Download citation
Download citation
link to html
The formyl­ation reaction of norfloxacin with N,N-dimethyl­formamide (DMF) gives the title compound, C17H18FN3O4. In the structure, mol­ecules are connected via weak C—H...O, C—H...π and π–π inter­actions [perpendicular distance 3.423 Å and centroid–centroid distance 3.8141 Å].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807048726/nc2060sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807048726/nc2060Isup2.hkl
Contains datablock I

CCDC reference: 667327

Key indicators

  • Single-crystal X-ray study
  • T = 150 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.043
  • wR factor = 0.123
  • Data-to-parameter ratio = 16.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 3000 Deg.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Norfloxacin (1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3- quinolinecarboxylic acid) is a widely used fluoroquinolone antibacterial compound (Holmes et al., 1985). For this compound, polymorphs, salts and cocrystals have been widely studied (Barbas et al., 2006; Basavoju et al., 2006). In this paper, we report the title compound (I), a derivative of norfloxacin.

The molecular structure of compound (I) (Fig.1) is similar with that of formylated ciprofloxacin reported previously (Li et al., 2005). The piperazinyl ring adopts a chair conformation and the carboxylic group is involved in intramolecular hydrogen bonding with the quinolone oxygen atom (O2—H2···O3, see Table. 1).

In the crystal structure the molecules are connected via weak C—H···O interactions (Fig.2 and Table. 2). Additionally weak π-π interactions between quinolone rings and C—H···π interactions between piperazinyl ring and quinolone ring might exist (Table. 2).

Related literature top

For related literature, see: Barbas et al. (2006); Basavoju et al. (2006); Holmes et al. (1985); Li et al. (2005).

Experimental top

A mixture of norfloxacin (0.032 g, 0.1 mmol) and phosphoric acid (0.020 g, 0.2 mmol) was dissolved in DMF (10 ml) by heating. Afterwards, the solution was kept in air and after several days yellow crystals were obtained. The DSC showed one sharp endothermic peak at 562 K attributed to the melting transition.

Refinement top

H atoms were calculated in geometrically idealized positions (OH allowed to rotate but not to tip)with C—H = 0.95–0.99 Å and O—H = 0.84 Å and were refined isotropic with Uiso(H) = 1.2Ueq(C,O) or 1.5Ueq(C) for methyl C atom using a riding model.

Structure description top

Norfloxacin (1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3- quinolinecarboxylic acid) is a widely used fluoroquinolone antibacterial compound (Holmes et al., 1985). For this compound, polymorphs, salts and cocrystals have been widely studied (Barbas et al., 2006; Basavoju et al., 2006). In this paper, we report the title compound (I), a derivative of norfloxacin.

The molecular structure of compound (I) (Fig.1) is similar with that of formylated ciprofloxacin reported previously (Li et al., 2005). The piperazinyl ring adopts a chair conformation and the carboxylic group is involved in intramolecular hydrogen bonding with the quinolone oxygen atom (O2—H2···O3, see Table. 1).

In the crystal structure the molecules are connected via weak C—H···O interactions (Fig.2 and Table. 2). Additionally weak π-π interactions between quinolone rings and C—H···π interactions between piperazinyl ring and quinolone ring might exist (Table. 2).

For related literature, see: Barbas et al. (2006); Basavoju et al. (2006); Holmes et al. (1985); Li et al. (2005).

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK/DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. ORTEP plot of compound (I) with 30% thermal ellipsoids. The dashed line indicate hydrogen bonding.
[Figure 2] Fig. 2. Packing diagram of compound (I) viewed along b axis. The dashed lines indicate C—H···O interactions.
1-Ethyl-6-fluoro-7-(4-formylpiperazin-1-yl)-4-oxo-1,4-dihydroquinoline- 3-carboxylic acid top
Crystal data top
C17H18FN3O4Z = 2
Mr = 347.34F(000) = 364
Triclinic, P1Dx = 1.432 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6689 (17) ÅCell parameters from 7249 reflections
b = 9.6727 (19) Åθ = 2.6–27.5°
c = 10.142 (2) ŵ = 0.11 mm1
α = 73.41 (3)°T = 150 K
β = 81.41 (3)°Block, yellow
γ = 86.48 (3)°0.24 × 0.20 × 0.16 mm
V = 805.8 (3) Å3
Data collection top
Nonius KappaCCD
diffractometer
2913 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 27.4°, θmin = 3.2°
Detector resolution: 9 pixels mm-1h = 1111
CCD scansk = 1112
6043 measured reflectionsl = 1313
3635 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0613P)2 + 0.2204P]
where P = (Fo2 + 2Fc2)/3
3635 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C17H18FN3O4γ = 86.48 (3)°
Mr = 347.34V = 805.8 (3) Å3
Triclinic, P1Z = 2
a = 8.6689 (17) ÅMo Kα radiation
b = 9.6727 (19) ŵ = 0.11 mm1
c = 10.142 (2) ÅT = 150 K
α = 73.41 (3)°0.24 × 0.20 × 0.16 mm
β = 81.41 (3)°
Data collection top
Nonius KappaCCD
diffractometer
2913 reflections with I > 2σ(I)
6043 measured reflectionsRint = 0.020
3635 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.05Δρmax = 0.21 e Å3
3635 reflectionsΔρmin = 0.25 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.10241 (9)0.66737 (10)1.00486 (9)0.0311 (2)
O30.45388 (12)0.85673 (12)1.26189 (11)0.0311 (3)
O10.91842 (14)0.96327 (14)1.19206 (12)0.0404 (3)
N30.72533 (13)0.81858 (12)0.90353 (12)0.0212 (2)
C20.69908 (16)0.88460 (14)1.11704 (14)0.0216 (3)
O20.68961 (14)0.94959 (13)1.32791 (11)0.0342 (3)
H20.59850.92481.32770.041*
C100.50281 (15)0.72728 (15)0.83179 (14)0.0215 (3)
H100.56630.71810.74980.026*
C60.47421 (15)0.79129 (14)1.05125 (13)0.0204 (3)
C50.56759 (15)0.77973 (14)0.92778 (13)0.0199 (3)
C70.31595 (16)0.75016 (15)1.07694 (14)0.0233 (3)
H70.25170.75641.15960.028*
N20.27120 (13)0.64380 (13)0.76203 (11)0.0220 (3)
C30.53768 (16)0.84585 (14)1.15125 (14)0.0220 (3)
C90.34614 (15)0.68881 (14)0.85666 (14)0.0208 (3)
C80.25720 (15)0.70150 (15)0.98143 (14)0.0229 (3)
C10.77959 (18)0.93698 (16)1.21315 (15)0.0272 (3)
C160.10726 (16)0.46445 (15)0.72264 (14)0.0238 (3)
H16A0.08060.36100.75250.029*
H16B0.00980.52160.73290.029*
C40.78423 (16)0.86968 (14)0.99515 (14)0.0226 (3)
H40.89040.89710.97500.027*
C130.35023 (17)0.67645 (17)0.61811 (14)0.0274 (3)
H13A0.44390.61330.61310.033*
H13B0.38390.77800.58610.033*
C110.83052 (15)0.80245 (16)0.77815 (15)0.0259 (3)
H11A0.80880.71000.76150.031*
H11B0.94010.79820.79620.031*
C140.23709 (18)0.65157 (17)0.52533 (15)0.0296 (3)
H14A0.14850.72140.52360.036*
H14B0.29110.66730.42920.036*
C150.22025 (16)0.49259 (15)0.81329 (14)0.0243 (3)
H15A0.16850.47320.91050.029*
H15B0.31220.42680.81170.029*
C120.81170 (18)0.92472 (19)0.64838 (15)0.0330 (4)
H12A0.70420.92790.62820.050*
H12B0.88380.90870.56980.050*
H12C0.83491.01650.66340.050*
O40.25308 (14)0.44029 (14)0.37679 (12)0.0406 (3)
N10.17883 (14)0.50451 (13)0.57763 (12)0.0256 (3)
C170.19313 (17)0.41258 (17)0.49896 (16)0.0294 (3)
H170.15370.31840.54120.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0184 (4)0.0461 (5)0.0299 (5)0.0092 (4)0.0009 (3)0.0130 (4)
O30.0297 (5)0.0413 (6)0.0251 (5)0.0075 (5)0.0026 (4)0.0155 (5)
O10.0342 (6)0.0570 (8)0.0371 (6)0.0161 (5)0.0073 (5)0.0199 (6)
N30.0181 (5)0.0254 (6)0.0211 (5)0.0023 (4)0.0024 (4)0.0077 (4)
C20.0241 (7)0.0191 (6)0.0222 (6)0.0022 (5)0.0058 (5)0.0052 (5)
O20.0379 (6)0.0423 (6)0.0280 (6)0.0089 (5)0.0049 (5)0.0168 (5)
C100.0196 (6)0.0243 (7)0.0204 (6)0.0029 (5)0.0016 (5)0.0061 (5)
C60.0211 (6)0.0190 (6)0.0204 (6)0.0008 (5)0.0037 (5)0.0042 (5)
C50.0179 (6)0.0199 (6)0.0211 (6)0.0009 (5)0.0032 (5)0.0040 (5)
C70.0221 (7)0.0264 (7)0.0200 (6)0.0027 (5)0.0005 (5)0.0051 (5)
N20.0221 (5)0.0240 (6)0.0194 (5)0.0062 (4)0.0034 (4)0.0041 (4)
C30.0262 (7)0.0182 (6)0.0210 (6)0.0008 (5)0.0036 (5)0.0042 (5)
C90.0212 (6)0.0205 (6)0.0204 (6)0.0019 (5)0.0051 (5)0.0039 (5)
C80.0165 (6)0.0259 (7)0.0244 (7)0.0042 (5)0.0017 (5)0.0040 (5)
C10.0318 (7)0.0265 (7)0.0246 (7)0.0047 (6)0.0067 (6)0.0069 (6)
C160.0226 (6)0.0245 (7)0.0243 (7)0.0050 (5)0.0030 (5)0.0062 (5)
C40.0214 (6)0.0209 (6)0.0260 (7)0.0029 (5)0.0056 (5)0.0057 (5)
C130.0270 (7)0.0334 (8)0.0218 (7)0.0117 (6)0.0007 (6)0.0070 (6)
C110.0172 (6)0.0354 (8)0.0292 (7)0.0026 (5)0.0005 (5)0.0168 (6)
C140.0345 (8)0.0324 (8)0.0223 (7)0.0110 (6)0.0059 (6)0.0050 (6)
C150.0254 (7)0.0218 (7)0.0254 (7)0.0044 (5)0.0059 (5)0.0041 (5)
C120.0295 (7)0.0458 (9)0.0241 (7)0.0067 (7)0.0020 (6)0.0120 (6)
O40.0386 (6)0.0569 (8)0.0344 (6)0.0012 (6)0.0048 (5)0.0258 (6)
N10.0249 (6)0.0290 (6)0.0251 (6)0.0057 (5)0.0037 (5)0.0098 (5)
C170.0244 (7)0.0363 (8)0.0328 (8)0.0005 (6)0.0095 (6)0.0155 (6)
Geometric parameters (Å, º) top
F1—C81.3713 (15)C16—N11.4594 (18)
O3—C31.2699 (17)C16—C151.5243 (19)
O1—C11.2201 (19)C16—H16A0.9900
N3—C41.3428 (17)C16—H16B0.9900
N3—C51.4076 (17)C4—H40.9500
N3—C111.4909 (17)C13—C141.529 (2)
C2—C41.3822 (19)C13—H13A0.9900
C2—C31.4365 (19)C13—H13B0.9900
C2—C11.4908 (19)C11—C121.520 (2)
O2—C11.3328 (18)C11—H11A0.9900
O2—H20.8400C11—H11B0.9900
C10—C91.3974 (18)C14—N11.4619 (19)
C10—C51.4146 (19)C14—H14A0.9900
C10—H100.9500C14—H14B0.9900
C6—C51.4150 (18)C15—H15A0.9900
C6—C71.4175 (19)C15—H15B0.9900
C6—C31.4553 (19)C12—H12A0.9800
C7—C81.363 (2)C12—H12B0.9800
C7—H70.9500C12—H12C0.9800
N2—C91.4116 (17)O4—C171.2298 (19)
N2—C131.4712 (17)N1—C171.3435 (19)
N2—C151.4768 (17)C17—H170.9500
C9—C81.4130 (19)
C4—N3—C5119.98 (11)N3—C4—C2123.71 (12)
C4—N3—C11118.71 (11)N3—C4—H4118.1
C5—N3—C11121.30 (11)C2—C4—H4118.1
C4—C2—C3120.16 (12)N2—C13—C14108.92 (11)
C4—C2—C1118.61 (12)N2—C13—H13A109.9
C3—C2—C1121.20 (12)C14—C13—H13A109.9
C1—O2—H2109.5N2—C13—H13B109.9
C9—C10—C5120.53 (12)C14—C13—H13B109.9
C9—C10—H10119.7H13A—C13—H13B108.3
C5—C10—H10119.7N3—C11—C12113.11 (12)
C5—C6—C7119.28 (12)N3—C11—H11A109.0
C5—C6—C3121.07 (12)C12—C11—H11A109.0
C7—C6—C3119.66 (12)N3—C11—H11B109.0
N3—C5—C10120.87 (12)C12—C11—H11B109.0
N3—C5—C6119.15 (12)H11A—C11—H11B107.8
C10—C5—C6119.97 (12)N1—C14—C13110.16 (12)
C8—C7—C6119.10 (12)N1—C14—H14A109.6
C8—C7—H7120.5C13—C14—H14A109.6
C6—C7—H7120.5N1—C14—H14B109.6
C9—N2—C13116.48 (11)C13—C14—H14B109.6
C9—N2—C15113.88 (11)H14A—C14—H14B108.1
C13—N2—C15111.25 (11)N2—C15—C16110.17 (11)
O3—C3—C2122.95 (12)N2—C15—H15A109.6
O3—C3—C6121.14 (12)C16—C15—H15A109.6
C2—C3—C6115.91 (12)N2—C15—H15B109.6
C10—C9—N2123.69 (12)C16—C15—H15B109.6
C10—C9—C8117.67 (12)H15A—C15—H15B108.1
N2—C9—C8118.60 (12)C11—C12—H12A109.5
C7—C8—F1118.55 (12)C11—C12—H12B109.5
C7—C8—C9123.45 (12)H12A—C12—H12B109.5
F1—C8—C9117.96 (12)C11—C12—H12C109.5
O1—C1—O2121.46 (13)H12A—C12—H12C109.5
O1—C1—C2123.40 (13)H12B—C12—H12C109.5
O2—C1—C2115.11 (12)C17—N1—C16122.70 (12)
N1—C16—C15109.65 (11)C17—N1—C14122.50 (13)
N1—C16—H16A109.7C16—N1—C14114.79 (11)
C15—C16—H16A109.7O4—C17—N1125.40 (15)
N1—C16—H16B109.7O4—C17—H17117.3
C15—C16—H16B109.7N1—C17—H17117.3
H16A—C16—H16B108.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.841.752.5315 (16)155

Experimental details

Crystal data
Chemical formulaC17H18FN3O4
Mr347.34
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)8.6689 (17), 9.6727 (19), 10.142 (2)
α, β, γ (°)73.41 (3), 81.41 (3), 86.48 (3)
V3)805.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.24 × 0.20 × 0.16
Data collection
DiffractometerNonius KappaCCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6043, 3635, 2913
Rint0.020
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.123, 1.05
No. of reflections3635
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.25

Computer programs: COLLECT (Nonius, 1999), SCALEPACK (Otwinowski & Minor, 1997), SCALEPACK/DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), X-SEED (Barbour, 2001).

Geometry (Å, °) of hydrogen bonds and ππ interactions top
Cg1 is the centroid of the N3/C2–C6 ring.
D-H···AD-H(Å)H···A(Å)D···A(Å)D-H···A(°)
O2—H2···O30.841.752.5315 (16)154.5
C4-H4···O1i0.952.363.1872145
C10-H10···O4ii0.952.583.4323149
C11-H11A···O4ii0.992.423.3413155
C14-H14B···O3iii0.992.463.2465136
C15-H15B···Cg1iv0.992.643.3749131
Cg1···Cg1v3.423a3.8141b26c
Notes: (a) Perpendicular distance of rings. (b) Distance between ring centroids. (c) Angle between the Cg1Cg1v vector and the normal to the plane of Cg1v.

Symmetry codes: (i) 2-x,2-y,2-z; (ii)1-x,1-y,1-z; (iii) x,y,z-1; (iv)1-x,1-y,2-z; (v) 1-x,2-y,2-z
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds