organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(1E,3E,5E)-6-(4-Pyrid­yl)hexa-1,3,5-trien­yl]pyridine

aDepartment of Chemistry, Pennsylvania State University at Hazleton, 76 University Drive, Hazleton, PA 18202, USA
*Correspondence e-mail: mmb11@psu.edu

(Received 19 July 2009; accepted 22 July 2009; online 29 July 2009)

The two independent mol­ecules in the asymmetric unit of the title compound, C16H14N2, are planar [dihedral angle between the terminal pyridine rings = 1.76 (2)°] and each display an all-trans configuration of C=C double bonds. One of the two mol­ecules lies about a center of inversion. The dihedral angle between the two pyridine rings in the mol­ecule lying on a general position is 1.65 (2)°.

Related literature

For acceptor-terminated polyenes, see: Gao et al. (2004[Gao, X., Friscic, T. & MacGillivray, L. R. (2004). Angew. Chem. Int. Ed. 43, 232-36.]). For the synthesis, see: Woitellier et al. (1989[Woitellier, S., Launay, J. P. & Spangler, C. W. (1989). Inorg. Chem. 28, 758-762.]). For a related structure, see: Pham (2009[Pham, P.-T. T. (2009). Acta Cryst. E65, o1806.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14N2

  • Mr = 234.29

  • Monoclinic, P 21 /n

  • a = 5.837 (1) Å

  • b = 17.171 (4) Å

  • c = 19.227 (4) Å

  • β = 97.685 (4)°

  • V = 1909.8 (7) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 173 K

  • 0.44 × 0.24 × 0.22 mm

Data collection
  • Bruker SMART Platform CCD diffractometer

  • Absorption correction: none

  • 18771 measured reflections

  • 3366 independent reflections

  • 2460 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.089

  • S = 1.01

  • 3366 reflections

  • 328 parameters

  • All H-atom parameters refined

  • Δρmax = 0.09 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Pyridyl-terminated polyenes have been investigated for studying electron reactions with applications in biology, inorganic reaction mechanisms and molecular electronics. They have also been used in the synthesis of coordination polymers as well as template for solid state reactions.

For related systems of acceptor terminated polyenes, see: Gao et al. (2004); Pham (2009). For literature related to the synthesis, see: Woitellier et al. (1989).

Related literature top

For acceptor-terminated polyenes, see: Gao et al. (2004). For the synthesis, see: Woitellier et al. (1989). For a related structure, see: Pham (2009).

Experimental top

Synthesis was carried out following literature procedures (Woitellier et al., 1989) as follows: a solution of potassium tert-butoxide (1 2. l g in 200 ml of glyme) was added dropwise to a solution of tetraethyl ((E)-2-butene-1,4-diyl)diphosphonate (16.4 g, 0.05 mol) and pyridine-4-carboxaldehyde (10.70 g, 0.10 mol) in 100 ml of glyme at room temperature. After the addition of the base was complete, the resulting mixture was stirred at room temperature for 16 h. Cold water (ca 300–400 ml) was added and the product isolated by vacuum filtration (3.5 g, 30% crude yield) and recrystallized from acetone (2.3 g, 19%): mp 196–197. Crystals were grown from DMF.

Refinement top

All hydrogen atoms were found from the difference map and refined with individual isotropic displacement parameters.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Ellipsoid plot
[Figure 2] Fig. 2. 4-((1E,3E,5E)-6-(pyridin-4-yl)hexa-1,3,5-trienyl)pyridine.
[Figure 3] Fig. 3. Crystal packing viewed along the a axis.
4-[(1E,3E,5E)-6-(4-Pyridyl)hexa-1,3,5-trienyl]pyridine top
Crystal data top
C16H14N2F(000) = 744
Mr = 234.29Dx = 1.222 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 867 reflections
a = 5.837 (1) Åθ = 2.5–27.5°
b = 17.171 (4) ŵ = 0.07 mm1
c = 19.227 (4) ÅT = 173 K
β = 97.685 (4)°Block, yellow
V = 1909.8 (7) Å30.44 × 0.24 × 0.22 mm
Z = 6
Data collection top
Bruker SMART Platform CCD
diffractometer
2460 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 25.0°, θmin = 1.6°
ω scansh = 66
18771 measured reflectionsk = 2020
3366 independent reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089All H-atom parameters refined
S = 1.01 w = 1/[σ2(Fo2) + (0.048P)2 + 0.1535P]
where P = (Fo2 + 2Fc2)/3
3366 reflections(Δ/σ)max = 0.001
328 parametersΔρmax = 0.09 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C16H14N2V = 1909.8 (7) Å3
Mr = 234.29Z = 6
Monoclinic, P21/nMo Kα radiation
a = 5.837 (1) ŵ = 0.07 mm1
b = 17.171 (4) ÅT = 173 K
c = 19.227 (4) Å0.44 × 0.24 × 0.22 mm
β = 97.685 (4)°
Data collection top
Bruker SMART Platform CCD
diffractometer
2460 reflections with I > 2σ(I)
18771 measured reflectionsRint = 0.028
3366 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.089All H-atom parameters refined
S = 1.01Δρmax = 0.09 e Å3
3366 reflectionsΔρmin = 0.15 e Å3
328 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5720 (2)0.58755 (7)0.07734 (6)0.0569 (3)
N20.45576 (19)1.10512 (6)0.36976 (5)0.0481 (3)
N30.00550 (19)1.24674 (6)0.23495 (6)0.0497 (3)
C10.6991 (3)0.65228 (9)0.06772 (8)0.0543 (4)
H10.838 (3)0.6547 (8)0.0931 (7)0.062 (4)*
C20.6494 (2)0.71361 (8)0.02588 (7)0.0462 (3)
H20.751 (2)0.7581 (8)0.0194 (7)0.052 (4)*
C30.4553 (2)0.71081 (7)0.00886 (6)0.0388 (3)
C40.3222 (2)0.64283 (7)0.00011 (7)0.0431 (3)
H40.185 (2)0.6363 (7)0.0227 (6)0.044 (3)*
C50.3870 (3)0.58440 (8)0.04271 (7)0.0511 (4)
H50.293 (2)0.5370 (8)0.0495 (6)0.056 (4)*
C60.5830 (2)1.04076 (8)0.35549 (7)0.0479 (3)
H60.722 (3)1.0359 (8)0.3800 (7)0.060 (4)*
C70.5305 (2)0.98292 (8)0.31014 (7)0.0445 (3)
H70.628 (2)0.9374 (8)0.3018 (6)0.049 (4)*
C80.3348 (2)0.98987 (7)0.27589 (6)0.0385 (3)
C90.2039 (2)1.05746 (7)0.29001 (6)0.0411 (3)
H90.064 (2)1.0657 (7)0.2688 (6)0.041 (3)*
C100.2692 (2)1.11169 (8)0.33646 (7)0.0449 (3)
H100.176 (2)1.1575 (7)0.3472 (6)0.044 (3)*
C110.1535 (2)1.23391 (8)0.17687 (7)0.0487 (3)
H110.298 (2)1.2632 (7)0.1723 (7)0.055 (4)*
C120.1104 (2)1.18348 (8)0.12416 (7)0.0453 (3)
H120.223 (2)1.1766 (8)0.0831 (7)0.057 (4)*
C130.0985 (2)1.14333 (7)0.12916 (6)0.0384 (3)
C140.2518 (2)1.15541 (7)0.19037 (7)0.0415 (3)
H140.401 (2)1.1294 (7)0.1986 (6)0.049 (4)*
C150.1931 (2)1.20645 (8)0.24030 (7)0.0473 (3)
H150.300 (2)1.2158 (8)0.2839 (7)0.059 (4)*
C160.3959 (2)0.77741 (7)0.05039 (6)0.0414 (3)
H160.504 (2)0.8205 (7)0.0528 (6)0.040 (3)*
C170.2082 (2)0.78441 (7)0.08307 (6)0.0404 (3)
H170.100 (2)0.7412 (7)0.0822 (6)0.043 (3)*
C180.1516 (2)0.85257 (7)0.12091 (6)0.0432 (3)
H180.260 (2)0.8965 (7)0.1235 (6)0.049 (4)*
C190.0351 (2)0.85901 (7)0.15427 (7)0.0431 (3)
H190.140 (2)0.8147 (7)0.1538 (6)0.047 (4)*
C200.0919 (2)0.92526 (7)0.19440 (6)0.0414 (3)
H200.012 (2)0.9683 (8)0.1966 (6)0.044 (3)*
C210.2736 (2)0.92738 (7)0.23017 (6)0.0420 (3)
H210.376 (2)0.8825 (8)0.2281 (6)0.049 (4)*
C220.1515 (2)1.09529 (7)0.07030 (7)0.0420 (3)
H220.030 (2)1.0935 (7)0.0295 (7)0.050 (4)*
C230.3498 (2)1.05781 (7)0.06546 (7)0.0417 (3)
H230.473 (2)1.0581 (7)0.1052 (6)0.044 (3)*
C240.3997 (2)1.01778 (7)0.00320 (7)0.0439 (3)
H240.275 (2)1.0192 (7)0.0377 (7)0.052 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0517 (7)0.0549 (8)0.0644 (8)0.0045 (6)0.0091 (6)0.0115 (6)
N20.0471 (7)0.0512 (7)0.0468 (6)0.0063 (5)0.0095 (5)0.0009 (5)
N30.0557 (7)0.0448 (6)0.0486 (7)0.0072 (5)0.0073 (6)0.0015 (5)
C10.0454 (9)0.0607 (9)0.0581 (9)0.0038 (7)0.0118 (7)0.0031 (7)
C20.0441 (8)0.0453 (8)0.0494 (8)0.0044 (6)0.0065 (6)0.0033 (6)
C30.0428 (7)0.0382 (7)0.0340 (6)0.0018 (5)0.0002 (5)0.0060 (5)
C40.0428 (8)0.0420 (7)0.0441 (7)0.0017 (6)0.0049 (6)0.0013 (6)
C50.0499 (9)0.0437 (8)0.0587 (9)0.0027 (6)0.0034 (7)0.0047 (7)
C60.0413 (8)0.0560 (9)0.0477 (8)0.0050 (6)0.0107 (6)0.0079 (7)
C70.0410 (8)0.0444 (8)0.0479 (8)0.0026 (6)0.0052 (6)0.0071 (6)
C80.0396 (7)0.0377 (7)0.0371 (7)0.0021 (5)0.0012 (5)0.0065 (5)
C90.0384 (7)0.0425 (7)0.0431 (7)0.0015 (6)0.0076 (6)0.0014 (6)
C100.0451 (8)0.0422 (8)0.0473 (8)0.0008 (6)0.0060 (6)0.0024 (6)
C110.0467 (8)0.0480 (8)0.0518 (8)0.0099 (6)0.0080 (7)0.0049 (6)
C120.0437 (8)0.0490 (8)0.0417 (8)0.0016 (6)0.0003 (6)0.0050 (6)
C130.0437 (7)0.0339 (6)0.0377 (7)0.0030 (5)0.0060 (6)0.0042 (5)
C140.0411 (8)0.0376 (7)0.0450 (7)0.0022 (6)0.0027 (6)0.0003 (6)
C150.0531 (9)0.0423 (7)0.0445 (8)0.0033 (6)0.0009 (6)0.0040 (6)
C160.0497 (8)0.0359 (7)0.0379 (7)0.0048 (6)0.0029 (6)0.0035 (5)
C170.0504 (8)0.0361 (7)0.0340 (7)0.0020 (6)0.0027 (6)0.0031 (5)
C180.0553 (9)0.0364 (7)0.0370 (7)0.0019 (6)0.0026 (6)0.0023 (6)
C190.0517 (8)0.0369 (7)0.0394 (7)0.0006 (6)0.0011 (6)0.0013 (6)
C200.0476 (8)0.0364 (7)0.0391 (7)0.0025 (6)0.0022 (6)0.0018 (5)
C210.0463 (8)0.0356 (7)0.0431 (7)0.0027 (6)0.0022 (6)0.0030 (6)
C220.0480 (8)0.0395 (7)0.0377 (7)0.0033 (6)0.0028 (6)0.0017 (5)
C230.0503 (8)0.0351 (7)0.0394 (7)0.0046 (6)0.0049 (6)0.0004 (5)
C240.0541 (8)0.0363 (7)0.0415 (7)0.0046 (6)0.0073 (7)0.0006 (6)
Geometric parameters (Å, º) top
N1—C11.3355 (18)C11—H110.975 (14)
N1—C51.3436 (18)C12—C131.3931 (18)
N2—C61.3394 (17)C12—H120.964 (14)
N2—C101.3396 (16)C13—C141.3952 (17)
N3—C111.3354 (17)C13—C221.4663 (17)
N3—C151.3422 (17)C14—C151.3765 (18)
C1—C21.380 (2)C14—H140.971 (13)
C1—H10.999 (15)C15—H150.989 (13)
C2—C31.3910 (18)C16—C171.3394 (18)
C2—H20.964 (13)C16—H160.969 (12)
C3—C41.3999 (18)C17—C181.4395 (18)
C3—C161.4627 (18)C17—H170.973 (13)
C4—C51.3796 (19)C18—C191.3408 (19)
C4—H40.970 (13)C18—H180.982 (13)
C5—H50.980 (14)C19—C201.4382 (18)
C6—C71.3830 (19)C19—H190.976 (13)
C6—H60.997 (14)C20—C211.3390 (18)
C7—C81.3974 (18)C20—H200.954 (13)
C7—H70.969 (13)C21—H210.973 (13)
C8—C91.3961 (17)C22—C231.3380 (18)
C8—C211.4616 (17)C22—H220.985 (13)
C9—C101.3788 (18)C23—C241.4436 (18)
C9—H90.969 (12)C23—H230.978 (12)
C10—H100.964 (13)C24—C24i1.341 (3)
C11—C121.3815 (18)C24—H240.997 (13)
C1—N1—C5115.69 (12)C13—C12—H12119.3 (8)
C6—N2—C10115.81 (12)C12—C13—C14116.18 (12)
C11—N3—C15115.75 (12)C12—C13—C22119.88 (11)
N1—C1—C2124.04 (14)C14—C13—C22123.85 (12)
N1—C1—H1116.0 (8)C15—C14—C13119.46 (12)
C2—C1—H1120.0 (8)C15—C14—H14118.7 (7)
C1—C2—C3120.14 (13)C13—C14—H14121.9 (7)
C1—C2—H2120.4 (8)N3—C15—C14124.58 (13)
C3—C2—H2119.5 (8)N3—C15—H15115.0 (8)
C2—C3—C4116.35 (12)C14—C15—H15120.4 (8)
C2—C3—C16120.18 (12)C17—C16—C3126.49 (12)
C4—C3—C16123.45 (12)C17—C16—H16118.4 (7)
C5—C4—C3119.21 (13)C3—C16—H16115.1 (7)
C5—C4—H4119.6 (7)C16—C17—C18124.57 (13)
C3—C4—H4121.2 (7)C16—C17—H17119.5 (7)
N1—C5—C4124.55 (13)C18—C17—H17115.9 (7)
N1—C5—H5116.1 (8)C19—C18—C17124.39 (13)
C4—C5—H5119.3 (8)C19—C18—H18118.2 (7)
N2—C6—C7123.92 (13)C17—C18—H18117.4 (7)
N2—C6—H6116.0 (8)C18—C19—C20125.63 (13)
C7—C6—H6120.1 (8)C18—C19—H19118.8 (7)
C6—C7—C8119.99 (13)C20—C19—H19115.5 (8)
C6—C7—H7120.5 (8)C21—C20—C19123.54 (13)
C8—C7—H7119.5 (8)C21—C20—H20119.9 (7)
C9—C8—C7116.10 (12)C19—C20—H20116.5 (7)
C9—C8—C21123.76 (12)C20—C21—C8127.09 (12)
C7—C8—C21120.12 (12)C20—C21—H21118.8 (7)
C10—C9—C8119.73 (12)C8—C21—H21114.1 (8)
C10—C9—H9119.7 (7)C23—C22—C13126.71 (12)
C8—C9—H9120.5 (7)C23—C22—H22117.8 (7)
N2—C10—C9124.44 (13)C13—C22—H22115.3 (7)
N2—C10—H10115.9 (7)C22—C23—C24124.00 (13)
C9—C10—H10119.6 (7)C22—C23—H23119.9 (7)
N3—C11—C12123.79 (13)C24—C23—H23116.1 (7)
N3—C11—H11116.4 (8)C24i—C24—C23124.67 (17)
C12—C11—H11119.8 (8)C24i—C24—H24119.5 (8)
C11—C12—C13120.21 (13)C23—C24—H24115.8 (8)
C11—C12—H12120.5 (8)
C5—N1—C1—C20.5 (2)C11—C12—C13—C22174.59 (11)
N1—C1—C2—C30.7 (2)C12—C13—C14—C151.72 (18)
C1—C2—C3—C41.43 (18)C22—C13—C14—C15174.85 (12)
C1—C2—C3—C16176.92 (12)C11—N3—C15—C141.1 (2)
C2—C3—C4—C51.03 (18)C13—C14—C15—N30.1 (2)
C16—C3—C4—C5177.26 (11)C2—C3—C16—C17175.93 (12)
C1—N1—C5—C40.9 (2)C4—C3—C16—C172.3 (2)
C3—C4—C5—N10.1 (2)C3—C16—C17—C18177.16 (11)
C10—N2—C6—C70.60 (19)C16—C17—C18—C19179.16 (12)
N2—C6—C7—C80.2 (2)C17—C18—C19—C20177.79 (11)
C6—C7—C8—C90.64 (17)C18—C19—C20—C21176.06 (13)
C6—C7—C8—C21177.48 (11)C19—C20—C21—C8175.54 (11)
C7—C8—C9—C101.12 (17)C9—C8—C21—C201.5 (2)
C21—C8—C9—C10176.93 (11)C7—C8—C21—C20179.51 (12)
C6—N2—C10—C90.08 (19)C12—C13—C22—C23175.18 (13)
C8—C9—C10—N20.8 (2)C14—C13—C22—C231.3 (2)
C15—N3—C11—C120.6 (2)C13—C22—C23—C24173.53 (11)
N3—C11—C12—C131.0 (2)C22—C23—C24—C24i177.66 (15)
C11—C12—C13—C142.12 (18)
Symmetry code: (i) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC16H14N2
Mr234.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)5.837 (1), 17.171 (4), 19.227 (4)
β (°) 97.685 (4)
V3)1909.8 (7)
Z6
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.44 × 0.24 × 0.22
Data collection
DiffractometerBruker SMART Platform CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
18771, 3366, 2460
Rint0.028
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.089, 1.01
No. of reflections3366
No. of parameters328
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.09, 0.15

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported in part by Research Development grants from the Pennsylvania State University and partially by the MRSEC Program of the National Science Foundation under award No. DMR-0819885. The author also acknowledges William W. Brennessel, Victor G. Young Jr and the X-ray Crystallographic Laboratory at the University of Minnesota.

References

First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationGao, X., Friscic, T. & MacGillivray, L. R. (2004). Angew. Chem. Int. Ed. 43, 232–36.  Web of Science CSD CrossRef CAS Google Scholar
First citationPham, P.-T. T. (2009). Acta Cryst. E65, o1806.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWoitellier, S., Launay, J. P. & Spangler, C. W. (1989). Inorg. Chem. 28, 758–762.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds