metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[zinc(II)-bis­­[μ2-3-(3-pyrid­yl)­benzoato]-κ2O:N;κ2N:O]

aDepartment of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China
*Correspondence e-mail: yadxgncl@126.com

(Received 1 June 2011; accepted 3 June 2011; online 11 June 2011)

In the title compound, [Zn(C12H8NO2)2]n, the Zn2+ cation is coordinated by a pair of carboxyl­ate O atoms as well as two pyridyl N atoms to afford a distorted tetra­hedral environment. Adjacent Zn2+ cations, with a separation of 8.807 (2) Å, are linked by two 3-(3-pyrid­yl)benzoate ligand bridges, generating an infinite ribbon extending parallel to [001].

Related literature

For the use of 3-(pyridin-3-yl)benzoate units in the construction of framework structures, see: Guo (2009[Guo, F. (2009). J. Coord. Chem. 62, 3621-3628.]). For a similar structure, see: Zhong et al. (2008[Zhong, R.-Q., Zou, R.-Q., Du, M., Jiang, L., Yamada, T., Maruta, G., Takeda, S. & Xu, Q. (2008). CrystEngComm, 10, 605-613.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C12H8NO2)2]

  • Mr = 461.76

  • Monoclinic, P 21 /c

  • a = 10.0512 (8) Å

  • b = 12.0809 (10) Å

  • c = 17.4872 (14) Å

  • β = 105.631 (1)°

  • V = 2044.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.24 mm−1

  • T = 273 K

  • 0.15 × 0.10 × 0.08 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.836, Tmax = 0.908

  • 10620 measured reflections

  • 3616 independent reflections

  • 2253 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.095

  • S = 1.08

  • 3616 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the structure of the title compound, the Zn2+ center is located at the general site and coordinated by a pair of carboxylate oxygen atoms as well as two pyridyl nitrogen donors to afford a tetrahedral environment (see Fig. 1). As a result, the Zn2+ ions are connected by the 3-(pyridin-3-yl)benzoate spacers to result in a in?nite 1D double-strand chain motif, with the Zn···Zn separation of 8.807Å, as shown in Fig. 2.

Related literature top

For the use of 3-(pyridin-3-yl)benzoate units in the synthesis of solid-state architectures, see: Guo (2009). For a similar structure, see: Zhong et al. (2008).

Experimental top

The title compound was prepared by hydrothermal method. An aqueous solution (20 mL) containing 3-(pyridin-3-yl)benzoate acid (0.10 mmol) and Zinc nitrate hexahydrate (0.10 mmol) was placed in a Parr Te?on-lined stainless steel vessel (25 mL) under autogenous pressure, which was heated to 433 K for 72 h and subsequently cooled to room temperature at a rate of 5 K an hour. Colorless single crystals were obtained from the reaction mixture (yield ca 46% based on Zn).

Refinement top

The C-bound H atoms were geometrically placed (C—H = 0.93 Å) and refined as riding with Uiso(H) =1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the title compound at the 30% probability level, hydrogen atoms are drawn as sphere of arbitrary radius.
[Figure 2] Fig. 2. The 1D chain of the title compound, viewed down the c axis.
catena-Poly[zinc(II)-bis[µ2-3-(3-pyridyl)benzoato]- κ2O:N;κ2N:O] top
Crystal data top
[Zn(C12H8NO2)2]F(000) = 944
Mr = 461.76Dx = 1.500 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.0512 (8) ÅCell parameters from 1527 reflections
b = 12.0809 (10) Åθ = 2.4–21.1°
c = 17.4872 (14) ŵ = 1.24 mm1
β = 105.631 (1)°T = 273 K
V = 2044.9 (3) Å3Block, colourless
Z = 40.15 × 0.10 × 0.08 mm
Data collection top
Bruker SMART
diffractometer
3616 independent reflections
Radiation source: fine-focus sealed tube2253 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ϕ and ω scansθmax = 25.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 511
Tmin = 0.836, Tmax = 0.908k = 1414
10620 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0353P)2]
where P = (Fo2 + 2Fc2)/3
3616 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Zn(C12H8NO2)2]V = 2044.9 (3) Å3
Mr = 461.76Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.0512 (8) ŵ = 1.24 mm1
b = 12.0809 (10) ÅT = 273 K
c = 17.4872 (14) Å0.15 × 0.10 × 0.08 mm
β = 105.631 (1)°
Data collection top
Bruker SMART
diffractometer
3616 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2253 reflections with I > 2σ(I)
Tmin = 0.836, Tmax = 0.908Rint = 0.050
10620 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.08Δρmax = 0.26 e Å3
3616 reflectionsΔρmin = 0.29 e Å3
280 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.54736 (4)0.79354 (4)0.82510 (2)0.04985 (17)
C10.4220 (4)0.6225 (3)0.8717 (2)0.0479 (9)
C20.3496 (3)0.5541 (3)0.92062 (18)0.0401 (9)
C30.2852 (4)0.4556 (3)0.8909 (2)0.0478 (10)
H30.28820.43090.84100.057*
C40.2170 (4)0.3943 (3)0.9347 (2)0.0525 (10)
H40.17500.32790.91460.063*
C50.2105 (4)0.4308 (3)1.0087 (2)0.0473 (9)
H50.16350.38931.03790.057*
C60.2743 (3)0.5295 (3)1.03928 (18)0.0389 (9)
C70.3441 (3)0.5902 (3)0.99507 (18)0.0415 (9)
H70.38790.65581.01550.050*
C80.2645 (4)0.5697 (3)1.11789 (18)0.0379 (8)
C90.3784 (4)0.6111 (3)1.17361 (18)0.0415 (9)
H90.46200.61421.16040.050*
C100.2537 (4)0.6462 (3)1.2631 (2)0.0519 (10)
H100.24950.67321.31230.062*
C110.1359 (4)0.6076 (3)1.2119 (2)0.0556 (11)
H110.05290.60801.22590.067*
C120.1416 (4)0.5679 (3)1.1389 (2)0.0512 (10)
H120.06240.53971.10370.061*
C130.7782 (4)0.7247 (3)0.7844 (2)0.0525 (10)
C140.8517 (4)0.6655 (3)0.73188 (19)0.0444 (9)
C150.7794 (4)0.6278 (3)0.65703 (19)0.0449 (9)
H150.68560.64300.63800.054*
C160.8458 (4)0.5675 (3)0.6104 (2)0.0474 (10)
C170.9861 (4)0.5446 (3)0.6400 (2)0.0607 (11)
H171.03100.50210.61020.073*
C181.0589 (4)0.5845 (3)0.7132 (2)0.0664 (12)
H181.15350.57190.73170.080*
C190.9909 (4)0.6432 (3)0.7588 (2)0.0553 (10)
H191.04000.66830.80870.066*
C200.7694 (4)0.5294 (3)0.52977 (19)0.0475 (9)
C210.6937 (4)0.6032 (3)0.47544 (19)0.0494 (10)
H210.68750.67580.49180.059*
C220.6343 (4)0.4723 (4)0.3773 (2)0.0625 (12)
H220.58810.45240.32560.075*
C230.7069 (5)0.3932 (4)0.4277 (3)0.0826 (15)
H230.70960.32070.41020.099*
C240.7762 (5)0.4218 (4)0.5045 (2)0.0742 (13)
H240.82700.36910.53900.089*
N10.3752 (3)0.6471 (2)1.24571 (15)0.0437 (7)
N20.6278 (3)0.5766 (3)0.39999 (16)0.0497 (8)
O10.4801 (2)0.7115 (2)0.90317 (13)0.0540 (7)
O20.4192 (3)0.5923 (2)0.80425 (14)0.0648 (8)
O30.6515 (3)0.7467 (2)0.75352 (14)0.0635 (8)
O40.8408 (3)0.7481 (3)0.85317 (16)0.0880 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0573 (3)0.0665 (3)0.0242 (2)0.0047 (2)0.00805 (19)0.0020 (2)
C10.050 (2)0.059 (3)0.031 (2)0.013 (2)0.0045 (18)0.0057 (19)
C20.043 (2)0.047 (2)0.0264 (18)0.0099 (18)0.0020 (16)0.0005 (16)
C30.054 (3)0.052 (3)0.032 (2)0.013 (2)0.0025 (18)0.0080 (18)
C40.057 (3)0.051 (3)0.044 (2)0.000 (2)0.004 (2)0.0111 (19)
C50.047 (2)0.053 (3)0.039 (2)0.0027 (19)0.0055 (17)0.0026 (18)
C60.038 (2)0.046 (2)0.0277 (19)0.0053 (18)0.0002 (16)0.0003 (16)
C70.046 (2)0.045 (2)0.0298 (19)0.0021 (17)0.0026 (17)0.0033 (16)
C80.040 (2)0.044 (2)0.0280 (18)0.0017 (17)0.0063 (16)0.0005 (15)
C90.041 (2)0.052 (2)0.031 (2)0.0046 (18)0.0090 (16)0.0023 (16)
C100.062 (3)0.057 (3)0.040 (2)0.008 (2)0.021 (2)0.0050 (19)
C110.053 (3)0.067 (3)0.055 (3)0.008 (2)0.028 (2)0.013 (2)
C120.049 (3)0.056 (3)0.047 (2)0.008 (2)0.0096 (19)0.0052 (19)
C130.068 (3)0.056 (3)0.033 (2)0.005 (2)0.014 (2)0.0092 (18)
C140.051 (3)0.052 (2)0.0290 (19)0.0014 (19)0.0089 (18)0.0098 (16)
C150.049 (2)0.052 (2)0.031 (2)0.0046 (19)0.0079 (17)0.0097 (17)
C160.059 (3)0.052 (2)0.034 (2)0.004 (2)0.0172 (19)0.0094 (17)
C170.062 (3)0.080 (3)0.043 (2)0.019 (2)0.018 (2)0.005 (2)
C180.051 (3)0.095 (4)0.053 (3)0.012 (2)0.013 (2)0.010 (2)
C190.058 (3)0.070 (3)0.035 (2)0.003 (2)0.007 (2)0.005 (2)
C200.064 (3)0.047 (3)0.033 (2)0.005 (2)0.0150 (18)0.0004 (18)
C210.064 (3)0.050 (2)0.032 (2)0.003 (2)0.0087 (18)0.0055 (17)
C220.094 (3)0.062 (3)0.035 (2)0.015 (3)0.024 (2)0.011 (2)
C230.142 (5)0.050 (3)0.057 (3)0.003 (3)0.029 (3)0.007 (2)
C240.123 (4)0.058 (3)0.044 (3)0.018 (3)0.026 (3)0.010 (2)
N10.049 (2)0.055 (2)0.0286 (16)0.0032 (15)0.0128 (14)0.0033 (14)
N20.061 (2)0.056 (2)0.0307 (17)0.0053 (16)0.0102 (15)0.0023 (15)
O10.0694 (18)0.0601 (18)0.0311 (13)0.0095 (15)0.0109 (12)0.0004 (12)
O20.088 (2)0.078 (2)0.0307 (15)0.0024 (15)0.0201 (14)0.0066 (13)
O30.0587 (19)0.092 (2)0.0411 (16)0.0112 (16)0.0162 (14)0.0029 (14)
O40.100 (2)0.121 (3)0.0370 (17)0.028 (2)0.0069 (16)0.0116 (17)
Geometric parameters (Å, º) top
Zn1—O31.921 (2)C12—H120.9300
Zn1—O11.949 (2)C13—O41.230 (4)
Zn1—N1i2.035 (3)C13—O31.270 (4)
Zn1—N2ii2.064 (3)C13—C141.506 (5)
C1—O21.227 (4)C14—C191.377 (5)
C1—O11.276 (4)C14—C151.392 (4)
C1—C21.510 (5)C15—C161.391 (5)
C2—C31.387 (5)C15—H150.9300
C2—C71.388 (4)C16—C171.393 (5)
C3—C41.374 (5)C16—C201.485 (5)
C3—H30.9300C17—C181.380 (5)
C4—C51.385 (4)C17—H170.9300
C4—H40.9300C18—C191.379 (5)
C5—C61.391 (4)C18—H180.9300
C5—H50.9300C19—H190.9300
C6—C71.385 (4)C20—C211.373 (5)
C6—C81.486 (4)C20—C241.380 (5)
C7—H70.9300C21—N21.346 (4)
C8—C121.380 (4)C21—H210.9300
C8—C91.382 (4)C22—N21.327 (4)
C9—N11.343 (4)C22—C231.370 (5)
C9—H90.9300C22—H220.9300
C10—N11.335 (4)C23—C241.381 (5)
C10—C111.361 (5)C23—H230.9300
C10—H100.9300C24—H240.9300
C11—C121.380 (5)N1—Zn1ii2.035 (3)
C11—H110.9300N2—Zn1i2.064 (3)
O3—Zn1—O1131.25 (11)O4—C13—C14120.0 (4)
O3—Zn1—N1i99.90 (11)O3—C13—C14116.1 (3)
O1—Zn1—N1i105.38 (11)C19—C14—C15118.8 (3)
O3—Zn1—N2ii116.65 (12)C19—C14—C13120.3 (3)
O1—Zn1—N2ii95.30 (11)C15—C14—C13120.8 (3)
N1i—Zn1—N2ii106.30 (12)C16—C15—C14120.8 (3)
O2—C1—O1123.7 (4)C16—C15—H15119.6
O2—C1—C2119.4 (4)C14—C15—H15119.6
O1—C1—C2116.8 (3)C15—C16—C17118.9 (3)
C3—C2—C7119.3 (3)C15—C16—C20120.8 (3)
C3—C2—C1120.3 (3)C17—C16—C20120.3 (3)
C7—C2—C1120.4 (3)C18—C17—C16120.4 (4)
C4—C3—C2120.4 (3)C18—C17—H17119.8
C4—C3—H3119.8C16—C17—H17119.8
C2—C3—H3119.8C17—C18—C19119.7 (4)
C3—C4—C5120.4 (4)C17—C18—H18120.2
C3—C4—H4119.8C19—C18—H18120.2
C5—C4—H4119.8C14—C19—C18121.3 (4)
C4—C5—C6119.9 (4)C14—C19—H19119.4
C4—C5—H5120.0C18—C19—H19119.4
C6—C5—H5120.0C21—C20—C24117.1 (3)
C7—C6—C5119.3 (3)C21—C20—C16120.3 (3)
C7—C6—C8120.9 (3)C24—C20—C16122.5 (3)
C5—C6—C8119.8 (3)N2—C21—C20123.9 (3)
C6—C7—C2120.7 (3)N2—C21—H21118.0
C6—C7—H7119.6C20—C21—H21118.0
C2—C7—H7119.6N2—C22—C23122.1 (4)
C12—C8—C9116.7 (3)N2—C22—H22119.0
C12—C8—C6121.9 (3)C23—C22—H22119.0
C9—C8—C6121.4 (3)C22—C23—C24119.5 (4)
N1—C9—C8123.6 (3)C22—C23—H23120.3
N1—C9—H9118.2C24—C23—H23120.3
C8—C9—H9118.2C20—C24—C23119.5 (4)
N1—C10—C11122.7 (3)C20—C24—H24120.3
N1—C10—H10118.7C23—C24—H24120.3
C11—C10—H10118.7C10—N1—C9117.8 (3)
C10—C11—C12118.8 (4)C10—N1—Zn1ii120.6 (2)
C10—C11—H11120.6C9—N1—Zn1ii121.5 (2)
C12—C11—H11120.6C22—N2—C21117.9 (3)
C11—C12—C8120.3 (3)C22—N2—Zn1i125.1 (3)
C11—C12—H12119.9C21—N2—Zn1i116.5 (3)
C8—C12—H12119.9C1—O1—Zn1109.3 (2)
O4—C13—O3123.9 (4)C13—O3—Zn1116.4 (2)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C12H8NO2)2]
Mr461.76
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)10.0512 (8), 12.0809 (10), 17.4872 (14)
β (°) 105.631 (1)
V3)2044.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.24
Crystal size (mm)0.15 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.836, 0.908
No. of measured, independent and
observed [I > 2σ(I)] reflections
10620, 3616, 2253
Rint0.050
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.095, 1.08
No. of reflections3616
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.29

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This project was supported by the Natural Scientific Research Foundation of Shaanxi Provincial Education Office of China (grant No. 2010 JK905).

References

First citationBruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGuo, F. (2009). J. Coord. Chem. 62, 3621–3628.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhong, R.-Q., Zou, R.-Q., Du, M., Jiang, L., Yamada, T., Maruta, G., Takeda, S. & Xu, Q. (2008). CrystEngComm, 10, 605–613.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds