metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages m1003-m1004

Tetra­aqua­(2,2′-bi­pyridine-κ2N,N′)manganese(II) di-μ-aqua-bis­­[aqua­(2,2′-bi­pyridine-κ2N,N′)(5-sulfonatoisophthalato-κO)manganate(II)] tetra­hydrate

aDepartment of Chemistry, Zhejiang University, People's Republic of China
*Correspondence e-mail: xudj@mail.hz.zj.cn

(Received 2 July 2008; accepted 3 July 2008; online 9 July 2008)

The crystal structure of the title salt, [Mn(C10H8N2)(H2O)4][Mn2(C8H3O7S)2(C10H8N2)2(H2O)4]·4H2O, consists of mononuclear manganese(II) cations, dinuclear manganate(II) dianions and uncoordinated water mol­ecules. The dianion is located about an inversion center; the MnII atom is coordinated by a 2,2′-bipyridine ligand, a sulfonatoisophthalate group, a water mol­ecule along with two bridging water mol­ecules in an octa­hedral geometry. The cation lies on a twofold rotation axis; the MnII atom is coordinated by four water mol­ecules and a chelating 2,2′-bipyridine ligand in a distorted octa­hedral geometry. A partially overlapped arrangement between the bipyridine ligands and the aromatic ring of the sulfoisophthalate group of adjacent anions is observed; the distance (3.357 Å) indicates ππ stacking. Hydrogen bonds, with the water mol­ecules serving as hydrogen-bond donors, lead to a three-dimensional network architecture.

Related literature

For general background, see: Deisenhofer & Michel (1989[Deisenhofer, J. & Michel, H. (1989). EMBO J. 8, 2149-2170.]); Pan et al. (2006[Pan, T.-T., Su, J.-R. & Xu, D.-J. (2006). Acta Cryst. E62, m2183-m2185.]); Su & Xu (2004[Su, J.-R. & Xu, D.-J. (2004). J. Coord. Chem. 57, 223-229.]). For a related structure, see: Zhang et al. (2008[Zhang, B.-Y., Nie, J.-J. & Xu, D.-J. (2008). Acta Cryst. E64, m986.]). For the thickness of the aromatic ring, see: Cotton & Wilkinson (1972[Cotton, F. A. & Wilkinson, G. (1972). Advances in Inorganic Chemistry, p. 120. New York: John Wiley & Sons.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C10H8N2)(H2O)4][Mn2(C8H3O7S)2(C10H8N2)2(H2O)4]·4H2O

  • Mr = 1335.89

  • Monoclinic, C 2/c

  • a = 19.656 (4) Å

  • b = 9.1286 (17) Å

  • c = 32.035 (6) Å

  • β = 96.584 (7)°

  • V = 5710.1 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.82 mm−1

  • T = 295 (2) K

  • 0.40 × 0.36 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.742, Tmax = 0.850

  • 32384 measured reflections

  • 6179 independent reflections

  • 4071 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.123

  • S = 1.09

  • 6179 reflections

  • 375 parameters

  • H-atom parameters constrained

  • Δρmax = 0.96 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—N1 2.253 (3)
Mn1—N2 2.212 (3)
Mn1—O1 2.116 (2)
Mn1—O1W 2.278 (2)
Mn1—O1Wi 2.305 (2)
Mn1—O2W 2.161 (2)
Mn2—N3 2.282 (3)
Mn2—O3W 2.145 (2)
Mn2—O4W 2.1707 (19)
Symmetry code: (i) -x+1, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O5W 0.85 1.87 2.701 (3) 164
O1W—H1B⋯O2 0.93 1.62 2.548 (3) 173
O2W—H2A⋯O3ii 0.85 1.87 2.716 (3) 170
O2W—H2B⋯O6iii 0.89 1.91 2.789 (3) 167
O3W—H3A⋯O5iv 0.90 1.85 2.746 (3) 176
O3W—H3B⋯O4ii 0.95 1.68 2.621 (3) 170
O4W—H4A⋯O3v 0.95 1.82 2.727 (3) 157
O4W—H4B⋯O7iv 0.89 1.90 2.780 (3) 168
O5W—H5A⋯O7iii 0.95 1.83 2.770 (4) 170
O5W—H5B⋯O6Wi 0.95 2.04 2.749 (5) 131
O6W—H6A⋯O6vi 0.91 2.26 3.128 (5) 160
O6W—H6B⋯O3 0.92 2.27 3.109 (5) 151
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z+1; (iii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) [x, -y+1, z+{\script{1\over 2}}]; (vi) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As π-π stacking between aromatic rings plays an important role in electron transfer process in some biological system (Deisenhofer & Michel, 1989), π-π stacking has attracted our much attention in past years (Su & Xu, 2004; Pan et al., 2006). In order to investigate the influence of substituents of the aromatic compounds on stacking between parallel aromatic rings, the title MnII compound incorporating sulfoisophthalate ligand has recently been prepared and its crystal structure is reported here.

The crystal structure of the title compound consists of dimeric MnII complex anions, monomeric MnII complex cations and lattice water molecules (Fig. 1).

The complex anion is located across on an inversion center, two independent parts are bridged by two water molecules with approximately identical Mn—O(bridge) bond distances (Table 1) and a normal Mn—O—Mni bond angle of 103.85 (8)° [symmetry code: (i) 1 - x, -y, 1 - z]. Each MnII ion is coordinated by one 2,2'-bipyridine (bipy) ligand, one sulfoisophtalate anion, two bridge water molecules and one terminal water molecule in a distorted octahedral geometry. The Mn—O(bridge) bond distances are significantly longer than Mn—O(terminal) bond distances. In the Mn2O2 core the Mn···Mn and O···O distances are 3.6071 (11) and 2.826 (4) Å, respectively. The benzene ring of sulfoisophthalate and bipy ring system coordinated to the same MnII ion are nearly co-planar, the dihedral angle being 2.62 (14)°.

The complex cation has twofold rotation symmetry, with the Mn2 and the mid-point of the C23—C23II bond located on the twofold rotation axis [symmetry code: (ii) 1 - x, y, 3/2 - z]. The Mn2 ion is coordinated by four water molecules and chelated by one bipy in a distorted octahedral geometry.

Partially overlapped arrangement between nearly parallel [dihedral angle 3.49 (19)°] bipy and benzene ring of sulfoisophthalate of the adjacent complex anion is observed in the crystal structure (Fig. 2). The perpendicular distance of the centroid of the N2-pyridine ring on the C6iii-benzene ring is 3.357 Å, and the perpendicular distance of the centroid of the C6iii-benzene ring on the N2-pyridine ring is 3.425 Å, they are significantly shorter than the van der Waals thickness of the aromatic ring (Cotton & Wilkinson, 1972) and indicate the existence of π-π stacking involving sulfoisophthalate anion, similar to that found in a related CoII complex with sulfoisophthalate ligand (Zhang et al., 2008).

The extensive O—H···O and C—H···O hydrogen bonding network presents in the crystal structure (Table 2), which helps to stabilize the crystal structure.

Related literature top

For general background, see: Deisenhofer & Michel (1989); Pan et al. (2006); Su & Xu (2004). For a related structure, see: Zhang et al. (2008). For the thickness of the aromatic ring, see: Cotton & Wilkinson (1972).

Experimental top

The monosodium 5-sulfoisophthalate (0.27 g, 1 mmol), sodium carbonate (0.11 g, 1 mmol), 2,2'-bipyridine (0.16 g, 1 mmol), manganese chloride tetrahydrate (0.20 g, 1 mmol), water (8 ml) and ethanol (2 ml) were sealed in a 20-ml Teflon-lined, stainless-steel autoclave. The autoclave was heated to 398 K for 36 h and then cooled to room temperature over 24 h. The solution was filtered and the single crystals of the title compound were obtained from the filtrate after 10 d.

Refinement top

Water H atoms were located in a difference Fourier map and refined as riding in as-found relative positions with Uiso(H) = 1.5Ueq(O). Aromatic H atoms were placed in calculated positions with C—H = 0.93 Å and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement (arbitrary spheres for H atoms). Dashed lines indicate hydrogen bonding [symmetry codes: (i) 1 - x, -y, 1 - z; (ii) 1 - x, y, 3/2 - z].
[Figure 2] Fig. 2. A diagram showing π-π stacking between aromatic rings [symmetry code: (iii) 1 - x, 1 - y, 1 - z].
Tetraaqua(2,2'-bipyridine-κ2N,N')manganese(II) di-µ-aqua-bis[aqua(2,2'-bipyridine-κ2N,N')(5- sulfonatoisophthalato-κO)manganate(II)] tetrahydrate top
Crystal data top
[Mn(C10H8N2)(H2O)4][Mn2(C8H3O7S)2(C10H8N2)2(H2O)4]·4H2OF(000) = 2748
Mr = 1335.89Dx = 1.554 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8728 reflections
a = 19.656 (4) Åθ = 2.2–24.5°
b = 9.1286 (17) ŵ = 0.82 mm1
c = 32.035 (6) ÅT = 295 K
β = 96.584 (7)°Plate, yellow
V = 5710.1 (18) Å30.40 × 0.36 × 0.20 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
6179 independent reflections
Radiation source: fine-focus sealed tube4071 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
Detector resolution: 10.0 pixels mm-1θmax = 27.0°, θmin = 2.1°
ω scansh = 2423
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1111
Tmin = 0.742, Tmax = 0.850l = 4040
32384 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0531P)2 + 1.8129P]
where P = (Fo2 + 2Fc2)/3
6179 reflections(Δ/σ)max = 0.001
375 parametersΔρmax = 0.97 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Mn(C10H8N2)(H2O)4][Mn2(C8H3O7S)2(C10H8N2)2(H2O)4]·4H2OV = 5710.1 (18) Å3
Mr = 1335.89Z = 4
Monoclinic, C2/cMo Kα radiation
a = 19.656 (4) ŵ = 0.82 mm1
b = 9.1286 (17) ÅT = 295 K
c = 32.035 (6) Å0.40 × 0.36 × 0.20 mm
β = 96.584 (7)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
6179 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4071 reflections with I > 2σ(I)
Tmin = 0.742, Tmax = 0.850Rint = 0.071
32384 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.09Δρmax = 0.97 e Å3
6179 reflectionsΔρmin = 0.41 e Å3
375 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.52324 (2)0.17373 (5)0.524402 (13)0.03219 (14)
Mn20.50000.11071 (7)0.75000.03035 (18)
S10.17116 (4)0.28491 (9)0.36332 (2)0.0385 (2)
N10.60400 (14)0.1056 (3)0.57642 (7)0.0367 (6)
N20.61544 (13)0.3064 (3)0.51746 (8)0.0357 (6)
N30.56862 (14)0.0915 (3)0.75678 (8)0.0390 (6)
O10.46005 (11)0.2725 (2)0.47425 (6)0.0380 (5)
O20.36256 (11)0.1687 (2)0.48870 (7)0.0441 (6)
O30.45078 (12)0.6278 (3)0.35348 (7)0.0494 (6)
O40.35555 (11)0.6315 (3)0.30833 (6)0.0458 (6)
O50.17450 (13)0.2000 (3)0.32526 (8)0.0640 (8)
O60.14849 (13)0.1983 (4)0.39683 (9)0.0785 (10)
O70.13200 (11)0.4188 (3)0.35423 (7)0.0495 (6)
O1W0.44697 (10)0.0134 (2)0.52604 (6)0.0350 (5)
H1A0.44110.04710.55010.052*
H1B0.41370.05010.51360.052*
O2W0.47816 (11)0.2970 (3)0.57186 (7)0.0479 (6)
H2A0.50420.31350.59460.072*
H2B0.43710.28370.58060.072*
O3W0.58479 (12)0.2600 (3)0.75394 (6)0.0511 (7)
H3A0.61230.27510.77790.077*
H3B0.61030.30290.73380.077*
O4W0.49868 (11)0.1280 (2)0.81748 (6)0.0368 (5)
H4A0.48570.22510.82380.055*
H4B0.53940.11760.83270.055*
O5W0.40641 (16)0.1425 (3)0.59492 (8)0.0703 (8)
H5A0.39670.07090.61490.105*
H5B0.43810.21830.60270.105*
O6W0.5729 (2)0.4097 (4)0.36611 (13)0.1194 (13)
H6A0.60430.47860.37580.179*
H6B0.53840.46580.35240.179*
C10.39638 (16)0.2497 (3)0.46703 (8)0.0308 (7)
C20.35851 (15)0.3205 (3)0.42861 (8)0.0291 (6)
C30.39081 (16)0.4194 (3)0.40419 (8)0.0306 (7)
H30.43620.44500.41220.037*
C40.35618 (15)0.4800 (3)0.36818 (8)0.0311 (7)
C50.28809 (16)0.4397 (3)0.35622 (9)0.0337 (7)
H50.26430.47940.33210.040*
C60.25587 (15)0.3399 (3)0.38050 (8)0.0291 (6)
C70.29045 (15)0.2815 (3)0.41659 (9)0.0311 (7)
H70.26840.21640.43290.037*
C80.39040 (17)0.5872 (3)0.34085 (9)0.0340 (7)
C90.59329 (19)0.0111 (4)0.60721 (10)0.0471 (9)
H90.55130.03670.60580.056*
C100.6419 (2)0.0177 (4)0.64070 (11)0.0588 (11)
H100.63270.08280.66170.071*
C110.7038 (2)0.0510 (5)0.64246 (12)0.0635 (12)
H110.73780.03170.66440.076*
C120.7155 (2)0.1487 (4)0.61154 (11)0.0555 (10)
H120.75740.19660.61260.067*
C130.66478 (17)0.1759 (4)0.57867 (9)0.0383 (8)
C140.67202 (16)0.2851 (3)0.54492 (9)0.0361 (7)
C150.73194 (18)0.3614 (4)0.54134 (12)0.0479 (9)
H150.77060.34480.56030.057*
C160.7340 (2)0.4622 (4)0.50942 (13)0.0569 (10)
H160.77360.51550.50700.068*
C170.6765 (2)0.4829 (4)0.48121 (12)0.0519 (9)
H170.67680.54890.45910.062*
C180.61831 (19)0.4036 (4)0.48648 (10)0.0453 (8)
H180.57930.41850.46760.054*
C190.6369 (2)0.0855 (4)0.76152 (11)0.0535 (10)
H190.65760.00590.76510.064*
C200.6783 (2)0.2072 (5)0.76141 (15)0.0759 (13)
H200.72580.19900.76530.091*
C210.6470 (3)0.3405 (5)0.75534 (18)0.0976 (18)
H210.67300.42510.75420.117*
C220.5767 (3)0.3485 (5)0.75088 (16)0.0856 (15)
H220.55510.43900.74710.103*
C230.53805 (18)0.2222 (4)0.75198 (11)0.0481 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0267 (3)0.0370 (3)0.0316 (2)0.0038 (2)0.00182 (19)0.00509 (19)
Mn20.0315 (4)0.0302 (3)0.0292 (3)0.0000.0031 (3)0.000
S10.0252 (5)0.0501 (5)0.0383 (4)0.0054 (4)0.0040 (3)0.0078 (4)
N10.0360 (17)0.0400 (15)0.0335 (13)0.0056 (13)0.0015 (12)0.0044 (11)
N20.0313 (16)0.0383 (15)0.0367 (14)0.0040 (12)0.0003 (12)0.0006 (11)
N30.0380 (18)0.0372 (16)0.0403 (14)0.0053 (13)0.0016 (12)0.0037 (12)
O10.0245 (13)0.0469 (13)0.0404 (12)0.0055 (10)0.0051 (10)0.0116 (10)
O20.0263 (13)0.0559 (14)0.0490 (13)0.0031 (11)0.0002 (10)0.0247 (11)
O30.0418 (15)0.0621 (15)0.0428 (12)0.0237 (12)0.0021 (11)0.0143 (11)
O40.0379 (14)0.0610 (15)0.0378 (12)0.0096 (11)0.0011 (10)0.0182 (11)
O50.0496 (17)0.0700 (18)0.0650 (16)0.0079 (14)0.0254 (13)0.0247 (14)
O60.0302 (15)0.128 (3)0.0738 (18)0.0267 (16)0.0079 (13)0.0576 (18)
O70.0284 (14)0.0553 (15)0.0616 (15)0.0062 (11)0.0093 (11)0.0033 (12)
O1W0.0324 (13)0.0365 (12)0.0355 (11)0.0016 (10)0.0011 (9)0.0079 (9)
O2W0.0325 (14)0.0698 (17)0.0408 (12)0.0003 (12)0.0010 (10)0.0106 (11)
O3W0.0553 (17)0.0643 (16)0.0326 (11)0.0299 (13)0.0005 (11)0.0056 (11)
O4W0.0344 (13)0.0441 (13)0.0310 (10)0.0056 (10)0.0006 (9)0.0009 (9)
O5W0.104 (2)0.0568 (16)0.0541 (15)0.0119 (16)0.0275 (16)0.0038 (12)
O6W0.113 (3)0.105 (3)0.139 (3)0.016 (2)0.010 (2)0.022 (2)
C10.0299 (19)0.0316 (16)0.0299 (15)0.0009 (14)0.0000 (13)0.0020 (12)
C20.0247 (17)0.0316 (16)0.0306 (14)0.0001 (13)0.0008 (12)0.0031 (12)
C30.0256 (17)0.0344 (16)0.0312 (15)0.0035 (13)0.0001 (12)0.0011 (12)
C40.0285 (18)0.0361 (17)0.0291 (15)0.0032 (13)0.0044 (13)0.0024 (12)
C50.0297 (19)0.0428 (18)0.0272 (14)0.0005 (14)0.0023 (13)0.0056 (13)
C60.0210 (16)0.0363 (16)0.0293 (14)0.0010 (13)0.0007 (12)0.0011 (12)
C70.0285 (18)0.0319 (16)0.0329 (15)0.0038 (13)0.0029 (13)0.0052 (12)
C80.035 (2)0.0394 (18)0.0280 (15)0.0066 (15)0.0036 (14)0.0077 (13)
C90.054 (2)0.051 (2)0.0368 (18)0.0071 (18)0.0062 (16)0.0033 (15)
C100.083 (3)0.055 (2)0.0367 (19)0.023 (2)0.001 (2)0.0066 (16)
C110.069 (3)0.067 (3)0.048 (2)0.025 (2)0.021 (2)0.003 (2)
C120.044 (2)0.061 (2)0.057 (2)0.0091 (19)0.0145 (18)0.0003 (19)
C130.034 (2)0.0420 (18)0.0368 (16)0.0072 (15)0.0032 (14)0.0067 (14)
C140.0298 (19)0.0402 (18)0.0376 (16)0.0011 (14)0.0015 (14)0.0100 (13)
C150.029 (2)0.049 (2)0.065 (2)0.0034 (16)0.0048 (17)0.0138 (18)
C160.044 (3)0.047 (2)0.083 (3)0.0121 (18)0.023 (2)0.011 (2)
C170.055 (3)0.046 (2)0.058 (2)0.0078 (18)0.019 (2)0.0038 (17)
C180.049 (2)0.0446 (19)0.0428 (18)0.0084 (17)0.0074 (16)0.0079 (15)
C190.045 (2)0.051 (2)0.063 (2)0.0116 (19)0.0021 (18)0.0091 (18)
C200.049 (3)0.079 (3)0.097 (3)0.024 (2)0.002 (2)0.019 (3)
C210.083 (4)0.060 (3)0.143 (5)0.035 (3)0.016 (3)0.030 (3)
C220.085 (4)0.038 (2)0.129 (4)0.013 (2)0.010 (3)0.017 (2)
C230.055 (2)0.0366 (19)0.050 (2)0.0049 (17)0.0065 (19)0.0032 (15)
Geometric parameters (Å, º) top
Mn1—N12.253 (3)O6W—H6B0.9184
Mn1—N22.212 (3)C1—C21.509 (4)
Mn1—O12.116 (2)C2—C31.394 (4)
Mn1—O1W2.278 (2)C2—C71.395 (4)
Mn1—O1Wi2.305 (2)C3—C41.386 (4)
Mn1—O2W2.161 (2)C3—H30.9300
Mn2—N3ii2.282 (3)C4—C51.398 (4)
Mn2—N32.282 (3)C4—C81.521 (4)
Mn2—O3W2.145 (2)C5—C61.396 (4)
Mn2—O3Wii2.145 (2)C5—H50.9300
Mn2—O4Wii2.1707 (19)C6—C71.379 (4)
Mn2—O4W2.1707 (19)C7—H70.9300
S1—O61.444 (2)C9—C101.378 (5)
S1—O51.452 (3)C9—H90.9300
S1—O71.456 (2)C10—C111.364 (6)
S1—C61.765 (3)C10—H100.9300
N1—C91.345 (4)C11—C121.372 (5)
N1—C131.351 (4)C11—H110.9300
N2—C181.337 (4)C12—C131.387 (5)
N2—C141.351 (4)C12—H120.9300
N3—C191.334 (4)C13—C141.490 (4)
N3—C231.337 (4)C14—C151.384 (4)
O1—C11.263 (3)C15—C161.380 (5)
O2—C11.255 (3)C15—H150.9300
O3—C81.265 (4)C16—C171.377 (5)
O4—C81.247 (3)C16—H160.9300
O1W—Mn1i2.305 (2)C17—C181.380 (5)
O1W—H1A0.8508C17—H170.9300
O1W—H1B0.9294C18—H180.9300
O2W—H2A0.8554C19—C201.378 (5)
O2W—H2B0.8930C19—H190.9300
O3W—H3A0.8964C20—C211.368 (6)
O3W—H3B0.9466C20—H200.9300
O4W—H4A0.9507C21—C221.375 (7)
O4W—H4B0.8932C21—H210.9300
O5W—H5A0.9496C22—C231.383 (5)
O5W—H5B0.9445C22—H220.9300
O6W—H6A0.9118C23—C23ii1.486 (7)
O1—Mn1—O2W93.44 (9)C3—C2—C7119.6 (3)
O1—Mn1—N296.13 (9)C3—C2—C1121.4 (3)
O2W—Mn1—N2101.09 (9)C7—C2—C1118.9 (2)
O1—Mn1—N1168.94 (9)C4—C3—C2120.9 (3)
O2W—Mn1—N186.24 (9)C4—C3—H3119.5
N2—Mn1—N173.13 (9)C2—C3—H3119.5
O1—Mn1—O1W90.36 (8)C3—C4—C5119.1 (3)
O2W—Mn1—O1W92.89 (8)C3—C4—C8121.9 (3)
N2—Mn1—O1W164.17 (8)C5—C4—C8119.0 (3)
N1—Mn1—O1W100.70 (9)C6—C5—C4120.0 (3)
O1—Mn1—O1Wi84.97 (8)C6—C5—H5120.0
O2W—Mn1—O1Wi168.90 (8)C4—C5—H5120.0
N2—Mn1—O1Wi90.01 (8)C7—C6—C5120.5 (3)
N1—Mn1—O1Wi97.42 (8)C7—C6—S1120.6 (2)
O1W—Mn1—O1Wi76.15 (8)C5—C6—S1118.9 (2)
O3W—Mn2—O3Wii101.14 (14)C6—C7—C2119.9 (3)
O3W—Mn2—O4Wii85.10 (8)C6—C7—H7120.1
O3Wii—Mn2—O4Wii89.62 (8)C2—C7—H7120.1
O3W—Mn2—O4W89.62 (8)O4—C8—O3125.3 (3)
O3Wii—Mn2—O4W85.10 (8)O4—C8—C4116.9 (3)
O4Wii—Mn2—O4W171.68 (12)O3—C8—C4117.7 (3)
O3W—Mn2—N3ii165.06 (10)N1—C9—C10122.7 (4)
O3Wii—Mn2—N3ii93.52 (10)N1—C9—H9118.6
O4Wii—Mn2—N3ii92.20 (8)C10—C9—H9118.6
O4W—Mn2—N3ii94.54 (9)C11—C10—C9118.7 (4)
O3W—Mn2—N393.52 (10)C11—C10—H10120.7
O3Wii—Mn2—N3165.06 (10)C9—C10—H10120.7
O4Wii—Mn2—N394.54 (8)C10—C11—C12119.5 (3)
O4W—Mn2—N392.20 (8)C10—C11—H11120.3
N3ii—Mn2—N372.01 (14)C12—C11—H11120.3
O6—S1—O5112.31 (19)C11—C12—C13119.9 (4)
O6—S1—O7114.02 (17)C11—C12—H12120.0
O5—S1—O7110.72 (14)C13—C12—H12120.0
O6—S1—C6106.50 (14)N1—C13—C12120.6 (3)
O5—S1—C6106.36 (14)N1—C13—C14115.9 (3)
O7—S1—C6106.37 (14)C12—C13—C14123.4 (3)
C9—N1—C13118.5 (3)N2—C14—C15121.2 (3)
C9—N1—Mn1124.3 (2)N2—C14—C13115.4 (3)
C13—N1—Mn1116.87 (19)C15—C14—C13123.4 (3)
C18—N2—C14118.5 (3)C16—C15—C14119.6 (3)
C18—N2—Mn1122.9 (2)C16—C15—H15120.2
C14—N2—Mn1118.6 (2)C14—C15—H15120.2
C19—N3—C23118.9 (3)C17—C16—C15119.1 (3)
C19—N3—Mn2123.6 (2)C17—C16—H16120.4
C23—N3—Mn2117.3 (2)C15—C16—H16120.4
C1—O1—Mn1123.47 (18)C16—C17—C18118.5 (3)
Mn1—O1W—Mn1i103.85 (8)C16—C17—H17120.8
Mn1—O1W—H1A116.7C18—C17—H17120.8
Mn1i—O1W—H1A118.6N2—C18—C17123.0 (3)
Mn1—O1W—H1B87.4N2—C18—H18118.5
Mn1i—O1W—H1B108.5C17—C18—H18118.5
H1A—O1W—H1B117.0N3—C19—C20123.6 (4)
Mn1—O2W—H2A116.0N3—C19—H19118.2
Mn1—O2W—H2B127.5C20—C19—H19118.2
H2A—O2W—H2B103.2C21—C20—C19117.4 (4)
Mn2—O3W—H3A122.4C21—C20—H20121.3
Mn2—O3W—H3B133.7C19—C20—H20121.3
H3A—O3W—H3B101.9C20—C21—C22119.6 (4)
Mn2—O4W—H4A108.2C20—C21—H21120.2
Mn2—O4W—H4B115.0C22—C21—H21120.2
H4A—O4W—H4B103.2C21—C22—C23120.0 (4)
H5A—O5W—H5B120.3C21—C22—H22120.0
H6A—O6W—H6B102.3C23—C22—H22120.0
O2—C1—O1124.9 (3)N3—C23—C22120.4 (4)
O2—C1—C2117.4 (3)N3—C23—C23ii116.40 (19)
O1—C1—C2117.7 (2)C22—C23—C23ii123.2 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O5W0.851.872.701 (3)164
O1W—H1B···O20.931.622.548 (3)173
O2W—H2A···O3iii0.851.872.716 (3)170
O2W—H2B···O6iv0.891.912.789 (3)167
O3W—H3A···O5v0.901.852.746 (3)176
O3W—H3B···O4iii0.951.682.621 (3)170
O4W—H4A···O3vi0.951.822.727 (3)157
O4W—H4B···O7v0.891.902.780 (3)168
O5W—H5A···O7iv0.951.832.770 (4)170
O5W—H5B···O6Wi0.952.042.749 (5)131
O6W—H6A···O6vii0.912.263.128 (5)160
O6W—H6B···O30.922.273.109 (5)151
C16—H16···O2vii0.932.363.281 (4)169
C17—H17···O6vii0.932.433.337 (5)166
Symmetry codes: (i) x+1, y, z+1; (iii) x+1, y+1, z+1; (iv) x+1/2, y+1/2, z+1; (v) x+1/2, y+1/2, z+1/2; (vi) x, y+1, z+1/2; (vii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Mn(C10H8N2)(H2O)4][Mn2(C8H3O7S)2(C10H8N2)2(H2O)4]·4H2O
Mr1335.89
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)19.656 (4), 9.1286 (17), 32.035 (6)
β (°) 96.584 (7)
V3)5710.1 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.82
Crystal size (mm)0.40 × 0.36 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.742, 0.850
No. of measured, independent and
observed [I > 2σ(I)] reflections
32384, 6179, 4071
Rint0.071
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.123, 1.09
No. of reflections6179
No. of parameters375
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.97, 0.41

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Mn1—N12.253 (3)Mn1—O2W2.161 (2)
Mn1—N22.212 (3)Mn2—N32.282 (3)
Mn1—O12.116 (2)Mn2—O3W2.145 (2)
Mn1—O1W2.278 (2)Mn2—O4W2.1707 (19)
Mn1—O1Wi2.305 (2)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O5W0.851.872.701 (3)164
O1W—H1B···O20.931.622.548 (3)173
O2W—H2A···O3ii0.851.872.716 (3)170
O2W—H2B···O6iii0.891.912.789 (3)167
O3W—H3A···O5iv0.901.852.746 (3)176
O3W—H3B···O4ii0.951.682.621 (3)170
O4W—H4A···O3v0.951.822.727 (3)157
O4W—H4B···O7iv0.891.902.780 (3)168
O5W—H5A···O7iii0.951.832.770 (4)170
O5W—H5B···O6Wi0.952.042.749 (5)131
O6W—H6A···O6vi0.912.263.128 (5)160
O6W—H6B···O30.922.273.109 (5)151
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x+1/2, y+1/2, z+1; (iv) x+1/2, y+1/2, z+1/2; (v) x, y+1, z+1/2; (vi) x+1/2, y+1/2, z.
 

Acknowledgements

This work was supported by the ZIJIN project of Zhejiang University, China.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationCotton, F. A. & Wilkinson, G. (1972). Advances in Inorganic Chemistry, p. 120. New York: John Wiley & Sons.  Google Scholar
First citationDeisenhofer, J. & Michel, H. (1989). EMBO J. 8, 2149–2170.  CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationPan, T.-T., Su, J.-R. & Xu, D.-J. (2006). Acta Cryst. E62, m2183–m2185.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, J.-R. & Xu, D.-J. (2004). J. Coord. Chem. 57, 223–229.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, B.-Y., Nie, J.-J. & Xu, D.-J. (2008). Acta Cryst. E64, m986.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages m1003-m1004
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds