. A., Spencer, L. C., Ainooson, M. K. & Darkwa, J. (2010). Acta Cryst. C66, m89-m96.]); Lee et al. (1948[Lee, T. S., Kolthoff, I. M. & Leussing, D. L. (1948). J. Am. Chem. Soc. 70, 3596-3600.]). For the use of Schiff base first-row transition metal complexes as amine protecting groups, see: Deng et al. (2002[Deng, W.-P., Wong, K. A. & Kirk, K. L. (2002). Tetrahedron Asymmetry, 13, 1135-1140.]); Kurita (2001[Kurita, K. (2001). Prog. Polym. Sci. 26, 1921-1971.]); Shelley et al. (1999[Shelley, M. D., Hartley, L., Fish, R. G., Groundwater, P., Morgan, J. J. G., Mort, D., Mason, M. & Evans, A. (1999). Cancer Lett. 135, 171-180.]). For geometrical parameter checks, see: Bruno et al. (2004[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]). For R factor comparisons, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • (C2H8NO)2[PdCl4]

  • Mr = 372.39

  • Monoclinic, P 21 /c

  • a = 8.9401 (4) Å

  • b = 8.1621 (4) Å

  • c = 8.5921 (4) Å

  • β = 103.445 (2)°

  • V = 609.78 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.37 mm−1

  • T = 100 K

  • 0.30 × 0.10 × 0.06 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: analytical (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.536, Tmax = 0.871

  • 14744 measured reflections

  • 1851 independent reflections

  • 1769 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.012

  • wR(F2) = 0.028

  • S = 0.98

  • 1851 reflections

  • 62 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pd1—Cl2 2.3074 (2)
Pd1—Cl1 2.3119 (3)
Cl2i—Pd1—Cl1 89.409 (8)
Cl2—Pd1—Cl1 90.591 (9)
Symmetry code: (i) -x+2, -y+2, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1ii 0.91 1.97 2.8370 (12) 158
O1—H1⋯Cl1iii 0.84 2.35 3.1869 (8) 179
N1—H1C⋯Cl2 0.91 2.30 3.2048 (9) 170
Symmetry codes: (ii) -x+1, -y+1, -z+1; (iii) x, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL, OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and FCF_filter (Guzei 2007[Guzei, I. A. (2007). In-house Crystallographic Programs: FCF_filter, modiCIFer. Molecular Structure Laboratory, University of Wisconsin-Madison, Madison, Wisconsin, USA.]); molecular graphics: SHELXTL and DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL, publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and modiCIFer (Guzei, 2007[Guzei, I. A. (2007). In-house Crystallographic Programs: FCF_filter, modiCIFer. Molecular Structure Laboratory, University of Wisconsin-Madison, Madison, Wisconsin, USA.]).

Supporting information


Comment top

Hydrolysis of imines in Schiff base first row transition metal complexes is now common (Chattopadhyay et al. 2007, Czaun et al., 2010; Guzei et al., 2010; Lee et al., 1948) These metal complexes have been used to protect amines by first converting them to imines followed by metal assisted hydrolysis back to the amine (Deng et al., 2002; Kurita, 2001; Shelley et al., 1999). However, hydrolysis of imines by second row transition metal complexes is very rare. In an attempt to use 2,4-di-tert-butyl-6-{(2-hydroxyethylimino)methyl}phenol to prepare a palladium complex, we isolated the ammonium chloride salt of tetrachloropalladate, [C2H8NO]2+[PdCl4]2-, a result of the hydrolysis of the imine ligand.

The ionic title compound (I) consists of bis(2-hydroxyethanaminium) cations and tetrachloro-palladium(II) dianions in a 2:1 ratio. The tetrachloro-palladium(II) dianion resides on a crystallographic inversion center. The geometrical parameters of (I) are typical as confirmed by a Mogul geometrical check (Bruno et al., 2004). Three types of hydrogen bonds, N1—H1A···O1,(a), N1—H1C···Cl2,(b), and O1—H1···Cl1,(c) form a three dimensional framework. The most easily visualized graph set motifs in the network include the primary ring pattern R22(10) a->a->, three different secondary patterns formed by bonds b and c, the chain C22(9) b c, the chain C44(18) bcc and the ring R44(18) bcbc, and the ternary chain pattern C33(8) acb (Bernstein et al., 1995).

The R-factor of the structural determination of (I) is a mere 1.18%. Data mining of the Cambridge Structural Database (Cambridge Structural Database, CSD, version 1.12, August 2010 update; Allen, 2002) found only 113 reported structural determinations with lower R-factors. This extremely low R-factor along with the unusually low standard uncertainties on the bond distances (fourth decimal place) and angles (third decimal place) are indicative of the high precision of this structure.

Related literature top

For the hydrolysis of imines in Schiff base first-row transition metal complexes, see: Chattopadhyay et al. (2007); Czaun et al. (2010); Guzei et al. (2010); Lee et al. (1948). For the use of Schiff base first-row transition metal complexes as amine protecting groups, see: Deng et al. (2002); Kurita (2001); Shelley et al. (1999). For geometrical parameter checks, see: Bruno et al. (2004). For R factor comparisons, see: Allen (2002). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

A solution of [PdCl2(NCMe)2] (0.11 g, 0.429 mmol) in dichloromethane (5 ml) was added to a solution of 2,4-di-tert-butyl-6-[(2-hydroxy-ethylimino)methyl]-phenol (0.12 g, 0.429 mmol) in dichloromethane (5 ml). The mixture was stirred at room temperature for 16 h, filtered, and the filtrate evaporated to dryness. Recrystallization of the residue from dichloromethane-hexane gave brown crystals over several days. Yield: 0.10 g (58%).

Refinement top

All H-atoms were placed in idealized locations with an O—H distance of 0.84 Å, N—H distances of 0.91 Å, and C—H distances of 0.99 Å. All H-atoms were refined as riding with appropriate thermal displacement coefficients Uiso(H) = 1.5 times Ueq(bearing atom) for the hydrogen atoms attached to oxygen atoms or 1.2 times Ueq(bearing atom) for all hydrogen atoms attached to nitrogen or carbon atoms.

Structure description top

Hydrolysis of imines in Schiff base first row transition metal complexes is now common (Chattopadhyay et al. 2007, Czaun et al., 2010; Guzei et al., 2010; Lee et al., 1948) These metal complexes have been used to protect amines by first converting them to imines followed by metal assisted hydrolysis back to the amine (Deng et al., 2002; Kurita, 2001; Shelley et al., 1999). However, hydrolysis of imines by second row transition metal complexes is very rare. In an attempt to use 2,4-di-tert-butyl-6-{(2-hydroxyethylimino)methyl}phenol to prepare a palladium complex, we isolated the ammonium chloride salt of tetrachloropalladate, [C2H8NO]2+[PdCl4]2-, a result of the hydrolysis of the imine ligand.

The ionic title compound (I) consists of bis(2-hydroxyethanaminium) cations and tetrachloro-palladium(II) dianions in a 2:1 ratio. The tetrachloro-palladium(II) dianion resides on a crystallographic inversion center. The geometrical parameters of (I) are typical as confirmed by a Mogul geometrical check (Bruno et al., 2004). Three types of hydrogen bonds, N1—H1A···O1,(a), N1—H1C···Cl2,(b), and O1—H1···Cl1,(c) form a three dimensional framework. The most easily visualized graph set motifs in the network include the primary ring pattern R22(10) a->a->, three different secondary patterns formed by bonds b and c, the chain C22(9) b c, the chain C44(18) bcc and the ring R44(18) bcbc, and the ternary chain pattern C33(8) acb (Bernstein et al., 1995).

The R-factor of the structural determination of (I) is a mere 1.18%. Data mining of the Cambridge Structural Database (Cambridge Structural Database, CSD, version 1.12, August 2010 update; Allen, 2002) found only 113 reported structural determinations with lower R-factors. This extremely low R-factor along with the unusually low standard uncertainties on the bond distances (fourth decimal place) and angles (third decimal place) are indicative of the high precision of this structure.

For the hydrolysis of imines in Schiff base first-row transition metal complexes, see: Chattopadhyay et al. (2007); Czaun et al. (2010); Guzei et al. (2010); Lee et al. (1948). For the use of Schiff base first-row transition metal complexes as amine protecting groups, see: Deng et al. (2002); Kurita (2001); Shelley et al. (1999). For geometrical parameter checks, see: Bruno et al. (2004). For R factor comparisons, see: Allen (2002). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and FCF_filter (Guzei 2007); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010) and modiCIFer (Guzei, 2007).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I). The thermal ellipsoids are shown at 50% probability level. Hydrogen bonds are shown with dashed lines. Symmetry transformations used to generate equivalent atoms: (i) -x + 2,-y + 2,-z + 1.
Bis(2-hydroxyethanaminium) tetrachloridopalladate(II) top
Crystal data top
(C2H8NO)2[PdCl4]F(000) = 368
Mr = 372.39Dx = 2.028 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9951 reflections
a = 8.9401 (4) Åθ = 3.4–30.6°
b = 8.1621 (4) ŵ = 2.37 mm1
c = 8.5921 (4) ÅT = 100 K
β = 103.445 (2)°Block, orange
V = 609.78 (5) Å30.30 × 0.10 × 0.06 mm
Z = 2
Data collection top
Bruker SMART APEXII area-detector
diffractometer
1769 reflections with I > 2σ(I)
Mirror optics monochromatorRint = 0.024
0.60° ω and 0.6° φ scansθmax = 30.6°, θmin = 3.4°
Absorption correction: analytical
(SADABS; Bruker, 2001)
h = 1212
Tmin = 0.536, Tmax = 0.871k = 1111
14744 measured reflectionsl = 1212
1851 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.012Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.028H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0111P)2 + 0.3119P]
where P = (Fo2 + 2Fc2)/3
1851 reflections(Δ/σ)max = 0.001
62 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
(C2H8NO)2[PdCl4]V = 609.78 (5) Å3
Mr = 372.39Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.9401 (4) ŵ = 2.37 mm1
b = 8.1621 (4) ÅT = 100 K
c = 8.5921 (4) Å0.30 × 0.10 × 0.06 mm
β = 103.445 (2)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
1851 independent reflections
Absorption correction: analytical
(SADABS; Bruker, 2001)
1769 reflections with I > 2σ(I)
Tmin = 0.536, Tmax = 0.871Rint = 0.024
14744 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0120 restraints
wR(F2) = 0.028H-atom parameters constrained
S = 0.98Δρmax = 0.43 e Å3
1851 reflectionsΔρmin = 0.50 e Å3
62 parameters
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd11.00001.00000.50000.00979 (3)
Cl10.73683 (3)0.96899 (3)0.46100 (3)0.01355 (5)
Cl21.04022 (3)0.81392 (3)0.70777 (3)0.01331 (5)
O10.57008 (9)0.31533 (9)0.44982 (9)0.01677 (15)
H10.61470.22450.45270.025*
N10.74116 (10)0.59194 (11)0.58009 (10)0.01328 (16)
H1A0.64910.64490.55700.016*
H1C0.81770.66500.61850.016*
H1B0.74040.51350.65520.016*
C10.62509 (12)0.42371 (14)0.34444 (12)0.01645 (19)
H1E0.54380.50410.29870.020*
H1D0.64870.36000.25510.020*
C20.76792 (13)0.51374 (13)0.43181 (13)0.01585 (19)
H2A0.85490.43590.46040.019*
H2B0.79510.59880.36100.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.00874 (5)0.00986 (5)0.01049 (5)0.00005 (3)0.00164 (3)0.00051 (3)
Cl10.01008 (10)0.01379 (10)0.01650 (11)0.00018 (8)0.00250 (8)0.00104 (8)
Cl20.01270 (10)0.01301 (10)0.01342 (10)0.00109 (8)0.00143 (8)0.00129 (7)
O10.0146 (3)0.0126 (3)0.0239 (4)0.0011 (3)0.0062 (3)0.0002 (3)
N10.0124 (4)0.0126 (4)0.0146 (4)0.0007 (3)0.0028 (3)0.0006 (3)
C10.0148 (4)0.0202 (5)0.0141 (4)0.0002 (4)0.0029 (4)0.0009 (4)
C20.0136 (4)0.0199 (5)0.0153 (4)0.0011 (4)0.0059 (4)0.0009 (4)
Geometric parameters (Å, º) top
Pd1—Cl22.3074 (2)N1—H1B0.9100
Pd1—Cl12.3119 (3)C1—C21.5127 (15)
O1—C11.4322 (13)C1—H1E0.9900
O1—H10.8400C1—H1D0.9900
N1—C21.4932 (13)C2—H2A0.9900
N1—H1A0.9100C2—H2B0.9900
N1—H1C0.9100
Cl2i—Pd1—Cl189.409 (8)C2—C1—H1E109.4
Cl2—Pd1—Cl190.591 (9)O1—C1—H1D109.4
C1—O1—H1109.5C2—C1—H1D109.4
C2—N1—H1A109.5H1E—C1—H1D108.0
C2—N1—H1C109.5N1—C2—C1110.29 (8)
H1A—N1—H1C109.5N1—C2—H2A109.6
C2—N1—H1B109.5C1—C2—H2A109.6
H1A—N1—H1B109.5N1—C2—H2B109.6
H1C—N1—H1B109.5C1—C2—H2B109.6
O1—C1—C2111.14 (8)H2A—C2—H2B108.1
O1—C1—H1E109.4
O1—C1—C2—N151.28 (11)
Symmetry code: (i) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1ii0.911.972.8370 (12)158
O1—H1···Cl1iii0.842.353.1869 (8)179
N1—H1C···Cl20.912.303.2048 (9)170
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formula(C2H8NO)2[PdCl4]
Mr372.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.9401 (4), 8.1621 (4), 8.5921 (4)
β (°) 103.445 (2)
V3)609.78 (5)
Z2
Radiation typeMo Kα
µ (mm1)2.37
Crystal size (mm)0.30 × 0.10 × 0.06
Data collection
DiffractometerBruker SMART APEXII area-detector
Absorption correctionAnalytical
(SADABS; Bruker, 2001)
Tmin, Tmax0.536, 0.871
No. of measured, independent and
observed [I > 2σ(I)] reflections
14744, 1851, 1769
Rint0.024
(sin θ/λ)max1)0.715
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.012, 0.028, 0.98
No. of reflections1851
No. of parameters62
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.50

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and FCF_filter (Guzei 2007), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2009), publCIF (Westrip, 2010) and modiCIFer (Guzei, 2007).

Selected geometric parameters (Å, º) top
Pd1—Cl22.3074 (2)Pd1—Cl12.3119 (3)
Cl2i—Pd1—Cl189.409 (8)Cl2—Pd1—Cl190.591 (9)
Symmetry code: (i) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1ii0.911.972.8370 (12)157.8
O1—H1···Cl1iii0.842.353.1869 (8)179.3
N1—H1C···Cl20.912.303.2048 (9)169.9
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x, y1, z.
 

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationChattopadhyay, S., Brew, M. D. G. & Gosh, A. (2007). Polyhedron, 26, 3513–3522.  Web of Science CSD CrossRef CAS Google Scholar
First citationCzaun, M., Nelana, S. M., Hasselgren, C., Jagner, S., Oskarsson, A., Lisensky, G., Darkwa, J. & Nordlander, E. (2010). Inorg. Chim. Acta, 363, 3002–3112.  Web of Science CSD CrossRef Google Scholar
First citationDeng, W.-P., Wong, K. A. & Kirk, K. L. (2002). Tetrahedron Asymmetry, 13, 1135-1140.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGuzei, I. A. (2007). In-house Crystallographic Programs: FCF_filter, modiCIFer. Molecular Structure Laboratory, University of Wisconsin-Madison, Madison, Wisconsin, USA.  Google Scholar
First citationGuzei, I. A., Spencer, L. C., Ainooson, M. K. & Darkwa, J. (2010). Acta Cryst. C66, m89–m96.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKurita, K. (2001). Prog. Polym. Sci. 26, 1921–1971.  Web of Science CrossRef CAS Google Scholar
First citationLee, T. S., Kolthoff, I. M. & Leussing, D. L. (1948). J. Am. Chem. Soc. 70, 3596–3600.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShelley, M. D., Hartley, L., Fish, R. G., Groundwater, P., Morgan, J. J. G., Mort, D., Mason, M. & Evans, A. (1999). Cancer Lett. 135, 171–180.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds