Download citation
Download citation
link to html
In the title compound, C17H15Cl2N3O3S, the dihedral angle between the mean planes of the pyrazole and phenyl rings is 41.5 (2)°. The dichloro­benzene ring and the pyrazole residue form a C—N—S—C torsion angle of 70.3 (3)°. One inter­molecular N—H...O and two inter­molecular C—H...O hydrogen bonds are observed in the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807059004/nc2079sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807059004/nc2079Isup2.hkl
Contains datablock I

CCDC reference: 673023

Key indicators

  • Single-crystal X-ray study
  • T = 299 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.096
  • wR factor = 0.270
  • Data-to-parameter ratio = 13.2

checkCIF/PLATON results

No syntax errors found



Alert level C RFACR01_ALERT_3_C The value of the weighted R factor is > 0.25 Weighted R factor given 0.270 RINTA01_ALERT_3_C The value of Rint is greater than 0.10 Rint given 0.102 PLAT020_ALERT_3_C The value of Rint is greater than 0.10 ......... 0.10 PLAT084_ALERT_2_C High R2 Value .................................. 0.27 PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.15 PLAT318_ALERT_2_C Check Hybridisation of N1 in Main Residue . ? PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 7 PLAT431_ALERT_2_C Short Inter HL..A Contact Cl1 .. N3 .. 3.23 Ang.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 9 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

4-aminoantipyrine and its complexes are known for their variety of applications in the area of catalysis (Bernardo et al., 1996; Punniyamurthy et al., 1995), clinical applications (Chiaramonte et al., 2003), and pharmacology (Torayama et al., 1997). We have focused our research on investigation of different heterocyclic systems based on sulfonamide pharmacophoric group and metal complexes searching new lead compounds with antiparasitic activity. In the light of this interest, we describe here an crystallographic study of the title compound, (I).

The C7—N1—S1—C1 torsion angle between the pyrazole moiety and the dichlorbenzene ring is 70.3 (3)°. The phenyl ring and the pyrazole residue are twisted to each other by an angle of 41.5 (2)° between the mean planes. The N—H H atom has an intermolecular hydrogen bond to O3 [N—H···O = 2.03 Å]. The two sulfonamide oxygen atoms O1 and O2 are involved in non-classical intermolecular hydrogen bonds with C3 and C11 [C—H···O = 2.51 Å, C—H···O = 2.48 Å, respectively] (Table 1).

Related literature top

For related literature, see: Bernardo et al. (1996); Chiaramonte et al. (2003); Punniyamurthy et al. (1995); Torayama et al. (1997); Xue et al. (2000).

Experimental top

Compound (I) was prepared according to a literature procedure (Xue et al., 2000). Suitable crystals were obtained by recrystallization from methanol-dichloromethane (1:1).

Refinement top

The C—H atoms were positioned with idealized geometry and refined using a riding model with C—H in the range 0.93–0.96 Å. The N—H H atoms were initially located in difference map, which shows that the nitrogen atom is nearly planar. Finally the N—H atoms were positioned with idealized geometry and refined using a riding model with N—H = 0.86 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom). All crystals investigated exhibits very broad reflection profiles and thus were of low crystal quality, which might be the reason for the bad reliability factors.

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labeling and displacement ellipsoids drawn at the 50% probability level.
2,5-DichloroN-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H- pyrazol-4-yl)benzenesulfonamide top
Crystal data top
C17H15Cl2N3O3SZ = 2
Mr = 412.28F(000) = 424
Triclinic, P1Dx = 1.551 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54180 Å
a = 8.009 (2) ÅCell parameters from 25 reflections
b = 10.697 (3) Åθ = 5.3–18.7°
c = 11.201 (5) ŵ = 4.63 mm1
α = 102.17 (3)°T = 299 K
β = 92.23 (2)°Prism, colorless
γ = 108.69 (3)°0.45 × 0.38 × 0.13 mm
V = 882.7 (5) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
2692 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.102
Graphite monochromatorθmax = 66.9°, θmin = 4.1°
ω/2θ scansh = 99
Absorption correction: psi-scan
(North et al., 1968)
k = 1212
Tmin = 0.180, Tmax = 0.545l = 132
3679 measured reflections3 standard reflections every 120 min
3139 independent reflections intensity decay: 1.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.096Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.270H-atom parameters constrained
S = 1.20 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
3139 reflections(Δ/σ)max < 0.001
237 parametersΔρmax = 1.15 e Å3
0 restraintsΔρmin = 0.93 e Å3
Crystal data top
C17H15Cl2N3O3Sγ = 108.69 (3)°
Mr = 412.28V = 882.7 (5) Å3
Triclinic, P1Z = 2
a = 8.009 (2) ÅCu Kα radiation
b = 10.697 (3) ŵ = 4.63 mm1
c = 11.201 (5) ÅT = 299 K
α = 102.17 (3)°0.45 × 0.38 × 0.13 mm
β = 92.23 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2692 reflections with I > 2σ(I)
Absorption correction: psi-scan
(North et al., 1968)
Rint = 0.102
Tmin = 0.180, Tmax = 0.5453 standard reflections every 120 min
3679 measured reflections intensity decay: 1.0%
3139 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0960 restraints
wR(F2) = 0.270H-atom parameters constrained
S = 1.20Δρmax = 1.15 e Å3
3139 reflectionsΔρmin = 0.93 e Å3
237 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2506 (5)0.6027 (4)0.3252 (4)0.0406 (9)
C20.4235 (5)0.6088 (4)0.3586 (4)0.0447 (9)
C30.5105 (6)0.5429 (5)0.2785 (5)0.0520 (11)
H30.62470.54650.30270.062*
C40.4290 (6)0.4715 (5)0.1624 (5)0.0525 (11)
H40.48740.42650.10790.063*
C50.2600 (6)0.4674 (4)0.1280 (4)0.0449 (9)
C60.1701 (6)0.5323 (4)0.2073 (4)0.0443 (10)
H60.05650.52900.18210.053*
C70.2173 (5)0.9206 (4)0.3645 (4)0.0371 (8)
C80.0806 (5)0.9498 (4)0.3131 (4)0.0414 (9)
C90.3788 (5)0.9952 (4)0.3207 (4)0.0381 (8)
C100.4284 (6)1.1241 (4)0.1575 (4)0.0430 (9)
C110.6038 (6)1.2059 (4)0.1939 (5)0.0488 (10)
H110.65191.22740.27560.059*
C120.7050 (7)1.2546 (5)0.1065 (5)0.0589 (12)
H120.82411.30660.12890.071*
C130.6322 (8)1.2275 (5)0.0142 (5)0.0616 (13)
H130.70171.26200.07210.074*
C140.4574 (8)1.1494 (5)0.0480 (5)0.0605 (12)
H140.40821.13170.12890.073*
C150.3541 (7)1.0971 (5)0.0370 (4)0.0511 (10)
H150.23551.04410.01390.061*
C160.1099 (6)0.9038 (5)0.3355 (5)0.0557 (12)
H16A0.12170.86440.40550.067*
H16B0.17950.83740.26450.067*
H16C0.15080.98020.35100.067*
C170.0771 (7)1.1450 (5)0.2313 (6)0.0620 (13)
H17C0.14351.19760.17850.074*
H17B0.09361.20110.31280.074*
H17A0.04661.11100.20050.074*
N10.2147 (4)0.8422 (3)0.4515 (3)0.0377 (7)
H1A0.26560.88410.52460.045*
N20.1397 (4)1.0301 (4)0.2342 (4)0.0456 (9)
N30.3272 (4)1.0676 (4)0.2471 (3)0.0434 (8)
O10.0439 (4)0.6444 (3)0.3520 (3)0.0525 (8)
O20.1325 (4)0.6469 (3)0.5388 (3)0.0546 (8)
O30.5322 (3)0.9969 (3)0.3430 (3)0.0441 (7)
Cl10.53256 (15)0.69729 (13)0.50285 (11)0.0617 (5)
Cl20.15602 (17)0.37735 (13)0.01848 (11)0.0634 (5)
S10.12324 (12)0.67997 (9)0.42367 (9)0.0404 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0293 (19)0.0222 (17)0.064 (2)0.0068 (14)0.0029 (16)0.0015 (15)
C20.031 (2)0.0317 (19)0.065 (2)0.0093 (16)0.0046 (17)0.0002 (17)
C30.031 (2)0.039 (2)0.082 (3)0.0129 (18)0.0001 (19)0.005 (2)
C40.040 (2)0.036 (2)0.079 (3)0.0144 (19)0.008 (2)0.004 (2)
C50.041 (2)0.0269 (18)0.060 (2)0.0090 (16)0.0018 (17)0.0019 (16)
C60.032 (2)0.0279 (18)0.068 (3)0.0088 (15)0.0054 (17)0.0036 (17)
C70.0240 (18)0.0249 (17)0.057 (2)0.0073 (14)0.0007 (15)0.0002 (15)
C80.0286 (19)0.0292 (18)0.063 (2)0.0134 (15)0.0006 (16)0.0013 (16)
C90.0275 (19)0.0260 (17)0.056 (2)0.0094 (15)0.0015 (15)0.0007 (15)
C100.037 (2)0.0302 (19)0.060 (2)0.0135 (16)0.0013 (17)0.0030 (16)
C110.044 (2)0.033 (2)0.067 (3)0.0127 (18)0.0016 (19)0.0065 (18)
C120.050 (3)0.038 (2)0.087 (3)0.010 (2)0.013 (2)0.018 (2)
C130.072 (3)0.042 (2)0.083 (3)0.028 (2)0.025 (3)0.023 (2)
C140.078 (4)0.047 (3)0.064 (3)0.033 (3)0.007 (2)0.011 (2)
C150.050 (3)0.037 (2)0.062 (3)0.0172 (19)0.006 (2)0.0024 (18)
C160.026 (2)0.053 (3)0.091 (3)0.0184 (19)0.005 (2)0.014 (2)
C170.044 (3)0.046 (3)0.101 (4)0.024 (2)0.000 (2)0.016 (3)
N10.0257 (15)0.0237 (15)0.0546 (18)0.0039 (12)0.0041 (12)0.0013 (13)
N20.0238 (17)0.0402 (19)0.072 (2)0.0145 (15)0.0032 (14)0.0084 (16)
N30.0253 (16)0.0352 (17)0.067 (2)0.0090 (14)0.0029 (14)0.0091 (15)
O10.0225 (14)0.0358 (15)0.084 (2)0.0042 (12)0.0057 (13)0.0066 (14)
O20.0431 (18)0.0384 (16)0.079 (2)0.0088 (13)0.0110 (14)0.0131 (15)
O30.0249 (14)0.0383 (15)0.0647 (17)0.0119 (12)0.0030 (11)0.0022 (12)
Cl10.0370 (7)0.0592 (8)0.0747 (8)0.0170 (5)0.0131 (5)0.0118 (6)
Cl20.0586 (8)0.0551 (8)0.0669 (8)0.0218 (6)0.0068 (6)0.0079 (5)
S10.0240 (6)0.0258 (6)0.0648 (7)0.0048 (4)0.0011 (4)0.0029 (4)
Geometric parameters (Å, º) top
C1—C61.389 (6)C11—C121.376 (7)
C1—C21.397 (5)C11—H110.9300
C1—S11.785 (4)C12—C131.385 (8)
C2—C31.373 (7)C12—H120.9300
C2—Cl11.727 (4)C13—C141.370 (8)
C3—C41.377 (7)C13—H130.9300
C3—H30.9300C14—C151.376 (8)
C4—C51.378 (6)C14—H140.9300
C4—H40.9300C15—H150.9300
C5—C61.378 (6)C16—H16A0.9600
C5—Cl21.739 (4)C16—H16B0.9600
C6—H60.9300C16—H16C0.9600
C7—C81.368 (5)C17—N21.473 (5)
C7—N11.410 (5)C17—H17C0.9600
C7—C91.450 (5)C17—H17B0.9600
C8—N21.355 (6)C17—H17A0.9600
C8—C161.495 (6)N1—S11.608 (3)
C9—O31.237 (4)N1—H1A0.8600
C9—N31.377 (5)N2—N31.418 (4)
C10—C151.386 (7)O1—S11.429 (3)
C10—C111.386 (6)O2—S11.412 (4)
C10—N31.427 (6)
C6—C1—C2118.6 (4)C14—C13—C12119.7 (5)
C6—C1—S1116.8 (3)C14—C13—H13120.1
C2—C1—S1124.6 (3)C12—C13—H13120.1
C3—C2—C1121.0 (4)C13—C14—C15120.5 (5)
C3—C2—Cl1118.1 (3)C13—C14—H14119.8
C1—C2—Cl1120.9 (3)C15—C14—H14119.8
C2—C3—C4120.1 (4)C14—C15—C10119.4 (5)
C2—C3—H3119.9C14—C15—H15120.3
C4—C3—H3119.9C10—C15—H15120.3
C3—C4—C5119.2 (4)C8—C16—H16A109.5
C3—C4—H4120.4C8—C16—H16B109.5
C5—C4—H4120.4H16A—C16—H16B109.5
C4—C5—C6121.5 (4)C8—C16—H16C109.5
C4—C5—Cl2119.5 (4)H16A—C16—H16C109.5
C6—C5—Cl2119.0 (3)H16B—C16—H16C109.5
C5—C6—C1119.5 (4)N2—C17—H17C109.5
C5—C6—H6120.2N2—C17—H17B109.5
C1—C6—H6120.2H17C—C17—H17B109.5
C8—C7—N1129.1 (4)N2—C17—H17A109.5
C8—C7—C9107.5 (4)H17C—C17—H17A109.5
N1—C7—C9123.3 (3)H17B—C17—H17A109.5
N2—C8—C7110.5 (4)C7—N1—S1124.6 (3)
N2—C8—C16121.7 (4)C7—N1—H1A117.7
C7—C8—C16127.8 (4)S1—N1—H1A117.7
O3—C9—N3125.7 (4)C8—N2—N3106.6 (3)
O3—C9—C7129.0 (4)C8—N2—C17120.7 (4)
N3—C9—C7105.2 (3)N3—N2—C17113.2 (3)
C15—C10—C11120.9 (4)C9—N3—N2109.5 (3)
C15—C10—N3121.0 (4)C9—N3—C10124.7 (3)
C11—C10—N3118.1 (4)N2—N3—C10120.9 (3)
C12—C11—C10118.5 (5)O2—S1—O1120.7 (2)
C12—C11—H11120.8O2—S1—N1105.36 (19)
C10—C11—H11120.8O1—S1—N1107.72 (18)
C11—C12—C13121.0 (5)O2—S1—C1109.1 (2)
C11—C12—H12119.5O1—S1—C1104.75 (19)
C13—C12—H12119.5N1—S1—C1108.86 (18)
C6—C1—C2—C32.2 (6)N3—C10—C15—C14177.8 (4)
S1—C1—C2—C3177.9 (3)C8—C7—N1—S170.4 (5)
C6—C1—C2—Cl1178.8 (3)C9—C7—N1—S1114.7 (4)
S1—C1—C2—Cl11.0 (5)C7—C8—N2—N37.3 (5)
C1—C2—C3—C41.2 (7)C16—C8—N2—N3172.7 (4)
Cl1—C2—C3—C4179.8 (4)C7—C8—N2—C17138.1 (4)
C2—C3—C4—C50.1 (7)C16—C8—N2—C1741.8 (6)
C3—C4—C5—C60.5 (7)O3—C9—N3—N2174.6 (4)
C3—C4—C5—Cl2180.0 (4)C7—C9—N3—N25.8 (4)
C4—C5—C6—C10.5 (6)O3—C9—N3—C1019.4 (6)
Cl2—C5—C6—C1179.0 (3)C7—C9—N3—C10161.1 (4)
C2—C1—C6—C51.8 (6)C8—N2—N3—C98.2 (5)
S1—C1—C6—C5178.3 (3)C17—N2—N3—C9143.2 (4)
N1—C7—C8—N2179.3 (4)C8—N2—N3—C10164.6 (4)
C9—C7—C8—N23.7 (5)C17—N2—N3—C1060.5 (5)
N1—C7—C8—C160.7 (7)C15—C10—N3—C9127.2 (4)
C9—C7—C8—C16176.3 (4)C11—C10—N3—C952.3 (6)
C8—C7—C9—O3179.0 (4)C15—C10—N3—N225.4 (6)
N1—C7—C9—O35.1 (6)C11—C10—N3—N2155.0 (4)
C8—C7—C9—N31.4 (4)C7—N1—S1—O2172.8 (3)
N1—C7—C9—N3174.4 (3)C7—N1—S1—O142.8 (4)
C15—C10—C11—C123.1 (6)C7—N1—S1—C170.3 (3)
N3—C10—C11—C12176.5 (4)C6—C1—S1—O2132.0 (3)
C10—C11—C12—C132.6 (7)C2—C1—S1—O248.2 (4)
C11—C12—C13—C140.9 (8)C6—C1—S1—O11.5 (4)
C12—C13—C14—C150.5 (7)C2—C1—S1—O1178.7 (4)
C13—C14—C15—C100.0 (7)C6—C1—S1—N1113.5 (3)
C11—C10—C15—C141.8 (6)C2—C1—S1—N166.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.862.032.846 (4)157
C3—H3···O1ii0.932.513.392 (5)158
C11—H11···O2i0.932.483.360 (6)157
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC17H15Cl2N3O3S
Mr412.28
Crystal system, space groupTriclinic, P1
Temperature (K)299
a, b, c (Å)8.009 (2), 10.697 (3), 11.201 (5)
α, β, γ (°)102.17 (3), 92.23 (2), 108.69 (3)
V3)882.7 (5)
Z2
Radiation typeCu Kα
µ (mm1)4.63
Crystal size (mm)0.45 × 0.38 × 0.13
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionPsi-scan
(North et al., 1968)
Tmin, Tmax0.180, 0.545
No. of measured, independent and
observed [I > 2σ(I)] reflections
3679, 3139, 2692
Rint0.102
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.096, 0.270, 1.20
No. of reflections3139
No. of parameters237
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.15, 0.93

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.862.032.846 (4)157.0
C3—H3···O1ii0.932.513.392 (5)158.0
C11—H11···O2i0.932.483.360 (6)157.3
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds