Download citation
Download citation
link to html
The title compound, [PdBr(C24H49P2)], has a distorted square-planar coordination geometry with the P,C,P′-tridentate ligand forming two five-membered chelate rings. The Br atom is displaced from the square plane by 0.560 (6) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680702990X/ng2286sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680702990X/ng2286Isup2.hkl
Contains datablock I

CCDC reference: 654804

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.008 Å
  • R factor = 0.041
  • wR factor = 0.122
  • Data-to-parameter ratio = 25.4

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT153_ALERT_1_C The su's on the Cell Axes are Equal (x 100000) 20 Ang. PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Pd - Br .. 8.87 su PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C11 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C21 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C22 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 61 BR -PD -C2 -C1 112.00 0.70 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 64 BR -PD -C2 -C3 -110.70 0.70 1.555 1.555 1.555 1.555
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT793_ALERT_1_G Check the Absolute Configuration of C1 = ... S PLAT793_ALERT_1_G Check the Absolute Configuration of C3 = ... R
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 7 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 5 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The title compound belongs to a family of C-sp3-H activated PCP complexes that show interesting catalytic performance in C—C coupling reactions (Ohff et al.,1997; Sjövall et al., 2002; Nilsson & Wendt, 2005). The iodide and trifluoroacetate analogues have previously been prepared and the crystal structure of the iodide described (Sjövall et al., 2002).

The vast majority of reported palladium (PCP)-complexes are constructed with an aromatic back-bone. The aliphatic based complexes, such as the iodide compound mentioned, are studied in recent publications on PCP)-type of compounds coordinated to metals such as rhodium (Kuznetsov et al., 2006) and nickel (Castonguay et al., 2006; Pandarus et al., 2007).

The title compound exhibits a pseudo-square-planar geometry with the phosphorus atoms positioned trans to each other with a P1—Pd—P2 angle of 166.32 (4) °. Coordination of the (PCP)-tridentate ligand leads to the formation of two five-membered rings. The distortion, manifested in the repulsion of the P1 and P2 from the σ-donating bromine atom, results in acute angles for the bis-chelating system.

For the coordination plane formed by Pd, P1, C2 and P2 the largest deviation from this plane is observed for Pd, at 0.0690 (7) Å (r.m.s. of fitted atoms = 0.0445). The Br lies out out of the plane by 0.560 (6) Å. There are intramolecular H···Br contacts: C113—H···Br, 156.62 °, H···Br, 2.852 Å and C211—H···Br, 154.93 °, H···Br, 2.860 Å. The mean plane of the cyclohexane ring is aligned with the palladium coordination plane owing to C—H activation in an equatorial position. Perpendicular to the coordination plane is a pseudo-mirror plane through atoms Br1, Pd1, C2 and C5. Selected bond lengths and angles are given in Table 1.

Comparison of the title compound (I) to the analogous iodo-complex indicates the expected Pd-halogen bond distance decreases by 0.2 Å. Also noted is the lower trans-influence of the bromide on the Pd—C2 bond distance with a ca 0.05 Å decrease as compared with that in the the iodine complex.

Related literature top

See Kuznetsov et al. (2006) for the rhodium complex with the ligand, and Castonguay et al. (2006) and Pandarus & Zargarian (2007) for the nickel complex.

For related literature, see: Davis & Hassel (1963); Nilsson & Wendt (2005); Ohff et al. (1997); Sjövall et al. (2002, 2001).

Experimental top

The analogous trifluoroacetate-complex was synthesized according to a modification of a published protocol (Sjövall et al., 2001 & Sjövall et al., 2002). The (PCP)Pd-TFA complex (10 mg, 16 µmol) was dissolved in toluene-d8 (0.6 ml) in a J. Young tube and an excess of NaBr added. The tube was allowed to stand over night in room temperature and after 12 h, a 31P-NMR spectrum confirmed that the title complex had been quantitatively obtained. The NMR sample was first decanted and then filtered through a short pad of celite. Recrystallization in pentane at 255 K overnight resulted in colourless blocks. 1H-NMR (toluene-d8): δ 2.15–0.80 (m region, 13H, CH & CH2), 1.35 (m, 36H, coalesced virtual triplets). 31P{1H} NMR (toluene-d8): δ 70.2 (s). 13C{1H} NMR (toluene-d8): δ 66.8 (t, 2JPC = 3.9 Hz, CHPd), 50.9 (vt, JPC = 15.1 Hz, CHCHPd), 35.9 (vt, JPC = 12,6 Hz, C(CH3)3), 35.2 (vt, JPC = 15.1 Hz, C(CH3)3), 34.8 (vt, JPC = 26.0 Hz, CH2P), 32.9 (vt, JPC = 15.8 Hz, CH2CHCHPd), 30.2 (vt, JPC = 5.9 Hz, C(CH3)3), 29.5 (vt, JPC = 5.8 Hz, C(CH3)3), 27.0 (s, CH2CH2CHCHPd).

Refinement top

The H atoms were positioned geometrically and treated as riding on their parent atoms with C–H distances of 0.93–0.97 Å and Uiso(H) = 1.2Ueq - 1.5Ueq.

Structure description top

The title compound belongs to a family of C-sp3-H activated PCP complexes that show interesting catalytic performance in C—C coupling reactions (Ohff et al.,1997; Sjövall et al., 2002; Nilsson & Wendt, 2005). The iodide and trifluoroacetate analogues have previously been prepared and the crystal structure of the iodide described (Sjövall et al., 2002).

The vast majority of reported palladium (PCP)-complexes are constructed with an aromatic back-bone. The aliphatic based complexes, such as the iodide compound mentioned, are studied in recent publications on PCP)-type of compounds coordinated to metals such as rhodium (Kuznetsov et al., 2006) and nickel (Castonguay et al., 2006; Pandarus et al., 2007).

The title compound exhibits a pseudo-square-planar geometry with the phosphorus atoms positioned trans to each other with a P1—Pd—P2 angle of 166.32 (4) °. Coordination of the (PCP)-tridentate ligand leads to the formation of two five-membered rings. The distortion, manifested in the repulsion of the P1 and P2 from the σ-donating bromine atom, results in acute angles for the bis-chelating system.

For the coordination plane formed by Pd, P1, C2 and P2 the largest deviation from this plane is observed for Pd, at 0.0690 (7) Å (r.m.s. of fitted atoms = 0.0445). The Br lies out out of the plane by 0.560 (6) Å. There are intramolecular H···Br contacts: C113—H···Br, 156.62 °, H···Br, 2.852 Å and C211—H···Br, 154.93 °, H···Br, 2.860 Å. The mean plane of the cyclohexane ring is aligned with the palladium coordination plane owing to C—H activation in an equatorial position. Perpendicular to the coordination plane is a pseudo-mirror plane through atoms Br1, Pd1, C2 and C5. Selected bond lengths and angles are given in Table 1.

Comparison of the title compound (I) to the analogous iodo-complex indicates the expected Pd-halogen bond distance decreases by 0.2 Å. Also noted is the lower trans-influence of the bromide on the Pd—C2 bond distance with a ca 0.05 Å decrease as compared with that in the the iodine complex.

See Kuznetsov et al. (2006) for the rhodium complex with the ligand, and Castonguay et al. (2006) and Pandarus & Zargarian (2007) for the nickel complex.

For related literature, see: Davis & Hassel (1963); Nilsson & Wendt (2005); Ohff et al. (1997); Sjövall et al. (2002, 2001).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with atom labels and 30% probability displacement ellipsoids. H-atoms were omitted for clarity.
cis-[2,6-Bis(di-tert-butylphosphinomethyl)cyclohexyl- κ3P,C1,P']bromidopalladium(II) top
Crystal data top
[PdBr(C24H49P2)]F(000) = 1216
Mr = 585.88Dx = 1.391 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5773 reflections
a = 11.4392 (2) Åθ = 2–30°
b = 15.7757 (2) ŵ = 2.21 mm1
c = 15.6508 (2) ÅT = 293 K
β = 97.846 (2)°Plate, colourless
V = 2797.92 (7) Å30.25 × 0.13 × 0.05 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer
6739 independent reflections
Radiation source: fine-focus sealed tube3849 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
φ and ω scansθmax = 28°, θmin = 2.2°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
h = 1514
Tmin = 0.608, Tmax = 0.897k = 2019
22034 measured reflectionsl = 1120
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0605P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.122(Δ/σ)max = 0.001
S = 0.94Δρmax = 1.22 e Å3
6739 reflectionsΔρmin = 0.62 e Å3
265 parameters
Crystal data top
[PdBr(C24H49P2)]V = 2797.92 (7) Å3
Mr = 585.88Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.4392 (2) ŵ = 2.21 mm1
b = 15.7757 (2) ÅT = 293 K
c = 15.6508 (2) Å0.25 × 0.13 × 0.05 mm
β = 97.846 (2)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
6739 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
3849 reflections with I > 2σ(I)
Tmin = 0.608, Tmax = 0.897Rint = 0.046
22034 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 0.94Δρmax = 1.22 e Å3
6739 reflectionsΔρmin = 0.62 e Å3
265 parameters
Special details top

Experimental. The intensity data were collected on a Oxford Xcalibur 3 CCD diffractometer using an exposure time of 20 s/frame. A total of 552 frames were collected with a frame width of 0.5° covering up to θ = 28.00° with 99.7% completeness accomplished. The highest difference peak in the Fourier map is located 0.58 Å from H11G.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd0.12038 (3)0.307166 (19)0.294263 (19)0.03791 (11)
Br0.04772 (5)0.18770 (3)0.38524 (3)0.06669 (18)
P10.05901 (10)0.33357 (7)0.20991 (7)0.0401 (3)
P20.31172 (10)0.31083 (7)0.36407 (7)0.0434 (3)
C110.1341 (4)0.2413 (3)0.1477 (3)0.0489 (11)
C120.1645 (4)0.3959 (3)0.2668 (3)0.0563 (12)
C210.3996 (4)0.2097 (3)0.3661 (4)0.0637 (14)
C220.3278 (5)0.3646 (4)0.4721 (3)0.0676 (15)
C1110.0333 (5)0.1887 (3)0.1208 (3)0.0711 (16)
H11D0.01970.17260.17110.107*
H11E0.00850.22160.08320.107*
H11F0.06480.13870.09110.107*
C1120.2143 (5)0.2680 (4)0.0653 (3)0.0718 (15)
H11G0.25290.21890.03840.108*
H11H0.16750.29440.02620.108*
H11I0.27240.30750.07970.108*
C1130.2029 (5)0.1875 (3)0.2036 (3)0.0744 (16)
H11A0.27350.21690.21310.112*
H11B0.15530.17680.25790.112*
H11C0.22360.13460.17510.112*
C1210.1024 (5)0.4795 (3)0.2942 (4)0.0756 (16)
H12A0.15180.51280.32610.113*
H12B0.08760.51030.24380.113*
H12C0.02890.46790.32970.113*
C1220.2821 (5)0.4138 (4)0.2116 (4)0.0853 (18)
H12D0.32510.36180.20070.128*
H12E0.26810.43840.15780.128*
H12F0.32710.45250.24140.128*
C1230.1849 (5)0.3509 (4)0.3498 (3)0.0785 (17)
H12G0.240.38290.3780.118*
H12H0.11150.34630.38730.118*
H12I0.21620.29530.33630.118*
C2110.3732 (6)0.1497 (4)0.4388 (5)0.099 (2)
H21D0.40910.09560.43190.148*
H21E0.28940.14280.43610.148*
H21F0.40470.17350.49360.148*
C2120.5329 (5)0.2234 (4)0.3741 (4)0.0875 (19)
H21G0.55880.25510.42560.131*
H21H0.55150.25430.32490.131*
H21I0.57210.16950.37690.131*
C2130.3566 (6)0.1660 (4)0.2800 (4)0.098 (2)
H21A0.37740.19990.23340.147*
H21B0.27250.15930.27390.147*
H21C0.39320.11130.27890.147*
C2210.2542 (6)0.3207 (5)0.5306 (4)0.109 (3)
H22G0.28640.26550.5450.163*
H22H0.17480.31510.50210.163*
H22I0.25420.35340.58240.163*
C2220.2813 (6)0.4561 (4)0.4546 (4)0.104 (2)
H22D0.19820.45450.43460.156*
H22E0.32180.4820.41150.156*
H22F0.29520.48860.5070.156*
C2230.4555 (5)0.3728 (5)0.5168 (4)0.099 (2)
H22A0.4580.41130.56450.149*
H22B0.50450.3940.47640.149*
H22C0.48370.31820.53740.149*
C10.0980 (4)0.4455 (3)0.1552 (3)0.0526 (11)
H10.08140.49120.19430.063*
C20.1859 (4)0.3882 (3)0.2071 (3)0.0456 (10)
H20.20760.34890.16330.055*
C30.3007 (4)0.4325 (3)0.2371 (3)0.0494 (11)
H30.28030.47870.27420.059*
C40.3521 (4)0.4754 (3)0.1645 (3)0.0568 (12)
H4A0.41880.50970.18880.068*
H4B0.38140.43220.12870.068*
C50.2664 (5)0.5305 (3)0.1088 (3)0.0678 (14)
H5A0.30060.54650.05770.081*
H5B0.25350.5820.14010.081*
C60.1495 (4)0.4881 (3)0.0816 (3)0.0511 (11)
H6A0.15920.44590.03810.061*
H6B0.09390.53010.05540.061*
C70.0189 (4)0.4034 (3)0.1253 (3)0.0471 (10)
H7A0.01330.37080.07350.057*
H7B0.07940.44620.11160.057*
C80.3874 (4)0.3792 (3)0.2934 (3)0.0607 (13)
H8A0.44320.41550.32840.073*
H8B0.43110.34420.25780.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd0.03525 (19)0.03707 (19)0.04042 (18)0.00223 (15)0.00162 (13)0.00658 (14)
Br0.0634 (4)0.0669 (4)0.0673 (3)0.0170 (3)0.0001 (3)0.0279 (3)
P10.0350 (6)0.0415 (6)0.0425 (6)0.0009 (5)0.0010 (5)0.0045 (5)
P20.0359 (6)0.0443 (6)0.0474 (6)0.0029 (5)0.0041 (5)0.0087 (5)
C110.047 (3)0.052 (3)0.045 (2)0.008 (2)0.002 (2)0.004 (2)
C120.050 (3)0.054 (3)0.067 (3)0.002 (2)0.015 (2)0.004 (2)
C210.044 (3)0.065 (3)0.079 (3)0.005 (2)0.001 (3)0.012 (3)
C220.067 (4)0.074 (4)0.058 (3)0.013 (3)0.005 (3)0.007 (3)
C1110.074 (4)0.064 (3)0.071 (3)0.003 (3)0.007 (3)0.016 (3)
C1120.070 (4)0.077 (4)0.062 (3)0.009 (3)0.012 (3)0.005 (3)
C1130.082 (4)0.068 (4)0.070 (3)0.034 (3)0.003 (3)0.007 (3)
C1210.082 (4)0.055 (3)0.096 (4)0.008 (3)0.035 (3)0.017 (3)
C1220.056 (3)0.088 (4)0.112 (5)0.033 (3)0.014 (3)0.003 (4)
C1230.079 (4)0.089 (4)0.075 (4)0.007 (3)0.040 (3)0.003 (3)
C2110.088 (5)0.071 (4)0.140 (6)0.019 (4)0.025 (4)0.050 (4)
C2120.051 (3)0.078 (4)0.131 (5)0.024 (3)0.003 (3)0.006 (4)
C2130.103 (5)0.074 (4)0.110 (5)0.027 (4)0.014 (4)0.031 (4)
C2210.106 (6)0.164 (7)0.061 (4)0.048 (5)0.027 (4)0.029 (4)
C2220.133 (6)0.093 (5)0.080 (4)0.009 (5)0.003 (4)0.028 (4)
C2230.084 (5)0.120 (6)0.082 (4)0.025 (4)0.029 (3)0.007 (4)
C10.050 (3)0.056 (3)0.051 (3)0.003 (2)0.006 (2)0.012 (2)
C20.046 (3)0.047 (3)0.044 (2)0.003 (2)0.0064 (19)0.011 (2)
C30.040 (2)0.053 (3)0.052 (3)0.011 (2)0.003 (2)0.011 (2)
C40.052 (3)0.049 (3)0.071 (3)0.017 (2)0.013 (2)0.012 (2)
C50.075 (4)0.064 (3)0.064 (3)0.019 (3)0.008 (3)0.014 (3)
C60.056 (3)0.044 (3)0.052 (3)0.004 (2)0.006 (2)0.010 (2)
C70.039 (2)0.046 (3)0.055 (3)0.001 (2)0.003 (2)0.008 (2)
C80.041 (3)0.065 (3)0.075 (3)0.009 (2)0.003 (2)0.014 (3)
Geometric parameters (Å, º) top
Pd—C22.082 (4)C211—H21D0.96
Pd—P22.3097 (11)C211—H21E0.96
Pd—P12.3211 (11)C211—H21F0.96
Pd—Br2.5678 (5)C212—H21G0.96
P1—C71.829 (4)C212—H21H0.96
P1—C121.873 (5)C212—H21I0.96
P1—C111.891 (4)C213—H21A0.96
P2—C81.843 (5)C213—H21B0.96
P2—C221.878 (5)C213—H21C0.96
P2—C211.883 (5)C221—H22G0.96
C11—C1131.514 (6)C221—H22H0.96
C11—C1111.527 (7)C221—H22I0.96
C11—C1121.536 (6)C222—H22D0.96
C12—C1221.522 (7)C222—H22E0.96
C12—C1231.525 (7)C222—H22F0.96
C12—C1211.532 (7)C223—H22A0.96
C21—C2121.528 (7)C223—H22B0.96
C21—C2131.534 (8)C223—H22C0.96
C21—C2111.541 (8)C1—C21.504 (6)
C22—C2211.497 (8)C1—C71.510 (6)
C22—C2231.536 (7)C1—C61.520 (6)
C22—C2221.549 (8)C1—H10.98
C111—H11D0.96C2—C31.505 (6)
C111—H11E0.96C2—H20.98
C111—H11F0.96C3—C81.493 (6)
C112—H11G0.96C3—C41.508 (6)
C112—H11H0.96C3—H30.98
C112—H11I0.96C4—C51.499 (6)
C113—H11A0.96C4—H4A0.97
C113—H11B0.96C4—H4B0.97
C113—H11C0.96C5—C61.504 (6)
C121—H12A0.96C5—H5A0.97
C121—H12B0.96C5—H5B0.97
C121—H12C0.96C6—H6A0.97
C122—H12D0.96C6—H6B0.97
C122—H12E0.96C7—H7A0.97
C122—H12F0.96C7—H7B0.97
C123—H12G0.96C8—H8A0.97
C123—H12H0.96C8—H8B0.97
C123—H12I0.96
C2—Pd—P283.81 (12)C21—C211—H21F109.5
C2—Pd—P183.47 (12)H21D—C211—H21F109.5
P2—Pd—P1166.32 (4)H21E—C211—H21F109.5
C2—Pd—Br170.61 (13)C21—C212—H21G109.5
P2—Pd—Br96.53 (3)C21—C212—H21H109.5
P1—Pd—Br96.85 (3)H21G—C212—H21H109.5
C7—P1—C12105.6 (2)C21—C212—H21I109.5
C7—P1—C11103.43 (19)H21G—C212—H21I109.5
C12—P1—C11111.8 (2)H21H—C212—H21I109.5
C7—P1—Pd103.31 (14)C21—C213—H21A109.5
C12—P1—Pd113.64 (16)C21—C213—H21B109.5
C11—P1—Pd117.32 (15)H21A—C213—H21B109.5
C8—P2—C22106.2 (2)C21—C213—H21C109.5
C8—P2—C21102.2 (2)H21A—C213—H21C109.5
C22—P2—C21112.4 (3)H21B—C213—H21C109.5
C8—P2—Pd102.91 (15)C22—C221—H22G109.5
C22—P2—Pd114.03 (18)C22—C221—H22H109.5
C21—P2—Pd117.12 (17)H22G—C221—H22H109.5
C113—C11—C111109.0 (4)C22—C221—H22I109.5
C113—C11—C112109.9 (4)H22G—C221—H22I109.5
C111—C11—C112107.7 (4)H22H—C221—H22I109.5
C113—C11—P1111.7 (3)C22—C222—H22D109.5
C111—C11—P1104.7 (3)C22—C222—H22E109.5
C112—C11—P1113.5 (3)H22D—C222—H22E109.5
C122—C12—C123110.1 (4)C22—C222—H22F109.5
C122—C12—C121109.8 (4)H22D—C222—H22F109.5
C123—C12—C121106.3 (4)H22E—C222—H22F109.5
C122—C12—P1113.9 (3)C22—C223—H22A109.5
C123—C12—P1110.1 (3)C22—C223—H22B109.5
C121—C12—P1106.3 (3)H22A—C223—H22B109.5
C212—C21—C213109.4 (5)C22—C223—H22C109.5
C212—C21—C211108.6 (5)H22A—C223—H22C109.5
C213—C21—C211107.5 (5)H22B—C223—H22C109.5
C212—C21—P2113.9 (4)C2—C1—C7113.6 (4)
C213—C21—P2105.1 (4)C2—C1—C6112.0 (4)
C211—C21—P2112.0 (4)C7—C1—C6112.2 (3)
C221—C22—C223109.8 (5)C2—C1—H1106.1
C221—C22—C222109.3 (5)C7—C1—H1106.1
C223—C22—C222106.5 (5)C6—C1—H1106.1
C221—C22—P2110.3 (4)C1—C2—C3112.3 (4)
C223—C22—P2114.7 (4)C1—C2—Pd116.7 (3)
C222—C22—P2105.9 (4)C3—C2—Pd117.2 (3)
C11—C111—H11D109.5C1—C2—H2102.6
C11—C111—H11E109.5C3—C2—H2102.6
H11D—C111—H11E109.5Pd—C2—H2102.6
C11—C111—H11F109.5C8—C3—C2113.8 (4)
H11D—C111—H11F109.5C8—C3—C4113.6 (4)
H11E—C111—H11F109.5C2—C3—C4112.7 (3)
C11—C112—H11G109.5C8—C3—H3105.2
C11—C112—H11H109.5C2—C3—H3105.2
H11G—C112—H11H109.5C4—C3—H3105.2
C11—C112—H11I109.5C5—C4—C3114.0 (4)
H11G—C112—H11I109.5C5—C4—H4A108.7
H11H—C112—H11I109.5C3—C4—H4A108.7
C11—C113—H11A109.5C5—C4—H4B108.7
C11—C113—H11B109.5C3—C4—H4B108.7
H11A—C113—H11B109.5H4A—C4—H4B107.6
C11—C113—H11C109.5C4—C5—C6113.1 (4)
H11A—C113—H11C109.5C4—C5—H5A109
H11B—C113—H11C109.5C6—C5—H5A109
C12—C121—H12A109.5C4—C5—H5B109
C12—C121—H12B109.5C6—C5—H5B109
H12A—C121—H12B109.5H5A—C5—H5B107.8
C12—C121—H12C109.5C5—C6—C1113.8 (4)
H12A—C121—H12C109.5C5—C6—H6A108.8
H12B—C121—H12C109.5C1—C6—H6A108.8
C12—C122—H12D109.5C5—C6—H6B108.8
C12—C122—H12E109.5C1—C6—H6B108.8
H12D—C122—H12E109.5H6A—C6—H6B107.7
C12—C122—H12F109.5C1—C7—P1109.9 (3)
H12D—C122—H12F109.5C1—C7—H7A109.7
H12E—C122—H12F109.5P1—C7—H7A109.7
C12—C123—H12G109.5C1—C7—H7B109.7
C12—C123—H12H109.5P1—C7—H7B109.7
H12G—C123—H12H109.5H7A—C7—H7B108.2
C12—C123—H12I109.5C3—C8—P2110.8 (3)
H12G—C123—H12I109.5C3—C8—H8A109.5
H12H—C123—H12I109.5P2—C8—H8A109.5
C21—C211—H21D109.5C3—C8—H8B109.5
C21—C211—H21E109.5P2—C8—H8B109.5
H21D—C211—H21E109.5H8A—C8—H8B108.1
C2—Pd—P1—C71.49 (19)C8—P2—C21—C211165.7 (4)
P2—Pd—P1—C723.1 (3)C22—P2—C21—C21152.2 (5)
Br—Pd—P1—C7169.05 (15)Pd—P2—C21—C21182.7 (4)
C2—Pd—P1—C12112.5 (2)C8—P2—C22—C221171.7 (4)
P2—Pd—P1—C1290.8 (2)C21—P2—C22—C22177.3 (5)
Br—Pd—P1—C1277.00 (17)Pd—P2—C22—C22159.1 (5)
C2—Pd—P1—C11114.5 (2)C8—P2—C22—C22363.6 (5)
P2—Pd—P1—C11136.2 (2)C21—P2—C22—C22347.4 (5)
Br—Pd—P1—C1156.04 (16)Pd—P2—C22—C223176.2 (4)
C2—Pd—P2—C81.5 (2)C8—P2—C22—C22253.5 (4)
P1—Pd—P2—C823.1 (3)C21—P2—C22—C222164.5 (4)
Br—Pd—P2—C8169.09 (18)Pd—P2—C22—C22259.1 (4)
C2—Pd—P2—C22113.1 (2)C7—C1—C2—C3179.1 (4)
P1—Pd—P2—C2291.5 (3)C6—C1—C2—C352.5 (5)
Br—Pd—P2—C2276.3 (2)C7—C1—C2—Pd39.8 (5)
C2—Pd—P2—C21112.7 (2)C6—C1—C2—Pd168.2 (3)
P1—Pd—P2—C21134.3 (2)P2—Pd—C2—C1155.5 (3)
Br—Pd—P2—C2157.87 (19)P1—Pd—C2—C119.5 (3)
C7—P1—C11—C113164.7 (4)Br—Pd—C2—C1112.0 (7)
C12—P1—C11—C11351.5 (4)P2—Pd—C2—C318.2 (3)
Pd—P1—C11—C11382.3 (4)P1—Pd—C2—C3156.8 (3)
C7—P1—C11—C11177.5 (3)Br—Pd—C2—C3110.7 (7)
C12—P1—C11—C111169.3 (3)C1—C2—C3—C8176.3 (4)
Pd—P1—C11—C11135.5 (3)Pd—C2—C3—C837.2 (5)
C7—P1—C11—C11239.7 (4)C1—C2—C3—C452.3 (5)
C12—P1—C11—C11273.5 (4)Pd—C2—C3—C4168.6 (3)
Pd—P1—C11—C112152.7 (3)C8—C3—C4—C5178.7 (4)
C7—P1—C12—C12267.1 (4)C2—C3—C4—C549.8 (6)
C11—P1—C12—C12244.7 (4)C3—C4—C5—C647.3 (6)
Pd—P1—C12—C122179.7 (3)C4—C5—C6—C147.8 (6)
C7—P1—C12—C123168.7 (4)C2—C1—C6—C550.6 (6)
C11—P1—C12—C12379.5 (4)C7—C1—C6—C5179.7 (4)
Pd—P1—C12—C12356.1 (4)C2—C1—C7—P138.6 (5)
C7—P1—C12—C12153.8 (4)C6—C1—C7—P1166.9 (3)
C11—P1—C12—C121165.7 (3)C12—P1—C7—C198.3 (3)
Pd—P1—C12—C12158.7 (4)C11—P1—C7—C1144.1 (3)
C8—P2—C21—C21241.9 (5)Pd—P1—C7—C121.3 (3)
C22—P2—C21—C21271.6 (5)C2—C3—C8—P236.3 (5)
Pd—P2—C21—C212153.5 (4)C4—C3—C8—P2167.2 (3)
C8—P2—C21—C21377.9 (4)C22—P2—C8—C399.9 (4)
C22—P2—C21—C213168.6 (4)C21—P2—C8—C3142.2 (4)
Pd—P2—C21—C21333.7 (4)Pd—P2—C8—C320.3 (4)

Experimental details

Crystal data
Chemical formula[PdBr(C24H49P2)]
Mr585.88
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.4392 (2), 15.7757 (2), 15.6508 (2)
β (°) 97.846 (2)
V3)2797.92 (7)
Z4
Radiation typeMo Kα
µ (mm1)2.21
Crystal size (mm)0.25 × 0.13 × 0.05
Data collection
DiffractometerOxford Diffraction Xcalibur
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.608, 0.897
No. of measured, independent and
observed [I > 2σ(I)] reflections
22034, 6739, 3849
Rint0.046
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.122, 0.94
No. of reflections6739
No. of parameters265
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.22, 0.62

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), CrysAlis RED, SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 2000), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Pd—C22.082 (4)Pd—P12.3211 (11)
Pd—P22.3097 (11)Pd—Br2.5678 (5)
C2—Pd—P283.81 (12)P2—Pd—Br96.53 (3)
C2—Pd—P183.47 (12)P1—Pd—Br96.85 (3)
P2—Pd—P1166.32 (4)C22—P2—C21112.4 (3)
C2—Pd—Br170.61 (13)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds