metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(di-n-propyl­amine-κN)bis­­(tri-tert-but­oxy­silane­thiol­ato-κS)chromium(II)

aDepartment of Chemistry, Technical University of Gdańsk, 11/12 G. Narutowicz Street, 80952 – PL Gdańsk, Poland
*Correspondence e-mail: kasiab29@wp.pl

(Received 12 October 2007; accepted 13 October 2007; online 6 December 2007)

The title compound, [Cr(C12H27O3SSi)2(C6H15N)2], is a mol­ecular chromium(II) thiol­ate that is coordinated by two dipropyl­amine ligands in a square-planar environment. The mol­ecule lies on an inversion site.

Related literature

For (tetra­hydro­furan)bis­(tri-tert-butoxy­silanethiol­ato)­chromium(II), see: Ciborska et al. (2007[Ciborska, A., Baranowska, K. & Wojnowski, W. (2007). Acta Cryst. E63, m1239-m1241.]). For the synthetic procedures, see: Perrin & Armarego (1988[Perrin, D. D. & Armarego, W. L. F. (1988). Purification of Laboratory Chemicals. Oxford: Pergamon Press.]); Piękoś & Wojnowski (1962[Piękoś, R. & Wojnowski, W. (1962). Z. Anorg. Allg. Chem. 318, 212-216.]); Wojnowska & Wojnowski (1974[Wojnowska, M. & Wojnowski, W. (1974). Z. Anorg. Allg. Chem. 403, 179-185.]). For comparison of Cr—S bond lengths, see: Okura et al. (1985[Okura, I., Kaji, N., Aono, S., Kita, T. & Yamada, A. (1985). Inorg. Chem. 24, 453-454.]); Ito (2002[Ito, T. (2002). Acta Cryst. E58, m517-m518.]); Ciborska et al. (2007[Ciborska, A., Baranowska, K. & Wojnowski, W. (2007). Acta Cryst. E63, m1239-m1241.]).

[Scheme 1]

Experimental

Crystal data
  • [Cr(C12H27O3SSi)2(C6H15N)2]

  • Mr = 813.35

  • Monoclinic, P 21 /n

  • a = 9.3573 (8) Å

  • b = 15.6328 (12) Å

  • c = 16.4333 (12) Å

  • β = 93.296 (7)°

  • V = 2399.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 120 (2) K

  • 0.52 × 0.27 × 0.22 mm

Data collection
  • Oxford Diffraction KM-4 CCDdiffractometer

  • Absorption correction: none

  • 15205 measured reflections

  • 4230 independent reflections

  • 3916 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.139

  • S = 1.07

  • 4230 reflections

  • 234 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Version 1.171. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Version 1.171. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

We present here the crystal structure of the title compound (I), which is the first example of square-planar chromium(II) complex (Fig.1). It was obtained in the reaction of anhydrous Cr(II) chloride with sodium tri-tert-butoxysilanethiolate and dipropylamine. The Cr(II) ion is coordinated by two S atoms of the tri-tert-butoxysilanethiolate ligand, and two N atoms of the amine. The central Cr atom sits on an inversion centre at Wyckoff position a (1/2, 1/2, 1/2). The amine ligand forms intramolecular hydrogen bonds of the N–H···O type. The trans angles of the square base are then described by S–Cr–S and N–Cr–N. The Cr–S bond lengths are typical of Cr-thiolate complexes (Okura et al., 1985; Ito 2002; Ciborska et al., 2007). Selected data on important bond lengths and angles are compared in Table.1. Molecules of (I) pack in the crystal structure as discrete entities with no interactions other than von der Waals. Compound (I) is one of the few structurally defined planar, four-coordinate Cr(II) thiolate complexes.

Related literature top

For (tetrahydrofuran)bis(tri-tert-butoxysilanethiolato)chromium(II), see: Ciborska et al. (2007). For the synthetic procedures, see Perrin & Armarego (1988); Piękoś & Wojnowski (1962); Wojnowska & Wojnowski (1974). For comparison of Cr—S bond lengths, see: Okura et al. (1985); Ito (2002); Ciborska et al. (2007).

Experimental top

All manipulations were conducted under an atmosphere of nitrogen using standard Schlenk techniques. Solvents and the amine were purified and dried by standard methods (Perrin & Armarego, 1988). The substrate (tBuO)3SiSNa was prepared according to literature methods (Piękoś & Wojnowski, 1962; Wojnowska & Wojnowski, 1974). The compound was synthesized by addition of the CrCl2 solution (0.26 g, 2.13 mmol) in tetrahydrofuran (20 ml) to (tBuO)3SiSNa solution (1.24 g, 4.12 mmol) in toluene (15 ml) and stirring for 1 h. Then, to the pale-green solution dipropylamine (0.55 ml, 0.4 g, 4 mmol) was added and stirred for next 12 h. After that the mixture was filtered. The dark blue filtrate was concentrated and cooled (250 K) afford blue crystals.

Refinement top

All H atoms were refined as riding on C atoms with methyl C—H = 0.98 Å, methylene C—H = 0.99 Å, N–H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for CH2 and amino groups and 1.5Ueq(C) for CH3 groups.

Structure description top

We present here the crystal structure of the title compound (I), which is the first example of square-planar chromium(II) complex (Fig.1). It was obtained in the reaction of anhydrous Cr(II) chloride with sodium tri-tert-butoxysilanethiolate and dipropylamine. The Cr(II) ion is coordinated by two S atoms of the tri-tert-butoxysilanethiolate ligand, and two N atoms of the amine. The central Cr atom sits on an inversion centre at Wyckoff position a (1/2, 1/2, 1/2). The amine ligand forms intramolecular hydrogen bonds of the N–H···O type. The trans angles of the square base are then described by S–Cr–S and N–Cr–N. The Cr–S bond lengths are typical of Cr-thiolate complexes (Okura et al., 1985; Ito 2002; Ciborska et al., 2007). Selected data on important bond lengths and angles are compared in Table.1. Molecules of (I) pack in the crystal structure as discrete entities with no interactions other than von der Waals. Compound (I) is one of the few structurally defined planar, four-coordinate Cr(II) thiolate complexes.

For (tetrahydrofuran)bis(tri-tert-butoxysilanethiolato)chromium(II), see: Ciborska et al. (2007). For the synthetic procedures, see Perrin & Armarego (1988); Piękoś & Wojnowski (1962); Wojnowska & Wojnowski (1974). For comparison of Cr—S bond lengths, see: Okura et al. (1985); Ito (2002); Ciborska et al. (2007).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell refinement: CrysAlis RED (Oxford Diffraction, 2005); data reduction: CrysAlis RED (Oxford Diffraction, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. C-bound H atoms have been omitted.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a-axis.
Bis(di-n-propylamine-κN)bis(tri-tert- butoxysilanethiolato-κS)chromium(II) top
Crystal data top
[Cr(C12H27O3SSi)2(C6H15N)2]F(000) = 892
Mr = 813.35Dx = 1.126 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8752 reflections
a = 9.3573 (8) Åθ = 2.9–32.5°
b = 15.6328 (12) ŵ = 0.41 mm1
c = 16.4333 (12) ÅT = 120 K
β = 93.296 (7)°Prism, blue
V = 2399.9 (3) Å30.52 × 0.27 × 0.22 mm
Z = 2
Data collection top
Oxford Diffraction KM-4 CCD
diffractometer
3916 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
Detector resolution: 8.1883 pixels mm-1θmax = 25.1°, θmin = 2.8°
ω (0.75° width) scansh = 1111
15205 measured reflectionsk = 1816
4230 independent reflectionsl = 1914
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0625P)2 + 4.3543P]
where P = (Fo2 + 2Fc2)/3
4230 reflections(Δ/σ)max = 0.001
234 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Cr(C12H27O3SSi)2(C6H15N)2]V = 2399.9 (3) Å3
Mr = 813.35Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.3573 (8) ŵ = 0.41 mm1
b = 15.6328 (12) ÅT = 120 K
c = 16.4333 (12) Å0.52 × 0.27 × 0.22 mm
β = 93.296 (7)°
Data collection top
Oxford Diffraction KM-4 CCD
diffractometer
3916 reflections with I > 2σ(I)
15205 measured reflectionsRint = 0.056
4230 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.07Δρmax = 0.59 e Å3
4230 reflectionsΔρmin = 0.37 e Å3
234 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8592 (3)0.30282 (17)0.12476 (17)0.0227 (6)
C20.8284 (3)0.25962 (19)0.20505 (17)0.0282 (6)
H2A0.7750.20660.19390.042*
H2B0.77150.29810.23740.042*
H2C0.91890.24640.23540.042*
C30.7208 (3)0.31714 (19)0.07329 (19)0.0300 (7)
H3A0.74280.34220.02080.045*
H3B0.65880.35620.10190.045*
H3C0.67170.26230.06410.045*
C40.9378 (3)0.38698 (18)0.14046 (17)0.0264 (6)
H4A1.02920.3760.17080.04*
H4B0.87910.42490.17230.04*
H4C0.95580.41430.08830.04*
C51.2379 (3)0.35502 (17)0.01745 (16)0.0212 (6)
C61.1047 (3)0.35943 (19)0.07507 (17)0.0288 (6)
H6A1.07550.30140.09140.043*
H6B1.12580.39260.12350.043*
H6C1.0270.38710.04740.043*
C71.2852 (4)0.44407 (18)0.00984 (18)0.0310 (7)
H7A1.20780.4720.03750.046*
H7B1.30840.4780.03780.046*
H7C1.37010.43970.04740.046*
C81.3579 (3)0.30911 (19)0.05804 (18)0.0292 (6)
H8A1.44010.30250.01880.044*
H8B1.38640.34260.10480.044*
H8C1.32460.25260.07670.044*
C91.2921 (3)0.1975 (2)0.22075 (18)0.0282 (6)
C101.3575 (4)0.2848 (2)0.2355 (2)0.0414 (8)
H10A1.38280.30950.18350.062*
H10B1.44380.27940.27180.062*
H10C1.28830.3220.26070.062*
C111.3932 (4)0.1416 (3)0.1761 (3)0.0706 (15)
H11A1.35110.08460.16820.106*
H11B1.48440.13680.20830.106*
H11C1.40980.16710.1230.106*
C121.2512 (4)0.1601 (3)0.3016 (2)0.0618 (13)
H12A1.17540.19490.32360.093*
H12B1.33510.15980.34010.093*
H12C1.21670.10140.29310.093*
C130.8096 (3)0.02560 (17)0.14156 (15)0.0203 (5)
H13A0.77030.0330.1360.024*
H13B0.73940.0610.16930.024*
C140.9489 (3)0.02298 (18)0.19315 (16)0.0233 (6)
H14A0.98980.08130.19730.028*
H14B1.0180.0140.16640.028*
C150.9268 (3)0.0110 (2)0.27823 (17)0.0311 (7)
H15A0.85850.02560.30490.047*
H15B1.01840.0110.31030.047*
H15C0.88930.06950.27440.047*
C160.6911 (3)0.06510 (17)0.01127 (16)0.0203 (5)
H16A0.6220.09870.04160.024*
H16B0.65250.00640.00420.024*
C170.7052 (3)0.10509 (19)0.07170 (17)0.0254 (6)
H17A0.77430.07170.10230.03*
H17B0.74250.16410.0650.03*
C180.5605 (3)0.1073 (2)0.12003 (19)0.0324 (7)
H18A0.5290.04870.13250.049*
H18B0.57010.13890.1710.049*
H18C0.48980.13580.08760.049*
N10.8296 (2)0.06135 (14)0.05944 (13)0.0187 (5)
H10.85810.11780.06770.022*
O10.94135 (19)0.24496 (11)0.07689 (11)0.0196 (4)
O21.2078 (2)0.31042 (11)0.05632 (11)0.0209 (4)
O31.15806 (19)0.20698 (12)0.17357 (11)0.0217 (4)
Si11.11443 (7)0.22632 (4)0.07776 (4)0.01703 (19)
S11.14306 (7)0.12779 (4)0.00428 (4)0.02372 (19)
Cr11000.01522 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0202 (13)0.0198 (13)0.0281 (14)0.0042 (11)0.0011 (11)0.0043 (11)
C20.0295 (15)0.0251 (15)0.0303 (15)0.0039 (12)0.0060 (12)0.0023 (12)
C30.0247 (15)0.0274 (15)0.0374 (16)0.0083 (12)0.0041 (12)0.0095 (13)
C40.0271 (15)0.0223 (14)0.0299 (15)0.0012 (11)0.0033 (11)0.0072 (11)
C50.0239 (14)0.0159 (13)0.0234 (13)0.0055 (11)0.0009 (10)0.0030 (10)
C60.0293 (16)0.0282 (15)0.0280 (14)0.0020 (12)0.0056 (12)0.0024 (12)
C70.0415 (18)0.0208 (14)0.0306 (15)0.0107 (13)0.0018 (13)0.0018 (12)
C80.0266 (15)0.0293 (15)0.0321 (15)0.0011 (12)0.0057 (12)0.0033 (12)
C90.0190 (14)0.0318 (16)0.0327 (15)0.0001 (12)0.0083 (11)0.0045 (12)
C100.0363 (18)0.047 (2)0.0396 (18)0.0114 (16)0.0104 (14)0.0010 (15)
C110.040 (2)0.081 (3)0.087 (3)0.033 (2)0.028 (2)0.038 (3)
C120.040 (2)0.090 (3)0.052 (2)0.025 (2)0.0263 (17)0.041 (2)
C130.0223 (13)0.0174 (13)0.0218 (13)0.0021 (10)0.0066 (10)0.0014 (10)
C140.0236 (14)0.0256 (14)0.0212 (13)0.0027 (11)0.0044 (10)0.0032 (11)
C150.0342 (17)0.0349 (17)0.0243 (14)0.0046 (13)0.0021 (12)0.0041 (12)
C160.0152 (12)0.0195 (13)0.0265 (13)0.0034 (10)0.0041 (10)0.0005 (10)
C170.0240 (14)0.0258 (14)0.0260 (14)0.0004 (11)0.0016 (11)0.0027 (11)
C180.0288 (16)0.0348 (17)0.0330 (15)0.0069 (13)0.0036 (12)0.0028 (13)
N10.0197 (11)0.0154 (11)0.0211 (11)0.0002 (9)0.0034 (8)0.0000 (8)
O10.0179 (9)0.0176 (9)0.0231 (9)0.0021 (7)0.0002 (7)0.0033 (7)
O20.0230 (10)0.0175 (9)0.0220 (9)0.0046 (7)0.0002 (7)0.0003 (7)
O30.0159 (9)0.0234 (10)0.0253 (10)0.0014 (8)0.0023 (7)0.0034 (8)
Si10.0162 (4)0.0147 (4)0.0202 (4)0.0003 (3)0.0011 (3)0.0008 (3)
S10.0239 (4)0.0162 (3)0.0321 (4)0.0046 (3)0.0113 (3)0.0061 (3)
Cr10.0152 (3)0.0136 (3)0.0171 (3)0.0002 (2)0.0027 (2)0.0008 (2)
Geometric parameters (Å, º) top
C1—O11.448 (3)C11—H11B0.98
C1—C31.522 (4)C11—H11C0.98
C1—C41.522 (4)C12—H12A0.98
C1—C21.524 (4)C12—H12B0.98
C2—H2A0.98C12—H12C0.98
C2—H2B0.98C13—N11.482 (3)
C2—H2C0.98C13—C141.514 (4)
C3—H3A0.98C13—H13A0.99
C3—H3B0.98C13—H13B0.99
C3—H3C0.98C14—C151.521 (4)
C4—H4A0.98C14—H14A0.99
C4—H4B0.98C14—H14B0.99
C4—H4C0.98C15—H15A0.98
C5—O21.440 (3)C15—H15B0.98
C5—C81.519 (4)C15—H15C0.98
C5—C71.521 (4)C16—N11.480 (3)
C5—C61.523 (4)C16—C171.513 (4)
C6—H6A0.98C16—H16A0.99
C6—H6B0.98C16—H16B0.99
C6—H6C0.98C17—C181.530 (4)
C7—H7A0.98C17—H17A0.99
C7—H7B0.98C17—H17B0.99
C7—H7C0.98C18—H18A0.98
C8—H8A0.98C18—H18B0.98
C8—H8B0.98C18—H18C0.98
C8—H8C0.98N1—Cr12.144 (2)
C9—O31.444 (3)N1—H10.93
C9—C111.508 (5)O1—Si11.6448 (19)
C9—C101.509 (4)O2—Si11.6283 (19)
C9—C121.520 (4)O3—Si11.6320 (19)
C10—H10A0.98Si1—S12.0744 (9)
C10—H10B0.98S1—Cr12.4080 (7)
C10—H10C0.98Cr1—N1i2.144 (2)
C11—H11A0.98Cr1—S1i2.4080 (7)
O1—C1—C3104.6 (2)H11B—C11—H11C109.5
O1—C1—C4111.4 (2)C9—C12—H12A109.5
C3—C1—C4110.8 (2)C9—C12—H12B109.5
O1—C1—C2109.0 (2)H12A—C12—H12B109.5
C3—C1—C2110.4 (2)C9—C12—H12C109.5
C4—C1—C2110.5 (2)H12A—C12—H12C109.5
C1—C2—H2A109.5H12B—C12—H12C109.5
C1—C2—H2B109.5N1—C13—C14111.8 (2)
H2A—C2—H2B109.5N1—C13—H13A109.3
C1—C2—H2C109.5C14—C13—H13A109.3
H2A—C2—H2C109.5N1—C13—H13B109.3
H2B—C2—H2C109.5C14—C13—H13B109.3
C1—C3—H3A109.5H13A—C13—H13B107.9
C1—C3—H3B109.5C13—C14—C15111.5 (2)
H3A—C3—H3B109.5C13—C14—H14A109.3
C1—C3—H3C109.5C15—C14—H14A109.3
H3A—C3—H3C109.5C13—C14—H14B109.3
H3B—C3—H3C109.5C15—C14—H14B109.3
C1—C4—H4A109.5H14A—C14—H14B108
C1—C4—H4B109.5C14—C15—H15A109.5
H4A—C4—H4B109.5C14—C15—H15B109.5
C1—C4—H4C109.5H15A—C15—H15B109.5
H4A—C4—H4C109.5C14—C15—H15C109.5
H4B—C4—H4C109.5H15A—C15—H15C109.5
O2—C5—C8109.0 (2)H15B—C15—H15C109.5
O2—C5—C7105.2 (2)N1—C16—C17112.3 (2)
C8—C5—C7110.6 (2)N1—C16—H16A109.1
O2—C5—C6110.6 (2)C17—C16—H16A109.1
C8—C5—C6110.3 (2)N1—C16—H16B109.1
C7—C5—C6110.9 (2)C17—C16—H16B109.1
C5—C6—H6A109.5H16A—C16—H16B107.9
C5—C6—H6B109.5C16—C17—C18110.9 (2)
H6A—C6—H6B109.5C16—C17—H17A109.5
C5—C6—H6C109.5C18—C17—H17A109.5
H6A—C6—H6C109.5C16—C17—H17B109.5
H6B—C6—H6C109.5C18—C17—H17B109.5
C5—C7—H7A109.5H17A—C17—H17B108
C5—C7—H7B109.5C17—C18—H18A109.5
H7A—C7—H7B109.5C17—C18—H18B109.5
C5—C7—H7C109.5H18A—C18—H18B109.5
H7A—C7—H7C109.5C17—C18—H18C109.5
H7B—C7—H7C109.5H18A—C18—H18C109.5
C5—C8—H8A109.5H18B—C18—H18C109.5
C5—C8—H8B109.5C16—N1—C13110.5 (2)
H8A—C8—H8B109.5C16—N1—Cr1115.17 (15)
C5—C8—H8C109.5C13—N1—Cr1112.46 (16)
H8A—C8—H8C109.5C16—N1—H1106
H8B—C8—H8C109.5C13—N1—H1106
O3—C9—C11110.4 (3)Cr1—N1—H1106
O3—C9—C10109.0 (2)C1—O1—Si1131.23 (16)
C11—C9—C10110.0 (3)C5—O2—Si1134.93 (16)
O3—C9—C12104.7 (2)C9—O3—Si1134.30 (17)
C11—C9—C12113.5 (4)O2—Si1—O3104.52 (10)
C10—C9—C12109.1 (3)O2—Si1—O1113.29 (10)
C9—C10—H10A109.5O3—Si1—O1103.46 (9)
C9—C10—H10B109.5O2—Si1—S1111.60 (7)
H10A—C10—H10B109.5O3—Si1—S1117.06 (8)
C9—C10—H10C109.5O1—Si1—S1106.85 (7)
H10A—C10—H10C109.5Si1—S1—Cr1120.28 (3)
H10B—C10—H10C109.5N1i—Cr1—N1180.00 (15)
C9—C11—H11A109.5N1i—Cr1—S185.90 (6)
C9—C11—H11B109.5N1—Cr1—S194.10 (6)
H11A—C11—H11B109.5N1i—Cr1—S1i94.10 (6)
C9—C11—H11C109.5N1—Cr1—S1i85.90 (6)
H11A—C11—H11C109.5S1—Cr1—S1i180.000 (17)
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.932.143.063 (3)174

Experimental details

Crystal data
Chemical formula[Cr(C12H27O3SSi)2(C6H15N)2]
Mr813.35
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)9.3573 (8), 15.6328 (12), 16.4333 (12)
β (°) 93.296 (7)
V3)2399.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.52 × 0.27 × 0.22
Data collection
DiffractometerOxford Diffraction KM-4 CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15205, 4230, 3916
Rint0.056
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.139, 1.07
No. of reflections4230
No. of parameters234
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.37

Computer programs: CrysAlis CCD (Oxford Diffraction, 2005), CrysAlis RED (Oxford Diffraction, 2005), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

This work was carried out with financial support from the Polish State Committee (grant No. 3 T09A 12028).

References

First citationCiborska, A., Baranowska, K. & Wojnowski, W. (2007). Acta Cryst. E63, m1239–m1241.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationIto, T. (2002). Acta Cryst. E58, m517–m518.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkura, I., Kaji, N., Aono, S., Kita, T. & Yamada, A. (1985). Inorg. Chem. 24, 453–454.  CrossRef Web of Science Google Scholar
First citationOxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Version 1.171. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationPerrin, D. D. & Armarego, W. L. F. (1988). Purification of Laboratory Chemicals. Oxford: Pergamon Press.  Google Scholar
First citationPiękoś, R. & Wojnowski, W. (1962). Z. Anorg. Allg. Chem. 318, 212–216.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationWojnowska, M. & Wojnowski, W. (1974). Z. Anorg. Allg. Chem. 403, 179–185.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds