Download citation
Download citation
link to html
The title compound, [Pd(C7H2Br3)(C12H10OP)(C13H13OP)]·CH3OH, the by-product of an attempted Suzuki-coupling reaction, has two different diphenyl­phosphane groups bonded to Pd and is the first structural example of a metal complex having a diphenyl­phosphanite anion [–P(O)Ph2] and a diphenyl­methoxy­phosphane mol­ecule (MeOPPh2) coordinated to the same metal centre. Mol­ecules are linked by hydrogen bonds, Br...Br inter­actions [3.729 (1) Å] and π–π stacking inter­actions parallel to the a axis [inter­planar distance 3.496 (8) Å and centroid-to-centroid distance 3.507 (1) Å].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807046399/ng2311sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807046399/ng2311Isup2.hkl
Contains datablock I

CCDC reference: 663656

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.039
  • wR factor = 0.111
  • Data-to-parameter ratio = 18.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.10 PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.84 Ratio PLAT480_ALERT_4_C Long H...A H-Bond Reported H19 .. BR3 .. 2.95 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H31 .. BR1 .. 2.99 Ang. PLAT731_ALERT_1_C Bond Calc 1.49(2), Rep 1.488(9) ...... 2.22 su-Ra O5 -C33 1.555 1.555 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 2 C H4 O
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 13
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 7 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

In the current paper the title compound, (I), is presented as an example of a by-product formed during the catalytic cycle. It should be noted that both a diphenylphosphanito and a diphenylmethoxyphosphane, Fig. 1, was formed from the initial starting diphenylnaphtolphosphane. In either case, the diphenylnaphtolphosphane moiety decomposed and in the one instance a Suzuki coupling occurred to form the diphenylmethoxyphosphane derivative. This product is in contrast to the more readily observed hydroxyl derivative.

The Pd—O and Pd—P bond distances only differ slightly, Table 1. This relative similarity in bond distances (Pd—P) might be due to the hydrogen bonding observed between the methanol solvate and the diphenylphosphaneoxide oxygen atom, Table 2. The P—O(Me) and P?O bond distances are significantly different indicating the bond order in which the oxygen atoms bond with the phosphorous atom.

Weak intra- and intermolecular interactions is observed in the solid state, see Table 2. The role of the bromo-atoms on the solid state arrangement can be observed from the intermolecular distances between Br3···Br7 [1 - x, 1 - y, 1 - z] and Br5···Pd [1 - x, 1 - y, 1 - z] in the order of 3.729 (1) and 3.717 (1) Å, respectively. This interaction is further enhanced through ππ stacking of the cycloheptatriene rings systems of the bromo moieties with an interplanar distance of 3.496 (8) Å and a centroid-to-centroid distance of 3.507 (1) Å. The ordering of the solid state can be observed as stacking along the a axis, see Figure 2.

Related literature top

Common examples of the class of Pd—P-bonded compounds represented by the title compound have phosphinate and phosphane hydroxide ligands with a hydrogen-bond interaction between the oxo and hydroxo groups; see: Gebauer et al. (1992, 1995); Pryjomska et al. (2006). [Please revise Fig. 1 with atom label numbers inline, not subscript]

Experimental top

The title compound was obtained unintentionally as the product of a Suzuki coupling reaction of diphenylnaphtolphosphane and bis(3,5,7-tribromotropolonato)palladium(II) in methanol (10 ml) solution. On evaporation of the solvent; crystals suitable for X-Ray crystallography was obtained.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 and 0.98 Å and with Uiso(H) = 1.2 times Ueq(C aromatic) and Uiso(H) = 1.2 times Ueq(C methyl). The final difference Fourier map had a large peak near Pd.

Structure description top

In the current paper the title compound, (I), is presented as an example of a by-product formed during the catalytic cycle. It should be noted that both a diphenylphosphanito and a diphenylmethoxyphosphane, Fig. 1, was formed from the initial starting diphenylnaphtolphosphane. In either case, the diphenylnaphtolphosphane moiety decomposed and in the one instance a Suzuki coupling occurred to form the diphenylmethoxyphosphane derivative. This product is in contrast to the more readily observed hydroxyl derivative.

The Pd—O and Pd—P bond distances only differ slightly, Table 1. This relative similarity in bond distances (Pd—P) might be due to the hydrogen bonding observed between the methanol solvate and the diphenylphosphaneoxide oxygen atom, Table 2. The P—O(Me) and P?O bond distances are significantly different indicating the bond order in which the oxygen atoms bond with the phosphorous atom.

Weak intra- and intermolecular interactions is observed in the solid state, see Table 2. The role of the bromo-atoms on the solid state arrangement can be observed from the intermolecular distances between Br3···Br7 [1 - x, 1 - y, 1 - z] and Br5···Pd [1 - x, 1 - y, 1 - z] in the order of 3.729 (1) and 3.717 (1) Å, respectively. This interaction is further enhanced through ππ stacking of the cycloheptatriene rings systems of the bromo moieties with an interplanar distance of 3.496 (8) Å and a centroid-to-centroid distance of 3.507 (1) Å. The ordering of the solid state can be observed as stacking along the a axis, see Figure 2.

Common examples of the class of Pd—P-bonded compounds represented by the title compound have phosphinate and phosphane hydroxide ligands with a hydrogen-bond interaction between the oxo and hydroxo groups; see: Gebauer et al. (1992, 1995); Pryjomska et al. (2006). [Please revise Fig. 1 with atom label numbers inline, not subscript]

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004) and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Representation of the title compound (I), showing the numbering scheme and displacement ellipsoids (50% probability). For the carbon rings, first digit refers to ring number, second digit to atom in the ring. Hydrogen atoms omitted for clarity.
[Figure 2] Fig. 2. Fraction of the unit cell showing the stacking pattern [symmetry codes: (a) x, -y, z - 1/2; (b) -x, -y, -z].
(Diphenylmethoxyphosphane-κP)(diphenylphosphanito-κP)(3,5,7- tribromotropolonato-κ2O,O')palladium(II) methanol solvate top
Crystal data top
[Pd(C7H2Br3)(C12H10OP)(C13H13OP)]·CH4OZ = 2
Mr = 913.63F(000) = 896
Triclinic, P1Dx = 1.839 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.125 (3) ÅCell parameters from 5022 reflections
b = 11.326 (4) Åθ = 2.4–27.7°
c = 17.137 (3) ŵ = 4.33 mm1
α = 87.652 (8)°T = 100 K
β = 78.285 (7)°Plate, yellow
γ = 72.121 (8)°0.19 × 0.14 × 0.04 mm
V = 1650.0 (8) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
7543 independent reflections
Radiation source: fine-focus sealed tube6131 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 512 pixels mm-1θmax = 27.5°, θmin = 1.2°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
k = 1414
Tmin = 0.493, Tmax = 0.846l = 2222
33856 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0572P)2 + 2.8917P]
where P = (Fo2 + 2Fc2)/3
7543 reflections(Δ/σ)max = 0.001
399 parametersΔρmax = 1.92 e Å3
13 restraintsΔρmin = 0.91 e Å3
Crystal data top
[Pd(C7H2Br3)(C12H10OP)(C13H13OP)]·CH4Oγ = 72.121 (8)°
Mr = 913.63V = 1650.0 (8) Å3
Triclinic, P1Z = 2
a = 9.125 (3) ÅMo Kα radiation
b = 11.326 (4) ŵ = 4.33 mm1
c = 17.137 (3) ÅT = 100 K
α = 87.652 (8)°0.19 × 0.14 × 0.04 mm
β = 78.285 (7)°
Data collection top
Bruker APEXII area-detector
diffractometer
7543 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
6131 reflections with I > 2σ(I)
Tmin = 0.493, Tmax = 0.846Rint = 0.041
33856 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03913 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.09Δρmax = 1.92 e Å3
7543 reflectionsΔρmin = 0.91 e Å3
399 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The solvent molecule in the asymmetric unit were were identified from the difference Fourier map. Refinement of the MeOH moiety was done with the DFIX command to place the C and O atoms at an idealized distance from each other and the ISOR command was used to attempt to restrain the C atom within a certain range.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd0.79443 (4)0.29918 (3)0.25916 (2)0.01933 (9)
Br10.35292 (5)0.69319 (4)0.31393 (3)0.02862 (12)
Br20.05373 (5)0.55669 (4)0.59648 (3)0.02661 (12)
Br30.57021 (5)0.15579 (4)0.51586 (3)0.02441 (11)
P10.97836 (13)0.11498 (10)0.24798 (7)0.0202 (2)
P20.92127 (13)0.35250 (10)0.14639 (7)0.0224 (2)
O10.6711 (3)0.2547 (3)0.36606 (19)0.0240 (6)
O20.6024 (3)0.4642 (3)0.29453 (18)0.0236 (6)
O31.1000 (3)0.0763 (3)0.17293 (19)0.0255 (7)
O40.8531 (4)0.4997 (3)0.1320 (2)0.0294 (7)
O51.3757 (8)0.1108 (7)0.1698 (5)0.109 (2)
H51.29940.05060.19070.164*
C10.5507 (5)0.3391 (4)0.4014 (3)0.0205 (9)
C20.5083 (5)0.4569 (4)0.3591 (3)0.0198 (8)
C30.3716 (5)0.5589 (3)0.3854 (3)0.0199 (8)
C40.2530 (5)0.5765 (4)0.4518 (3)0.0224 (9)
H40.17120.65310.45500.027*
C50.2366 (5)0.4976 (4)0.5147 (3)0.0216 (9)
C60.3344 (5)0.3816 (4)0.5269 (3)0.0220 (9)
H60.30410.34360.57530.026*
C70.4715 (5)0.3140 (4)0.4769 (3)0.0196 (8)
C80.8745 (5)0.0001 (4)0.2719 (3)0.0228 (9)
C90.9531 (5)0.1131 (4)0.2999 (3)0.0257 (9)
H91.05140.12370.31450.031*
C100.8907 (6)0.2109 (4)0.3071 (3)0.0292 (10)
H100.94660.28850.32580.035*
C110.7459 (6)0.1955 (5)0.2870 (3)0.0329 (11)
H110.70380.26300.29050.039*
C120.6649 (6)0.0832 (5)0.2620 (3)0.0367 (12)
H120.56410.07170.25020.044*
C130.7280 (5)0.0145 (5)0.2537 (3)0.0321 (11)
H130.67090.09200.23540.038*
C141.0716 (5)0.1175 (4)0.3310 (3)0.0222 (9)
C151.2223 (5)0.1309 (4)0.3165 (3)0.0254 (9)
H151.27590.13470.26320.030*
C161.2936 (5)0.1386 (4)0.3793 (3)0.0286 (10)
H161.39660.14610.36910.034*
C171.2151 (5)0.1353 (4)0.4570 (3)0.0261 (10)
H171.26360.14150.50010.031*
C181.0648 (5)0.1230 (4)0.4721 (3)0.0256 (9)
H181.01100.12050.52550.031*
C190.9936 (5)0.1143 (4)0.4091 (3)0.0228 (9)
H190.89090.10610.41960.027*
C200.6949 (6)0.5537 (5)0.1206 (3)0.0340 (11)
H20A0.67400.64320.11320.051*
H20B0.62140.53920.16750.051*
H20C0.68110.51570.07340.051*
C210.9153 (5)0.2799 (4)0.0560 (3)0.0267 (10)
C220.8548 (6)0.1815 (4)0.0572 (3)0.0305 (10)
H220.81600.14960.10650.037*
C230.8513 (7)0.1303 (5)0.0138 (3)0.0376 (12)
H230.81150.06200.01330.045*
C240.9044 (8)0.1771 (5)0.0842 (3)0.0484 (15)
H240.89960.14210.13270.058*
C250.9657 (8)0.2754 (5)0.0864 (3)0.0516 (16)
H251.00320.30740.13600.062*
C260.9716 (7)0.3266 (5)0.0155 (3)0.0404 (13)
H261.01420.39340.01610.048*
C271.1224 (5)0.3462 (4)0.1445 (3)0.0290 (10)
C281.2481 (6)0.2606 (5)0.0974 (4)0.0435 (14)
H281.23060.20470.06310.052*
C291.4008 (6)0.2571 (6)0.1008 (4)0.0552 (17)
H291.48790.19870.06860.066*
C301.4252 (7)0.3370 (6)0.1501 (4)0.0560 (17)
H301.52970.33390.15180.067*
C311.3020 (7)0.4221 (6)0.1976 (4)0.0453 (14)
H311.32120.47740.23170.054*
C321.1494 (6)0.4265 (5)0.1954 (3)0.0328 (11)
H321.06330.48430.22860.039*
C331.460 (3)0.071 (2)0.0948 (10)0.289 (12)
H33A1.40470.01500.08440.434*
H33B1.46500.12490.05040.434*
H33C1.56750.07750.10020.434*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd0.01660 (16)0.01855 (16)0.02193 (18)0.00428 (12)0.00401 (13)0.00306 (12)
Br10.0284 (2)0.0192 (2)0.0348 (3)0.00220 (17)0.0076 (2)0.00673 (18)
Br20.0233 (2)0.0228 (2)0.0304 (3)0.00586 (17)0.00139 (18)0.00407 (17)
Br30.0233 (2)0.0216 (2)0.0265 (2)0.00448 (16)0.00538 (18)0.00626 (17)
P10.0175 (5)0.0191 (5)0.0250 (6)0.0055 (4)0.0072 (4)0.0017 (4)
P20.0193 (5)0.0220 (5)0.0258 (6)0.0083 (4)0.0019 (5)0.0016 (4)
O10.0190 (15)0.0222 (15)0.0245 (16)0.0007 (12)0.0000 (12)0.0047 (12)
O20.0202 (15)0.0210 (14)0.0268 (17)0.0029 (12)0.0046 (13)0.0053 (12)
O30.0226 (16)0.0240 (15)0.0305 (18)0.0069 (12)0.0067 (13)0.0017 (13)
O40.0295 (17)0.0222 (15)0.0352 (19)0.0089 (13)0.0025 (15)0.0026 (13)
O50.082 (4)0.099 (5)0.135 (6)0.005 (3)0.031 (4)0.008 (4)
C10.019 (2)0.0187 (19)0.026 (2)0.0058 (16)0.0092 (17)0.0024 (16)
C20.018 (2)0.021 (2)0.024 (2)0.0087 (16)0.0070 (17)0.0011 (16)
C30.022 (2)0.0127 (18)0.027 (2)0.0057 (15)0.0083 (18)0.0041 (16)
C40.019 (2)0.019 (2)0.029 (2)0.0058 (16)0.0054 (18)0.0037 (17)
C50.017 (2)0.024 (2)0.025 (2)0.0079 (16)0.0027 (17)0.0052 (17)
C60.024 (2)0.023 (2)0.021 (2)0.0102 (17)0.0062 (18)0.0015 (17)
C70.019 (2)0.0162 (18)0.025 (2)0.0045 (15)0.0087 (17)0.0042 (16)
C80.022 (2)0.022 (2)0.025 (2)0.0072 (17)0.0034 (18)0.0029 (17)
C90.022 (2)0.024 (2)0.030 (3)0.0060 (17)0.0029 (19)0.0011 (18)
C100.034 (3)0.024 (2)0.030 (3)0.0102 (19)0.006 (2)0.0024 (19)
C110.034 (3)0.040 (3)0.031 (3)0.023 (2)0.003 (2)0.001 (2)
C120.026 (2)0.046 (3)0.043 (3)0.019 (2)0.007 (2)0.005 (2)
C130.024 (2)0.033 (2)0.041 (3)0.0101 (19)0.007 (2)0.004 (2)
C140.020 (2)0.0159 (18)0.031 (2)0.0030 (15)0.0105 (18)0.0004 (17)
C150.021 (2)0.024 (2)0.031 (3)0.0063 (17)0.0060 (19)0.0037 (18)
C160.022 (2)0.030 (2)0.037 (3)0.0094 (18)0.012 (2)0.001 (2)
C170.027 (2)0.021 (2)0.035 (3)0.0075 (17)0.017 (2)0.0042 (18)
C180.031 (2)0.0168 (19)0.031 (3)0.0073 (17)0.012 (2)0.0045 (17)
C190.020 (2)0.0189 (19)0.030 (2)0.0054 (16)0.0083 (18)0.0054 (17)
C200.032 (3)0.031 (2)0.036 (3)0.006 (2)0.008 (2)0.013 (2)
C210.030 (2)0.026 (2)0.024 (2)0.0110 (18)0.0017 (19)0.0039 (18)
C220.035 (3)0.032 (2)0.031 (3)0.017 (2)0.012 (2)0.004 (2)
C230.048 (3)0.035 (3)0.038 (3)0.017 (2)0.020 (3)0.002 (2)
C240.080 (5)0.041 (3)0.028 (3)0.024 (3)0.012 (3)0.008 (2)
C250.087 (5)0.044 (3)0.025 (3)0.029 (3)0.000 (3)0.001 (2)
C260.062 (4)0.034 (3)0.027 (3)0.024 (3)0.003 (2)0.004 (2)
C270.025 (2)0.029 (2)0.035 (3)0.0136 (19)0.002 (2)0.003 (2)
C280.028 (3)0.042 (3)0.059 (4)0.014 (2)0.004 (3)0.012 (3)
C290.022 (3)0.056 (4)0.081 (5)0.010 (3)0.003 (3)0.012 (3)
C300.039 (3)0.049 (4)0.088 (5)0.028 (3)0.010 (3)0.003 (3)
C310.046 (3)0.055 (3)0.050 (4)0.030 (3)0.020 (3)0.002 (3)
C320.031 (3)0.041 (3)0.029 (3)0.015 (2)0.007 (2)0.003 (2)
C330.295 (15)0.303 (15)0.274 (15)0.101 (10)0.053 (9)0.001 (9)
Geometric parameters (Å, º) top
Pd—O12.076 (3)C14—C151.401 (6)
Pd—O22.140 (3)C15—C161.386 (6)
Pd—P22.2055 (12)C15—H150.9500
Pd—P12.2267 (12)C16—C171.383 (7)
Br1—C31.902 (4)C16—H160.9500
Br2—C51.907 (4)C17—C181.392 (6)
Br3—C71.904 (4)C17—H170.9500
P1—O31.499 (3)C18—C191.389 (6)
P1—C141.806 (4)C18—H180.9500
P1—C81.823 (4)C19—H190.9500
P2—O41.618 (3)C20—H20A0.9800
P2—C211.801 (5)C20—H20B0.9800
P2—C271.809 (5)C20—H20C0.9800
O1—C11.273 (5)C21—C261.380 (7)
O2—C21.273 (5)C21—C221.384 (6)
O4—C201.435 (6)C22—C231.378 (7)
O5—C331.488 (9)C22—H220.9500
O5—H50.8400C23—C241.357 (8)
C1—C71.412 (6)C23—H230.9500
C1—C21.475 (6)C24—C251.387 (8)
C2—C31.422 (6)C24—H240.9500
C3—C41.376 (6)C25—C261.385 (8)
C4—C51.385 (6)C25—H250.9500
C4—H40.9500C26—H260.9500
C5—C61.378 (6)C27—C281.383 (7)
C6—C71.384 (6)C27—C321.393 (7)
C6—H60.9500C28—C291.395 (8)
C8—C91.381 (6)C28—H280.9500
C8—C131.394 (6)C29—C301.358 (9)
C9—C101.384 (6)C29—H290.9500
C9—H90.9500C30—C311.372 (9)
C10—C111.391 (7)C30—H300.9500
C10—H100.9500C31—C321.386 (7)
C11—C121.362 (7)C31—H310.9500
C11—H110.9500C32—H320.9500
C12—C131.386 (7)C33—H33A0.9800
C12—H120.9500C33—H33B0.9800
C13—H130.9500C33—H33C0.9800
C14—C191.387 (6)
O1—Pd—O275.61 (11)C16—C15—C14120.3 (4)
O1—Pd—P2178.23 (9)C16—C15—H15119.8
O2—Pd—P2102.66 (9)C14—C15—H15119.8
O1—Pd—P192.64 (9)C17—C16—C15120.1 (4)
O2—Pd—P1168.03 (9)C17—C16—H16120.0
P2—Pd—P189.07 (5)C15—C16—H16120.0
O3—P1—C14110.12 (19)C16—C17—C18120.0 (4)
O3—P1—C8109.78 (19)C16—C17—H17120.0
C14—P1—C8105.7 (2)C18—C17—H17120.0
O3—P1—Pd120.99 (13)C19—C18—C17120.0 (4)
C14—P1—Pd102.86 (14)C19—C18—H18120.0
C8—P1—Pd106.28 (15)C17—C18—H18120.0
O4—P2—C21104.4 (2)C14—C19—C18120.4 (4)
O4—P2—C2797.64 (19)C14—C19—H19119.8
C21—P2—C27108.3 (2)C18—C19—H19119.8
O4—P2—Pd111.14 (13)O4—C20—H20A109.5
C21—P2—Pd117.19 (15)O4—C20—H20B109.5
C27—P2—Pd115.78 (17)H20A—C20—H20B109.5
C1—O1—Pd117.4 (3)O4—C20—H20C109.5
C2—O2—Pd115.1 (3)H20A—C20—H20C109.5
C20—O4—P2120.7 (3)H20B—C20—H20C109.5
C33—O5—H5109.5C26—C21—C22120.4 (4)
O1—C1—C7118.5 (4)C26—C21—P2117.7 (4)
O1—C1—C2115.8 (4)C22—C21—P2121.9 (4)
C7—C1—C2125.7 (4)C23—C22—C21119.5 (5)
O2—C2—C3119.6 (4)C23—C22—H22120.2
O2—C2—C1115.9 (4)C21—C22—H22120.2
C3—C2—C1124.5 (4)C24—C23—C22120.3 (5)
C4—C3—C2131.8 (4)C24—C23—H23119.9
C4—C3—Br1115.6 (3)C22—C23—H23119.9
C2—C3—Br1112.6 (3)C23—C24—C25120.9 (5)
C3—C4—C5128.8 (4)C23—C24—H24119.6
C3—C4—H4115.6C25—C24—H24119.6
C5—C4—H4115.6C26—C25—C24119.3 (5)
C6—C5—C4129.1 (4)C26—C25—H25120.3
C6—C5—Br2114.9 (3)C24—C25—H25120.3
C4—C5—Br2116.0 (3)C21—C26—C25119.6 (5)
C5—C6—C7127.7 (4)C21—C26—H26120.2
C5—C6—H6116.1C25—C26—H26120.2
C7—C6—H6116.1C28—C27—C32119.9 (5)
C6—C7—C1132.1 (4)C28—C27—P2122.0 (4)
C6—C7—Br3114.3 (3)C32—C27—P2118.1 (4)
C1—C7—Br3113.6 (3)C27—C28—C29119.3 (5)
C9—C8—C13118.4 (4)C27—C28—H28120.3
C9—C8—P1118.2 (3)C29—C28—H28120.3
C13—C8—P1122.9 (3)C30—C29—C28120.1 (6)
C8—C9—C10120.9 (4)C30—C29—H29119.9
C8—C9—H9119.5C28—C29—H29119.9
C10—C9—H9119.5C29—C30—C31121.4 (6)
C9—C10—C11119.9 (4)C29—C30—H30119.3
C9—C10—H10120.1C31—C30—H30119.3
C11—C10—H10120.1C30—C31—C32119.3 (5)
C12—C11—C10119.6 (4)C30—C31—H31120.3
C12—C11—H11120.2C32—C31—H31120.3
C10—C11—H11120.2C31—C32—C27119.9 (5)
C11—C12—C13120.6 (5)C31—C32—H32120.0
C11—C12—H12119.7C27—C32—H32120.0
C13—C12—H12119.7O5—C33—H33A109.5
C12—C13—C8120.5 (5)O5—C33—H33B109.5
C12—C13—H13119.8H33A—C33—H33B109.5
C8—C13—H13119.8O5—C33—H33C109.5
C19—C14—C15119.2 (4)H33A—C33—H33C109.5
C19—C14—P1121.4 (3)H33B—C33—H33C109.5
C15—C14—P1119.2 (4)
O1—Pd—P1—O3170.90 (17)Pd—P1—C8—C1333.4 (4)
O2—Pd—P1—O3178.3 (4)C13—C8—C9—C102.3 (7)
P2—Pd—P1—O39.57 (15)P1—C8—C9—C10169.7 (4)
O1—Pd—P1—C1465.82 (17)C8—C9—C10—C110.9 (7)
O2—Pd—P1—C1455.0 (4)C9—C10—C11—C121.6 (8)
P2—Pd—P1—C14113.71 (15)C10—C11—C12—C132.5 (8)
O1—Pd—P1—C844.99 (18)C11—C12—C13—C81.0 (8)
O2—Pd—P1—C855.8 (4)C9—C8—C13—C121.4 (7)
P2—Pd—P1—C8135.49 (16)P1—C8—C13—C12170.2 (4)
O2—Pd—P2—O49.33 (17)O3—P1—C14—C19160.9 (3)
P1—Pd—P2—O4168.29 (14)C8—P1—C14—C1942.4 (4)
O2—Pd—P2—C21110.6 (2)Pd—P1—C14—C1968.8 (3)
P1—Pd—P2—C2171.77 (18)O3—P1—C14—C1523.2 (4)
O2—Pd—P2—C27119.52 (19)C8—P1—C14—C15141.7 (3)
P1—Pd—P2—C2758.09 (18)Pd—P1—C14—C15107.1 (3)
O2—Pd—O1—C11.4 (3)C19—C14—C15—C161.1 (6)
P1—Pd—O1—C1176.3 (3)P1—C14—C15—C16177.2 (3)
O1—Pd—O2—C21.1 (3)C14—C15—C16—C171.2 (7)
P2—Pd—O2—C2179.3 (3)C15—C16—C17—C180.7 (6)
P1—Pd—O2—C212.3 (6)C16—C17—C18—C190.2 (6)
C21—P2—O4—C2062.7 (4)C15—C14—C19—C180.6 (6)
C27—P2—O4—C20174.0 (4)P1—C14—C19—C18176.6 (3)
Pd—P2—O4—C2064.6 (4)C17—C18—C19—C140.2 (6)
Pd—O1—C1—C7175.5 (3)O4—P2—C21—C2646.2 (5)
Pd—O1—C1—C23.4 (5)C27—P2—C21—C2657.1 (5)
Pd—O2—C2—C3176.2 (3)Pd—P2—C21—C26169.6 (4)
Pd—O2—C2—C13.2 (4)O4—P2—C21—C22133.0 (4)
O1—C1—C2—O24.4 (6)C27—P2—C21—C22123.7 (4)
C7—C1—C2—O2174.4 (4)Pd—P2—C21—C229.5 (5)
O1—C1—C2—C3174.9 (4)C26—C21—C22—C230.1 (8)
C7—C1—C2—C36.3 (7)P2—C21—C22—C23179.2 (4)
O2—C2—C3—C4179.3 (4)C21—C22—C23—C241.0 (8)
C1—C2—C3—C41.4 (7)C22—C23—C24—C251.2 (10)
O2—C2—C3—Br11.0 (5)C23—C24—C25—C260.3 (10)
C1—C2—C3—Br1178.3 (3)C22—C21—C26—C250.8 (9)
C2—C3—C4—C52.1 (8)P2—C21—C26—C25178.4 (5)
Br1—C3—C4—C5178.3 (4)C24—C25—C26—C210.6 (10)
C3—C4—C5—C60.0 (8)O4—P2—C27—C28129.7 (5)
C3—C4—C5—Br2179.8 (4)C21—P2—C27—C2821.7 (5)
C4—C5—C6—C72.4 (8)Pd—P2—C27—C28112.3 (4)
Br2—C5—C6—C7177.7 (4)O4—P2—C27—C3253.5 (4)
C5—C6—C7—C10.8 (8)C21—P2—C27—C32161.6 (4)
C5—C6—C7—Br3179.2 (4)Pd—P2—C27—C3264.4 (4)
O1—C1—C7—C6175.0 (4)C32—C27—C28—C290.9 (9)
C2—C1—C7—C66.2 (7)P2—C27—C28—C29177.5 (5)
O1—C1—C7—Br33.3 (5)C27—C28—C29—C300.1 (10)
C2—C1—C7—Br3175.5 (3)C28—C29—C30—C310.2 (11)
O3—P1—C8—C972.5 (4)C29—C30—C31—C320.1 (10)
C14—P1—C8—C946.2 (4)C30—C31—C32—C270.9 (8)
Pd—P1—C8—C9155.0 (3)C28—C27—C32—C311.2 (8)
O3—P1—C8—C1399.1 (4)P2—C27—C32—C31178.0 (4)
C14—P1—C8—C13142.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···Br30.952.953.818 (5)152
O5—H5···O30.842.012.740 (7)144
C20—H20B···O20.982.303.143 (6)144
C12—H12···O5i0.952.563.435 (9)154
C31—H31···Br1ii0.952.993.920 (6)168
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Pd(C7H2Br3)(C12H10OP)(C13H13OP)]·CH4O
Mr913.63
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.125 (3), 11.326 (4), 17.137 (3)
α, β, γ (°)87.652 (8), 78.285 (7), 72.121 (8)
V3)1650.0 (8)
Z2
Radiation typeMo Kα
µ (mm1)4.33
Crystal size (mm)0.19 × 0.14 × 0.04
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.493, 0.846
No. of measured, independent and
observed [I > 2σ(I)] reflections
33856, 7543, 6131
Rint0.041
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.111, 1.09
No. of reflections7543
No. of parameters399
No. of restraints13
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.92, 0.91

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004) and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg & Putz, 2006).

Selected geometric parameters (Å, º) top
Pd—O12.076 (3)Pd—P22.2055 (12)
Pd—O22.140 (3)Pd—P12.2267 (12)
O1—Pd—O275.61 (11)O1—Pd—P192.64 (9)
O1—Pd—P2178.23 (9)O2—Pd—P1168.03 (9)
O2—Pd—P2102.66 (9)P2—Pd—P189.07 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···Br30.952.953.818 (5)152.4
O5—H5···O30.842.012.740 (7)144.4
C20—H20B···O20.982.303.143 (6)144.1
C12—H12···O5i0.952.563.435 (9)153.9
C31—H31···Br1ii0.952.993.920 (6)167.5
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds