Download citation
Download citation
link to html
The mol­ecule of the title compound, [Cu2(C2H3O2)4(C6H6ClN)2], lies on an inversion center and the Cu atom has a square-pyramidal CuO4N geometry. The four acetate groups act as bridging ligands.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807032321/ng2274sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807032321/ng2274Isup2.hkl
Contains datablock I

CCDC reference: 657543

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.041
  • wR factor = 0.101
  • Data-to-parameter ratio = 15.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.98 PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 300 Deg. PLAT764_ALERT_4_C Overcomplete CIF Bond List Detected (Rep/Expd) . 1.16 Ratio
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (2) 2.11
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

The acetate anion is an useful ligand and a large number of multi-atom bridge complexes have been synthesized with it as a bridging ligand (Panagiotopoulos et al. 1995; Taft et al. 1993; Tangoulis, Raptopolou, Paschalidou et al. 1997; Tangoulis, Raptopolou, Terzis et al., 1997; Tong, et al. 2000). We had intended to synthesize a multi-nuclear CuII complex by using acetate and 2-chloromethylpyridine as ligands, but the title dinuclear complex was obtained.

Two copper atoms are briged by four acetate groups; the copper atoms are also coordinated by the heterocycle so that the geometry at copper is a square pyramid. The bond dimensions are similar to those in other binculear copper systems (Moreland & Doedens, 1978)..

Related literature top

For the acetate group as a bridging ligand in multinuclear complexes, see: Panagiotopoulos et al. (1995); Taft et al. (1993); Tangoulis, Raptopolou, Paschalidou et al. 1997; Tangoulis, Raptopolou, Terzis et al., 1997; Tong et al. (2000). For other dinuclear copper compounds, see: Moreland & Doedens (1978).

Experimental top

Cu(OOCCH3)2.H2O (0.133 g, 0.664 mmol) and ethanolamine (0.041 g, 0.676 mmol) were dissoved in 8 ml of water; the solution was added into an 8 ml me thanol solution containing 2-chloromethylpyridine (0.170 g, 1.33 mmol). Green crystals were obtained after allowing the mixed solution to stand at room temperature for one week.

Refinement top

The H atoms were placed in calculated positions and refined as riding, with C—H = 0.93 Å, Uiso(H) = 1.2Ueq(C) for pyridine ring; C—H = 0.96 Å, Uiso(H) = 1.5Ueq(C) for methyl group, and C—H = 0.97 Å, Uiso(H) = 1.2Ueq(C) for the chloromethyl group.

Structure description top

The acetate anion is an useful ligand and a large number of multi-atom bridge complexes have been synthesized with it as a bridging ligand (Panagiotopoulos et al. 1995; Taft et al. 1993; Tangoulis, Raptopolou, Paschalidou et al. 1997; Tangoulis, Raptopolou, Terzis et al., 1997; Tong, et al. 2000). We had intended to synthesize a multi-nuclear CuII complex by using acetate and 2-chloromethylpyridine as ligands, but the title dinuclear complex was obtained.

Two copper atoms are briged by four acetate groups; the copper atoms are also coordinated by the heterocycle so that the geometry at copper is a square pyramid. The bond dimensions are similar to those in other binculear copper systems (Moreland & Doedens, 1978)..

For the acetate group as a bridging ligand in multinuclear complexes, see: Panagiotopoulos et al. (1995); Taft et al. (1993); Tangoulis, Raptopolou, Paschalidou et al. 1997; Tangoulis, Raptopolou, Terzis et al., 1997; Tong et al. (2000). For other dinuclear copper compounds, see: Moreland & Doedens (1978).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. Molecular structure showing the atom numbering scheme with thermal ellipsoids drawn at the 30% probability level; hydrogen bonds (line of dashes). [Symmetry codes: (i) 1 - x, 1 - y, 1 - z]
Tetra-µ-acetato-bis{[2-(chloromethyl)pyridine]copper(II)} top
Crystal data top
[Cu2(C2H3O2)4(C6H6ClN)2]Z = 1
Mr = 618.39F(000) = 314
Triclinic, P1Dx = 1.678 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8592 (19) ÅCell parameters from 1146 reflections
b = 7.959 (2) Åθ = 2.6–24.9°
c = 10.734 (3) ŵ = 2.00 mm1
α = 100.458 (3)°T = 298 K
β = 110.406 (3)°Prism, green
γ = 94.199 (3)°0.28 × 0.20 × 0.18 mm
V = 612.0 (3) Å3
Data collection top
Bruker SMART APEX
diffractometer
2359 independent reflections
Radiation source: fine-focus sealed tube2033 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
φ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.604, Tmax = 0.714k = 98
3405 measured reflectionsl = 913
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0544P)2]
where P = (Fo2 + 2Fc2)/3
2359 reflections(Δ/σ)max = 0.001
156 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Cu2(C2H3O2)4(C6H6ClN)2]γ = 94.199 (3)°
Mr = 618.39V = 612.0 (3) Å3
Triclinic, P1Z = 1
a = 7.8592 (19) ÅMo Kα radiation
b = 7.959 (2) ŵ = 2.00 mm1
c = 10.734 (3) ÅT = 298 K
α = 100.458 (3)°0.28 × 0.20 × 0.18 mm
β = 110.406 (3)°
Data collection top
Bruker SMART APEX
diffractometer
2359 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2033 reflections with I > 2σ(I)
Tmin = 0.604, Tmax = 0.714Rint = 0.019
3405 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.04Δρmax = 0.41 e Å3
2359 reflectionsΔρmin = 0.30 e Å3
156 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.53281 (5)0.54185 (5)0.39664 (4)0.03081 (16)
N10.6345 (3)0.6340 (3)0.2462 (3)0.0307 (6)
C10.8136 (4)0.6281 (5)0.2745 (4)0.0394 (8)
H10.87880.58780.35090.047*
C20.9059 (5)0.6781 (5)0.1972 (4)0.0518 (10)
H21.03060.67200.22130.062*
C30.8126 (6)0.7373 (6)0.0839 (4)0.0562 (11)
H30.87200.77250.02970.067*
C40.6293 (6)0.7429 (5)0.0532 (4)0.0519 (10)
H40.56190.78090.02390.062*
C50.5439 (5)0.6927 (4)0.1357 (3)0.0352 (8)
C60.3446 (5)0.7041 (5)0.1064 (4)0.0485 (10)
H6A0.30190.64010.16130.058*
H6B0.27390.65220.01120.058*
C70.8014 (4)0.6730 (4)0.6705 (3)0.0343 (7)
C80.9816 (4)0.7811 (5)0.7643 (3)0.0457 (9)
H8A1.07880.74150.73750.068*
H8B1.00410.77070.85620.068*
H8C0.97660.89980.75890.068*
C90.6582 (4)0.2378 (4)0.4730 (4)0.0365 (8)
C100.7477 (5)0.0791 (5)0.4577 (4)0.0502 (10)
H10A0.87710.10720.50970.075*
H10B0.72790.03700.36330.075*
H10C0.69540.00830.49020.075*
O10.6491 (3)0.3325 (3)0.3890 (3)0.0450 (6)
O20.5984 (3)0.2664 (3)0.5675 (3)0.0442 (6)
O30.7596 (3)0.6660 (3)0.5456 (2)0.0411 (6)
O40.7053 (3)0.5988 (3)0.7225 (2)0.0427 (6)
Cl10.30915 (15)0.92261 (15)0.14306 (12)0.0668 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0349 (2)0.0329 (3)0.0310 (2)0.00724 (17)0.01565 (17)0.01476 (17)
N10.0333 (14)0.0323 (15)0.0305 (14)0.0048 (12)0.0140 (11)0.0119 (11)
C10.0367 (18)0.048 (2)0.041 (2)0.0113 (16)0.0184 (16)0.0170 (16)
C20.042 (2)0.063 (3)0.062 (3)0.0084 (19)0.0298 (19)0.021 (2)
C30.062 (3)0.070 (3)0.058 (3)0.007 (2)0.042 (2)0.027 (2)
C40.067 (3)0.058 (3)0.041 (2)0.009 (2)0.0240 (19)0.0271 (19)
C50.0428 (19)0.0328 (19)0.0318 (17)0.0038 (15)0.0141 (15)0.0117 (14)
C60.041 (2)0.053 (2)0.051 (2)0.0050 (18)0.0078 (17)0.0285 (19)
C70.0365 (18)0.0324 (19)0.0352 (18)0.0106 (15)0.0132 (15)0.0085 (14)
C80.0361 (18)0.058 (3)0.037 (2)0.0024 (17)0.0081 (15)0.0076 (17)
C90.0309 (17)0.0303 (19)0.045 (2)0.0040 (14)0.0107 (15)0.0082 (15)
C100.056 (2)0.037 (2)0.066 (3)0.0205 (19)0.028 (2)0.0183 (19)
O10.0557 (15)0.0406 (15)0.0547 (15)0.0177 (12)0.0322 (13)0.0219 (12)
O20.0543 (15)0.0415 (15)0.0499 (15)0.0209 (12)0.0265 (12)0.0219 (12)
O30.0413 (13)0.0536 (16)0.0285 (12)0.0018 (12)0.0113 (10)0.0144 (11)
O40.0432 (13)0.0543 (16)0.0305 (12)0.0031 (12)0.0124 (10)0.0157 (11)
Cl10.0626 (7)0.0657 (8)0.0815 (8)0.0271 (6)0.0277 (6)0.0299 (6)
Geometric parameters (Å, º) top
Cu1—O2i1.958 (2)C6—Cl11.776 (4)
Cu1—O11.960 (2)C6—H6A0.9700
Cu1—O31.973 (2)C6—H6B0.9700
Cu1—O4i1.974 (2)C7—O31.254 (4)
Cu1—N12.243 (3)C7—O41.256 (4)
Cu1—Cu1i2.6302 (9)C7—C81.507 (4)
N1—C11.339 (4)C8—H8A0.9600
N1—C51.339 (4)C8—H8B0.9600
C1—C21.368 (5)C8—H8C0.9600
C1—H10.9300C9—O21.252 (4)
C2—C31.369 (5)C9—O11.263 (4)
C2—H20.9300C9—C101.501 (5)
C3—C41.367 (5)C10—H10A0.9600
C3—H30.9300C10—H10B0.9600
C4—C51.378 (5)C10—H10C0.9600
C4—H40.9300O2—Cu1i1.958 (2)
C5—C61.499 (5)O4—Cu1i1.974 (2)
O2i—Cu1—O1168.18 (10)N1—C5—C6116.9 (3)
O2i—Cu1—O390.24 (11)C4—C5—C6121.1 (3)
O1—Cu1—O389.38 (11)C5—C6—Cl1110.9 (3)
O2i—Cu1—O4i88.84 (11)C5—C6—H6A109.5
O1—Cu1—O4i89.14 (11)Cl1—C6—H6A109.5
O3—Cu1—O4i168.32 (9)C5—C6—H6B109.5
O2i—Cu1—N198.54 (10)Cl1—C6—H6B109.5
O1—Cu1—N193.27 (10)H6A—C6—H6B108.1
O3—Cu1—N189.37 (9)O3—C7—O4125.4 (3)
O4i—Cu1—N1102.29 (9)O3—C7—C8116.3 (3)
O2i—Cu1—Cu1i82.46 (7)O4—C7—C8118.3 (3)
O1—Cu1—Cu1i85.80 (7)C7—C8—H8A109.5
O3—Cu1—Cu1i81.15 (7)C7—C8—H8B109.5
O4i—Cu1—Cu1i87.19 (7)H8A—C8—H8B109.5
N1—Cu1—Cu1i170.47 (7)C7—C8—H8C109.5
C1—N1—C5117.0 (3)H8A—C8—H8C109.5
C1—N1—Cu1113.2 (2)H8B—C8—H8C109.5
C5—N1—Cu1129.8 (2)O2—C9—O1125.0 (3)
N1—C1—C2123.6 (3)O2—C9—C10117.8 (3)
N1—C1—H1118.2O1—C9—C10117.2 (3)
C2—C1—H1118.2C9—C10—H10A109.5
C1—C2—C3119.3 (3)C9—C10—H10B109.5
C1—C2—H2120.4H10A—C10—H10B109.5
C3—C2—H2120.4C9—C10—H10C109.5
C4—C3—C2117.8 (3)H10A—C10—H10C109.5
C4—C3—H3121.1H10B—C10—H10C109.5
C2—C3—H3121.1C9—O1—Cu1121.2 (2)
C3—C4—C5120.4 (3)C9—O2—Cu1i125.5 (2)
C3—C4—H4119.8C7—O3—Cu1126.7 (2)
C5—C4—H4119.8C7—O4—Cu1i119.5 (2)
N1—C5—C4121.9 (3)
O2i—Cu1—N1—C1131.3 (2)C4—C5—C6—Cl171.9 (4)
O1—Cu1—N1—C148.1 (2)O2—C9—O1—Cu10.8 (5)
O3—Cu1—N1—C141.2 (2)C10—C9—O1—Cu1179.3 (2)
O4i—Cu1—N1—C1138.0 (2)O2i—Cu1—O1—C97.9 (7)
O2i—Cu1—N1—C548.5 (3)O3—Cu1—O1—C980.3 (3)
O1—Cu1—N1—C5132.0 (3)O4i—Cu1—O1—C988.1 (3)
O3—Cu1—N1—C5138.6 (3)N1—Cu1—O1—C9169.6 (3)
O4i—Cu1—N1—C542.2 (3)Cu1i—Cu1—O1—C90.9 (3)
C5—N1—C1—C20.1 (5)O1—C9—O2—Cu1i2.9 (5)
Cu1—N1—C1—C2179.9 (3)C10—C9—O2—Cu1i177.1 (2)
N1—C1—C2—C30.2 (6)O4—C7—O3—Cu11.1 (5)
C1—C2—C3—C40.2 (6)C8—C7—O3—Cu1178.4 (2)
C2—C3—C4—C51.0 (6)O2i—Cu1—O3—C781.3 (3)
C1—N1—C5—C40.8 (5)O1—Cu1—O3—C786.9 (3)
Cu1—N1—C5—C4179.4 (3)O4i—Cu1—O3—C74.2 (6)
C1—N1—C5—C6178.3 (3)N1—Cu1—O3—C7179.8 (3)
Cu1—N1—C5—C61.6 (4)Cu1i—Cu1—O3—C71.1 (3)
C3—C4—C5—N11.3 (6)O3—C7—O4—Cu1i0.2 (5)
C3—C4—C5—C6177.7 (4)C8—C7—O4—Cu1i179.3 (2)
N1—C5—C6—Cl1107.1 (3)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C2H3O2)4(C6H6ClN)2]
Mr618.39
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.8592 (19), 7.959 (2), 10.734 (3)
α, β, γ (°)100.458 (3), 110.406 (3), 94.199 (3)
V3)612.0 (3)
Z1
Radiation typeMo Kα
µ (mm1)2.00
Crystal size (mm)0.28 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART APEX
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.604, 0.714
No. of measured, independent and
observed [I > 2σ(I)] reflections
3405, 2359, 2033
Rint0.019
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.102, 1.04
No. of reflections2359
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.30

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SAINT, SHELXTL (Bruker, 2001), SHELXTL.

Selected geometric parameters (Å, º) top
Cu1—O2i1.958 (2)Cu1—O4i1.974 (2)
Cu1—O11.960 (2)Cu1—N12.243 (3)
Cu1—O31.973 (2)
O2i—Cu1—O1168.18 (10)O2i—Cu1—N198.54 (10)
O2i—Cu1—O390.24 (11)O1—Cu1—N193.27 (10)
O1—Cu1—O389.38 (11)O3—Cu1—N189.37 (9)
O1—Cu1—O4i89.14 (11)O4i—Cu1—N1102.29 (9)
O3—Cu1—O4i168.32 (9)
Symmetry code: (i) x+1, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds