metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[tetra­aqua­manganese(II)]-μ-5-carboxyl­ato-1-carboxyl­ato­methyl-2-oxidopyridinium-κ2O5:O1]

aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China
*Correspondence e-mail: sky37@zjnu.edu.cn

(Received 23 June 2011; accepted 30 June 2011; online 6 July 2011)

In the title coordination polymer, [Mn(C8H5NO5)(H2O)4]n, the MnII atom is coordinated by two carboxyl­ate O atoms from two 5-carboxyl­ato-1-carboxyl­atomethyl-2-oxidopyridinium (L2−) ligands and by four water mol­ecules in a distorted octa­hedral geometry. The L2− ligands bridge the Mn atoms into an infinite chain motif along [100]; the chains are further inter­linked by O—H⋯O hydrogen bonds into a three-dimensional supra­molecular net.

Related literature

For the use of ligands involving pyridyl and carboxyl­ate groups in the construction of novel complexes, see: Zhang et al. (2003[Zhang, B., Zhu, X. Q., Lu, J. Y., He, J., Wang, P. & Cheng, J. P. (2003). J. Org. Chem. 68, 3295-3298.]); Jiang et al. (2010[Jiang, M. X., Zhan, C. H., Feng, Y. L. & Lan, Y. Z. (2010). Cryst. Growth Des. 10, 92-98.]); Yang et al. (2010[Yang, Q., Zhao, J. P., Hu, B. W., Zhang, X. F. & Bu, X. H. (2010). Inorg. Chem. 49, 3746-3751.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C8H5NO5)(H2O)4]

  • Mr = 322.13

  • Monoclinic, P 21 /n

  • a = 5.1537 (2) Å

  • b = 21.2008 (9) Å

  • c = 10.9727 (4) Å

  • β = 99.182 (2)°

  • V = 1183.54 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.16 mm−1

  • T = 293 K

  • 0.21 × 0.18 × 0.13 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.787, Tmax = 0.858

  • 11341 measured reflections

  • 2680 independent reflections

  • 2217 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.075

  • S = 1.03

  • 2680 reflections

  • 196 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O2i 0.86 (1) 1.83 (1) 2.6833 (18) 171 (2)
O1W—H1WA⋯O1i 0.86 (1) 2.67 (2) 3.307 (2) 132 (2)
O1W—H1WB⋯O5ii 0.84 (1) 2.43 (2) 3.071 (2) 134 (2)
O2W—H2WA⋯O3iii 0.84 (1) 1.88 (1) 2.7006 (19) 165 (2)
O2W—H2WB⋯O1i 0.84 (1) 2.01 (1) 2.8249 (18) 165 (2)
O3W—H3WA⋯O5iv 0.85 (1) 1.83 (1) 2.6733 (18) 176 (2)
O3W—H3WB⋯O2ii 0.85 (1) 1.94 (1) 2.7550 (18) 159 (2)
O4W—H4WA⋯O3Wv 0.83 (1) 2.13 (1) 2.911 (2) 158 (2)
O4W—H4WB⋯O5 0.84 (1) 2.00 (1) 2.7270 (18) 145 (2)
Symmetry codes: (i) x+1, y, z-1; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y, -z+1; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) x+1, y, z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Versatile ligands involving pyridyl and carboxylate groups have been extensively employed to construct novel complexes owing to their various coordination modes (Zhang et al., 2003; Jiang et al., 2010; Yang et al., 2010). Herein, we report the synthesis and crystal structure of a new complex, [MnL(H2O)4]n (I).

In the title complex, the Mn(II) atom is six-coordinated by two carboxylic O atoms from two L2- ligands and four water molecules, leading to a distorted octahedral environment (Fig. 1). Each L2- ligand adopts a terminal monodentate bridging coordination mode to interconnect with the Mn(II) atoms forming a one-dimensional infinite polymeric chain motif. The shortest distance between the neighbour Mn(II) centers is 10.97 Å (Fig. 2). Additionally, with the aid of O—H···O hydrogen bonds found between the coordinated water molecules and carboxylato groups, the adjacent one-dimensional chains are further interlinked into a three-dimensional network (Fig. 3).

Related literature top

For the use of ligands involving pyridyl and carboxylate groups have in the construction of novel complexes, see: Zhang et al. (2003); Jiang et al. (2010); Yang et al. (2010).

Experimental top

All the starting materials and solvents were obtained commercially and were used without further purification. H2L(0.197 g, 1.0 mmol), MnSO4.H2O (0.169 g, 1.0 mmol), Na2CO3 (0.106 g, 1.0 mmol) were mixed in 15 ml distilled water. Then the mixture was transferred into a Parr Teflon-lined stainless steel vessel (25 ml) and heated to 433 K for 72 h. Then, the reactor was cooled to room temperature at a speed of 5 degrees per hour. Colorless single crystals of title complex were obtained by slow evaporation of the filtrate over a few days.

Refinement top

The carbon-bound H-atoms were positioned geometrically and included in the refinement using a riding model [C—H 0.93, 0.97 Å Uiso(H) = 1.2Ueq(C)]. The oxygen-bound H-atoms was located in a difference Fourier maps and refined with the O—H distance restrained to 0.85 (2) Å [Uiso(H) = 1.2Ueq(O)].

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the Mn(II) coordination environment in the structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry code: (1) x + 1,y,z - 1]
[Figure 2] Fig. 2. A ball-stick diagram showing the one-dimensional chain. All H atoms have been omitted for clarity.
[Figure 3] Fig. 3. A packing structure of (I). The O—H···O interactions are depicted by green dashed lines.
catena-Poly[[tetraaquamanganese(II)]-µ-5-carboxylato- 1-carboxylatomethyl-2-oxidopyridinium-κ2O5:O1] top
Crystal data top
[Mn(C8H5NO5)(H2O)4]F(000) = 660
Mr = 322.13Dx = 1.808 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4396 reflections
a = 5.1537 (2) Åθ = 2.1–27.4°
b = 21.2008 (9) ŵ = 1.16 mm1
c = 10.9727 (4) ÅT = 293 K
β = 99.182 (2)°Block, colourless
V = 1183.54 (8) Å30.21 × 0.18 × 0.13 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
2680 independent reflections
Radiation source: fine-focus sealed tube2217 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
ω scansθmax = 27.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 65
Tmin = 0.787, Tmax = 0.858k = 2727
11341 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0353P)2]
where P = (Fo2 + 2Fc2)/3
2680 reflections(Δ/σ)max = 0.001
196 parametersΔρmax = 0.35 e Å3
12 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Mn(C8H5NO5)(H2O)4]V = 1183.54 (8) Å3
Mr = 322.13Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.1537 (2) ŵ = 1.16 mm1
b = 21.2008 (9) ÅT = 293 K
c = 10.9727 (4) Å0.21 × 0.18 × 0.13 mm
β = 99.182 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
2680 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2217 reflections with I > 2σ(I)
Tmin = 0.787, Tmax = 0.858Rint = 0.075
11341 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02912 restraints
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.35 e Å3
2680 reflectionsΔρmin = 0.32 e Å3
196 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.82965 (5)0.166986 (13)0.24426 (2)0.02401 (10)
O1W0.9758 (3)0.21539 (7)0.08980 (12)0.0362 (3)
H1WA1.082 (4)0.1969 (8)0.0482 (18)0.043*
H1WB1.035 (4)0.2513 (6)0.1101 (19)0.043*
O10.5110 (2)0.12706 (7)1.11849 (10)0.0319 (3)
O20.2636 (3)0.15549 (6)0.94224 (11)0.0339 (3)
O2W1.0809 (3)0.08634 (6)0.22875 (13)0.0349 (3)
H2WA1.016 (4)0.0515 (7)0.2020 (19)0.042*
H2WB1.223 (3)0.0930 (9)0.2031 (19)0.042*
O30.2033 (3)0.01801 (6)0.84321 (11)0.0344 (3)
O3W0.6083 (3)0.25579 (6)0.26185 (11)0.0338 (3)
H3WA0.541 (4)0.2760 (8)0.1977 (11)0.041*
H3WB0.695 (4)0.2819 (7)0.3121 (13)0.041*
O4W1.1443 (3)0.21688 (8)0.36280 (12)0.0450 (4)
H4WA1.298 (2)0.2228 (12)0.3515 (18)0.054*
H4WB1.130 (4)0.2130 (12)0.4374 (11)0.054*
O40.6810 (3)0.12960 (7)0.39922 (10)0.0380 (3)
O50.8922 (3)0.18553 (7)0.55471 (11)0.0458 (4)
N10.5354 (3)0.08088 (7)0.80195 (11)0.0235 (3)
C10.6287 (4)0.08637 (9)0.93507 (14)0.0259 (4)
H1A0.80380.10440.94780.031*
H1B0.64080.04450.97120.031*
C20.4524 (3)0.12667 (8)1.00127 (14)0.0234 (4)
C30.3169 (4)0.04332 (8)0.76408 (15)0.0255 (4)
C40.2408 (4)0.03795 (9)0.63301 (16)0.0329 (4)
H4A0.09890.01240.60200.039*
C50.3701 (4)0.06907 (9)0.55330 (15)0.0306 (4)
H5A0.31640.06440.46880.037*
C60.5855 (3)0.10852 (8)0.59683 (14)0.0247 (4)
C70.6617 (3)0.11259 (8)0.72141 (14)0.0246 (4)
H7A0.80470.13790.75210.029*
C80.7325 (4)0.14390 (8)0.51148 (14)0.0258 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.02227 (17)0.03188 (17)0.01840 (14)0.00270 (11)0.00482 (10)0.00096 (10)
O1W0.0419 (9)0.0354 (7)0.0353 (7)0.0012 (6)0.0186 (6)0.0025 (6)
O10.0263 (7)0.0522 (8)0.0173 (5)0.0076 (6)0.0043 (5)0.0044 (5)
O20.0372 (8)0.0405 (8)0.0242 (6)0.0071 (6)0.0057 (5)0.0040 (5)
O2W0.0281 (7)0.0323 (7)0.0465 (8)0.0056 (6)0.0126 (6)0.0034 (6)
O30.0410 (8)0.0357 (7)0.0280 (6)0.0135 (6)0.0101 (6)0.0031 (5)
O3W0.0362 (8)0.0342 (7)0.0290 (6)0.0054 (6)0.0006 (6)0.0050 (5)
O4W0.0301 (8)0.0731 (11)0.0328 (7)0.0181 (8)0.0082 (6)0.0135 (7)
O40.0428 (9)0.0544 (9)0.0186 (6)0.0152 (7)0.0104 (5)0.0008 (6)
O50.0661 (11)0.0483 (9)0.0249 (6)0.0263 (8)0.0134 (7)0.0039 (6)
N10.0253 (8)0.0301 (8)0.0154 (6)0.0033 (6)0.0045 (5)0.0001 (5)
C10.0252 (9)0.0365 (10)0.0157 (7)0.0036 (7)0.0025 (6)0.0026 (6)
C20.0234 (9)0.0283 (9)0.0188 (7)0.0087 (7)0.0040 (6)0.0001 (6)
C30.0284 (10)0.0255 (9)0.0233 (8)0.0018 (7)0.0059 (7)0.0002 (6)
C40.0357 (11)0.0380 (11)0.0245 (8)0.0119 (9)0.0037 (7)0.0043 (7)
C50.0340 (11)0.0392 (10)0.0183 (7)0.0023 (8)0.0031 (7)0.0028 (7)
C60.0279 (10)0.0274 (9)0.0198 (7)0.0021 (7)0.0073 (7)0.0009 (6)
C70.0242 (9)0.0288 (9)0.0218 (7)0.0032 (7)0.0071 (7)0.0004 (7)
C80.0304 (10)0.0289 (9)0.0194 (7)0.0041 (8)0.0072 (7)0.0028 (7)
Geometric parameters (Å, º) top
Mn1—O42.1265 (12)O4W—H4WB0.837 (9)
Mn1—O1i2.1435 (12)O4—C81.255 (2)
Mn1—O2W2.1676 (14)O5—C81.248 (2)
Mn1—O4W2.1833 (14)N1—C71.357 (2)
Mn1—O1W2.2136 (12)N1—C31.387 (2)
Mn1—O3W2.2258 (13)N1—C11.468 (2)
O1W—H1WA0.862 (9)C1—C21.515 (2)
O1W—H1WB0.838 (9)C1—H1A0.9700
O1—C21.2734 (18)C1—H1B0.9700
O1—Mn1ii2.1435 (12)C3—C41.434 (2)
O2—C21.240 (2)C4—C51.353 (2)
O2W—H2WA0.844 (9)C4—H4A0.9300
O2W—H2WB0.837 (9)C5—C61.411 (3)
O3—C31.2438 (19)C5—H5A0.9300
O3W—H3WA0.849 (9)C6—C71.363 (2)
O3W—H3WB0.854 (9)C6—C81.497 (2)
O4W—H4WA0.830 (9)C7—H7A0.9300
O4—Mn1—O1i91.77 (5)C7—N1—C1119.59 (14)
O4—Mn1—O2W93.71 (5)C3—N1—C1117.71 (13)
O1i—Mn1—O2W92.51 (5)N1—C1—C2113.31 (14)
O4—Mn1—O4W91.85 (5)N1—C1—H1A108.9
O1i—Mn1—O4W174.12 (6)C2—C1—H1A108.9
O2W—Mn1—O4W91.88 (6)N1—C1—H1B108.9
O4—Mn1—O1W174.26 (5)C2—C1—H1B108.9
O1i—Mn1—O1W90.54 (5)H1A—C1—H1B107.7
O2W—Mn1—O1W91.44 (5)O2—C2—O1124.35 (16)
O4W—Mn1—O1W85.44 (5)O2—C2—C1120.54 (14)
O4—Mn1—O3W89.48 (5)O1—C2—C1115.09 (15)
O1i—Mn1—O3W92.25 (5)O3—C3—N1119.24 (15)
O2W—Mn1—O3W174.18 (5)O3—C3—C4125.59 (17)
O4W—Mn1—O3W83.15 (6)N1—C3—C4115.16 (14)
O1W—Mn1—O3W85.18 (5)C5—C4—C3121.71 (17)
Mn1—O1W—H1WA121.2 (14)C5—C4—H4A119.1
Mn1—O1W—H1WB111.9 (14)C3—C4—H4A119.1
H1WA—O1W—H1WB108.4 (14)C4—C5—C6120.82 (16)
C2—O1—Mn1ii133.39 (11)C4—C5—H5A119.6
Mn1—O2W—H2WA120.7 (14)C6—C5—H5A119.6
Mn1—O2W—H2WB117.2 (14)C7—C6—C5117.54 (15)
H2WA—O2W—H2WB110.4 (14)C7—C6—C8120.12 (16)
Mn1—O3W—H3WA120.1 (13)C5—C6—C8122.32 (14)
Mn1—O3W—H3WB112.5 (14)N1—C7—C6122.01 (16)
H3WA—O3W—H3WB108.1 (13)N1—C7—H7A119.0
Mn1—O4W—H4WA128.3 (15)C6—C7—H7A119.0
Mn1—O4W—H4WB111.3 (15)O5—C8—O4124.56 (15)
H4WA—O4W—H4WB113.2 (15)O5—C8—C6119.06 (14)
C8—O4—Mn1130.38 (12)O4—C8—C6116.37 (16)
C7—N1—C3122.70 (14)
O1i—Mn1—O4—C8162.88 (17)O3—C3—C4—C5177.48 (19)
O2W—Mn1—O4—C8104.49 (17)N1—C3—C4—C51.9 (3)
O4W—Mn1—O4—C812.48 (17)C3—C4—C5—C60.3 (3)
O1W—Mn1—O4—C849.3 (6)C4—C5—C6—C71.7 (3)
O3W—Mn1—O4—C870.65 (17)C4—C5—C6—C8179.72 (17)
C7—N1—C1—C2106.33 (17)C3—N1—C7—C61.5 (3)
C3—N1—C1—C273.06 (19)C1—N1—C7—C6179.13 (16)
Mn1ii—O1—C2—O2110.55 (19)C5—C6—C7—N10.8 (3)
Mn1ii—O1—C2—C170.8 (2)C8—C6—C7—N1179.43 (15)
N1—C1—C2—O25.9 (2)Mn1—O4—C8—O50.2 (3)
N1—C1—C2—O1172.80 (14)Mn1—O4—C8—C6178.69 (12)
C7—N1—C3—O3176.60 (16)C7—C6—C8—O512.9 (3)
C1—N1—C3—O32.8 (2)C5—C6—C8—O5168.55 (18)
C7—N1—C3—C42.8 (2)C7—C6—C8—O4168.11 (17)
C1—N1—C3—C4177.83 (16)C5—C6—C8—O410.4 (3)
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2iii0.86 (1)1.83 (1)2.6833 (18)171 (2)
O1W—H1WA···O1iii0.86 (1)2.67 (2)3.307 (2)132 (2)
O1W—H1WB···O5iv0.84 (1)2.43 (2)3.071 (2)134 (2)
O2W—H2WA···O3v0.84 (1)1.88 (1)2.7006 (19)165 (2)
O2W—H2WB···O1iii0.84 (1)2.01 (1)2.8249 (18)165 (2)
O3W—H3WA···O5vi0.85 (1)1.83 (1)2.6733 (18)176 (2)
O3W—H3WB···O2iv0.85 (1)1.94 (1)2.7550 (18)159 (2)
O4W—H4WA···O3Wvii0.83 (1)2.13 (1)2.911 (2)158 (2)
O4W—H4WB···O50.84 (1)2.00 (1)2.7270 (18)145 (2)
Symmetry codes: (iii) x+1, y, z1; (iv) x+1/2, y+1/2, z1/2; (v) x+1, y, z+1; (vi) x1/2, y+1/2, z1/2; (vii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Mn(C8H5NO5)(H2O)4]
Mr322.13
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)5.1537 (2), 21.2008 (9), 10.9727 (4)
β (°) 99.182 (2)
V3)1183.54 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.16
Crystal size (mm)0.21 × 0.18 × 0.13
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.787, 0.858
No. of measured, independent and
observed [I > 2σ(I)] reflections
11341, 2680, 2217
Rint0.075
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.075, 1.03
No. of reflections2680
No. of parameters196
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.32

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2i0.862 (9)1.828 (9)2.6833 (18)171 (2)
O1W—H1WA···O1i0.862 (9)2.669 (18)3.307 (2)131.8 (18)
O1W—H1WB···O5ii0.838 (9)2.430 (16)3.071 (2)134.0 (16)
O2W—H2WA···O3iii0.844 (9)1.875 (9)2.7006 (19)165.4 (19)
O2W—H2WB···O1i0.837 (9)2.007 (10)2.8249 (18)165 (2)
O3W—H3WA···O5iv0.849 (9)1.826 (9)2.6733 (18)176.2 (18)
O3W—H3WB···O2ii0.854 (9)1.941 (12)2.7550 (18)159 (2)
O4W—H4WA···O3Wv0.830 (9)2.125 (11)2.911 (2)158 (2)
O4W—H4WB···O50.837 (9)2.001 (13)2.7270 (18)145 (2)
Symmetry codes: (i) x+1, y, z1; (ii) x+1/2, y+1/2, z1/2; (iii) x+1, y, z+1; (iv) x1/2, y+1/2, z1/2; (v) x+1, y, z.
 

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJiang, M. X., Zhan, C. H., Feng, Y. L. & Lan, Y. Z. (2010). Cryst. Growth Des. 10, 92–98.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, Q., Zhao, J. P., Hu, B. W., Zhang, X. F. & Bu, X. H. (2010). Inorg. Chem. 49, 3746–3751.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhang, B., Zhu, X. Q., Lu, J. Y., He, J., Wang, P. & Cheng, J. P. (2003). J. Org. Chem. 68, 3295–3298.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds