Download citation
Download citation
link to html
In the title compound, [Fe3(C5H5)2(C16H13P)2], two (C6H5)P[(C5H4)Fe(C5H5)](C5H4) units are bridged by an Fe atom, located on an inversion center, giving a central third ferrocene unit. Each Fe atom is coordinated by two cyclo­penta­dienyl rings in a parallel sandwich fashion, with twisted conformations. The geometry of the phosphine P atom is pseudo-tetra­hedral, defined by a phenyl ring, two cyclo­penta­dienyl rings and an electron pair.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680703262X/nc2045sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680703262X/nc2045Isup2.hkl
Contains datablock I

CCDC reference: 657551

Key indicators

  • Single-crystal X-ray study
  • T = 150 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.030
  • wR factor = 0.076
  • Data-to-parameter ratio = 13.5

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT220_ALERT_2_B Large Non-Solvent C Ueq(max)/Ueq(min) ... 4.05 Ratio PLAT222_ALERT_3_B Large Non-Solvent H Ueq(max)/Ueq(min) ... 4.52 Ratio PLAT230_ALERT_2_B Hirshfeld Test Diff for C11 - C12 .. 9.30 su PLAT241_ALERT_2_B Check High Ueq as Compared to Neighbors for C12
Alert level C ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR) is > 1.10 Tmin and Tmax reported: 0.770 0.840 Tmin and Tmax expected: 0.644 0.846 RR = 1.204 Please check that your absorption correction is appropriate. PLAT060_ALERT_3_C Ratio Tmax/Tmin (Exp-to-Rep) (too) Large ....... 1.21 PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.74 PLAT164_ALERT_4_C Nr. of Refined C-H H-Atoms in Heavy-At Struct... 18 PLAT213_ALERT_2_C Atom C12 has ADP max/min Ratio ............. 3.80 prola PLAT230_ALERT_2_C Hirshfeld Test Diff for C12 - C13 .. 5.96 su PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Fe2 PLAT350_ALERT_3_C Short C-H Bond (0.96A) C12 - H12 ... 0.79 Ang.
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Fe1 (3) 3.79 PLAT794_ALERT_5_G Check Predicted Bond Valency for Fe2 (3) 3.81
0 ALERT level A = In general: serious problem 4 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 7 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Comment top

Phosphorous-chiral ligands based on ferrocene play important roles in stereoselective synthesis and asymmetric catalysis. In this context we report here the crystal structure of (I).

The title compound, (I), consists of two (C6H5)P[(C5H4)Fe(C5H4)](C5H4) units, which are connected via Fe1 into a substituted ferrocene (Fig. 1). Fe1 is located on an inversion center. Each Fe atom is coordinated in a sandwich fashion by two cyclopentadienyl (Cp) rings. Fe1—C(Cp) distances range from 2.0451 (17) to 2.0513 (16) Å, the variation of the Fe2—C(Cp) bond length is with 2.028 (3) to 2.058 (2) Å wider. This ranges compares well to the related (Ph)P[(Cp)Fe(Cp)]2 complex [Fe—C = 1.999 (12) – 2.060 (11)] reported by Houlton et al. (1990).

The planes of the Cp rings are standing parallel on top of each other, with the largest deviation from parallelity of 2.24 (15) ° for Cp2 (C6–C10) with respect to Cp3 (C11—C15). The conformation of the Cp rings are twisted, the Cp–C atoms do not cover each other as can be seen in plots viewed perpendicular to the Cp rings in Fig. 2. This rotation is expressed by variation of the C—CgCg—C (Cg is the centroid of the Cp rings) torsions angles. The rotation of Cp2 with respect to Cp3 is with 23.13 [C6—Cg3—Cg1—C15] to 23.61 ° [C7—Cg2—Cg3—C11] smaller compared to the rotation of Cg1 to Cg1i [symmetry code: (i) 1 - x, 1 - y, 1 - z] with 35.48 ° [C2—Cg1—Cg1i—C4i] to 36.01 ° [C1—Cg1—Cg1i—C4i]. Since the first structure determinations on metallocenes there have been discussions, whether the Cp–H atoms are bent away from or towards to the metal (Haaland, 1979). In (I) all Cp–H atoms are found in the planes of the corresponding Cp–C atoms within standard uncertainties.

The phosphine P is in a tetrahedral environment, defined by a phenyl (Ph) ring, two cyclopentadienyl rings and an electron pair. C—P—C angles are less than the ideal value of 109°, they vary between 100.46 (8) and 103.22 (8)°. P—C(Cp) distances are with 1.8130 (18) and 1.8210 (18) Å shorter than the P—C(Ph) distance [1.8361 (19) Å]. Again the P geometry is similar to the related (Ph)P[(Cp)Fe(Cp)]2 complex, where bond lengths and angles agree well with those in (I), the longest P—C distance [1.843 (11) Å] corresponds again to P—C(Ph).

In a similar structure, where the phosphine P is protected by a BH3 group (Nettekoven et al., 2003), the C—P—C angles range from 102.29 (12) to 108.10 (11)° and the P geometry is therefore closer to tetrahedral. P—C(Cp) and P—C(Ph) bond distances are shorter than in (I) [P—C(Cp) = 1.786 (3), 1.798 (3) Å; P—C(Ph) = 1.820 (2) Å].

Related literature top

The synthesis of the title compound is described by Nettekoven et al. (2001). Related structures are reported by Houlton et al. (1990) and Nettekoven et al. (2003).

For related literature, see: Haaland (1979).

Experimental top

The synthesis of the title compound, (I), is described by Nettekoven et al. (2001). Orange crystals for data collection were obtained after recrystallization from CH2Cl2/hexane (ratio 1:1).

Refinement top

All hydrogen atoms were located in the difference Fourier map and where refined freely with isotropic displacement parameters.

The final residual density of 1.021 e Å-3 is located 1.77 Å from C20.

Atoms C11–C13 belong to the unsubstituted, only to Fe2 coordinated Cp ring C11–C15 and show anomalous anisotropic displacement parameters along their chemical bonds. This is due to the higher ability of rotation compared to Cp rings C1–C5 and C6–C10.

Structure description top

Phosphorous-chiral ligands based on ferrocene play important roles in stereoselective synthesis and asymmetric catalysis. In this context we report here the crystal structure of (I).

The title compound, (I), consists of two (C6H5)P[(C5H4)Fe(C5H4)](C5H4) units, which are connected via Fe1 into a substituted ferrocene (Fig. 1). Fe1 is located on an inversion center. Each Fe atom is coordinated in a sandwich fashion by two cyclopentadienyl (Cp) rings. Fe1—C(Cp) distances range from 2.0451 (17) to 2.0513 (16) Å, the variation of the Fe2—C(Cp) bond length is with 2.028 (3) to 2.058 (2) Å wider. This ranges compares well to the related (Ph)P[(Cp)Fe(Cp)]2 complex [Fe—C = 1.999 (12) – 2.060 (11)] reported by Houlton et al. (1990).

The planes of the Cp rings are standing parallel on top of each other, with the largest deviation from parallelity of 2.24 (15) ° for Cp2 (C6–C10) with respect to Cp3 (C11—C15). The conformation of the Cp rings are twisted, the Cp–C atoms do not cover each other as can be seen in plots viewed perpendicular to the Cp rings in Fig. 2. This rotation is expressed by variation of the C—CgCg—C (Cg is the centroid of the Cp rings) torsions angles. The rotation of Cp2 with respect to Cp3 is with 23.13 [C6—Cg3—Cg1—C15] to 23.61 ° [C7—Cg2—Cg3—C11] smaller compared to the rotation of Cg1 to Cg1i [symmetry code: (i) 1 - x, 1 - y, 1 - z] with 35.48 ° [C2—Cg1—Cg1i—C4i] to 36.01 ° [C1—Cg1—Cg1i—C4i]. Since the first structure determinations on metallocenes there have been discussions, whether the Cp–H atoms are bent away from or towards to the metal (Haaland, 1979). In (I) all Cp–H atoms are found in the planes of the corresponding Cp–C atoms within standard uncertainties.

The phosphine P is in a tetrahedral environment, defined by a phenyl (Ph) ring, two cyclopentadienyl rings and an electron pair. C—P—C angles are less than the ideal value of 109°, they vary between 100.46 (8) and 103.22 (8)°. P—C(Cp) distances are with 1.8130 (18) and 1.8210 (18) Å shorter than the P—C(Ph) distance [1.8361 (19) Å]. Again the P geometry is similar to the related (Ph)P[(Cp)Fe(Cp)]2 complex, where bond lengths and angles agree well with those in (I), the longest P—C distance [1.843 (11) Å] corresponds again to P—C(Ph).

In a similar structure, where the phosphine P is protected by a BH3 group (Nettekoven et al., 2003), the C—P—C angles range from 102.29 (12) to 108.10 (11)° and the P geometry is therefore closer to tetrahedral. P—C(Cp) and P—C(Ph) bond distances are shorter than in (I) [P—C(Cp) = 1.786 (3), 1.798 (3) Å; P—C(Ph) = 1.820 (2) Å].

The synthesis of the title compound is described by Nettekoven et al. (2001). Related structures are reported by Houlton et al. (1990) and Nettekoven et al. (2003).

For related literature, see: Haaland (1979).

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO (Version 1.11.0; Otwinowski & Minor, 1997); data reduction: DENZO; program(s) used to solve structure: DIRDIF97 (Beurskens et al., 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. : Molecular structure of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) 1 - x, 1 - y, 1 - z]
[Figure 2] Fig. 2. : The conformation of the cyclopentadienyl (Cp) rings in (I). Hydrogen atoms have been omitted for clarity. A) View perpendicular to the Cp1-ring-plane. Color scheme: light blue Cp1, green Cp1i (Cp1 = C1–C5). B) View perpendicular to the Cp2- and Cp3-ring-plane. Color scheme: light green Cp2 and Cp2i, pink Cp3 and Cp3i (Cp2 = C6–C10 and Cp3 = C11–C15). [Symmetry code: (i) 1 - x, 1 - y, 1 - z]
1,1'-Bis(ferrocenylphenylphosphino)ferrocene top
Crystal data top
[Fe3(C5H5)2(C16H13P)2]Z = 1
Mr = 770.20F(000) = 396
Triclinic, P1Dx = 1.509 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.9308 (1) ÅCell parameters from 33761 reflections
b = 9.5875 (2) Åθ = 1.0–27.5°
c = 15.7529 (3) ŵ = 1.39 mm1
α = 82.2873 (10)°T = 150 K
β = 89.4928 (9)°Block, orange
γ = 72.8206 (9)°0.33 × 0.27 × 0.12 mm
V = 847.58 (3) Å3
Data collection top
Nonius KappaCCD
diffractometer
3872 independent reflections
Radiation source: rotating anode3567 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
φ and ω scansθmax = 27.4°, θmin = 2.2°
Absorption correction: multi-scan
(MULABS routine of PLATON; Spek, 2003)
h = 77
Tmin = 0.77, Tmax = 0.84k = 1212
19960 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: difference Fourier map
wR(F2) = 0.077All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0331P)2 + 0.7293P]
where P = (Fo2 + 2Fc2)/3
3872 reflections(Δ/σ)max = 0.004
286 parametersΔρmax = 1.02 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Fe3(C5H5)2(C16H13P)2]γ = 72.8206 (9)°
Mr = 770.20V = 847.58 (3) Å3
Triclinic, P1Z = 1
a = 5.9308 (1) ÅMo Kα radiation
b = 9.5875 (2) ŵ = 1.39 mm1
c = 15.7529 (3) ÅT = 150 K
α = 82.2873 (10)°0.33 × 0.27 × 0.12 mm
β = 89.4928 (9)°
Data collection top
Nonius KappaCCD
diffractometer
3872 independent reflections
Absorption correction: multi-scan
(MULABS routine of PLATON; Spek, 2003)
3567 reflections with I > 2σ(I)
Tmin = 0.77, Tmax = 0.84Rint = 0.038
19960 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.077All H-atom parameters refined
S = 1.03Δρmax = 1.02 e Å3
3872 reflectionsΔρmin = 0.37 e Å3
286 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of I>2σ(I) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.50000.50000.50000.01673 (9)
Fe20.20709 (4)1.07610 (3)0.274313 (16)0.02367 (9)
P10.56465 (7)0.70824 (5)0.31173 (3)0.02101 (11)
C10.4763 (3)0.55601 (19)0.36935 (11)0.0191 (3)
C20.6404 (3)0.4122 (2)0.39305 (11)0.0228 (4)
C30.5199 (4)0.3205 (2)0.43963 (12)0.0263 (4)
C40.2802 (4)0.4057 (2)0.44521 (12)0.0256 (4)
C50.2523 (3)0.5499 (2)0.40199 (11)0.0212 (3)
C60.3239 (3)0.86348 (19)0.33599 (11)0.0203 (3)
C70.0769 (3)0.9040 (2)0.31389 (12)0.0228 (4)
C80.0417 (3)1.0281 (2)0.35466 (13)0.0273 (4)
C90.1280 (4)1.0664 (2)0.40202 (13)0.0278 (4)
C100.3532 (3)0.9663 (2)0.39040 (12)0.0249 (4)
C110.2321 (7)1.0950 (4)0.14502 (16)0.0615 (9)
C120.0377 (6)1.2089 (5)0.1681 (2)0.0776 (14)
C130.1247 (5)1.2925 (3)0.2200 (2)0.0550 (8)
C140.3699 (4)1.2309 (3)0.22715 (15)0.0399 (5)
C150.4347 (5)1.1115 (3)0.18153 (15)0.0432 (6)
C160.4953 (3)0.6923 (2)0.20074 (12)0.0266 (4)
C170.6397 (4)0.7335 (3)0.13786 (15)0.0407 (5)
C180.5986 (5)0.7260 (3)0.05218 (15)0.0544 (7)
C190.4187 (5)0.6751 (4)0.02877 (15)0.0565 (7)
C200.2766 (5)0.6306 (3)0.09029 (16)0.0495 (6)
C210.3154 (4)0.6396 (3)0.17618 (14)0.0344 (4)
H20.800 (4)0.391 (2)0.3808 (14)0.028 (6)*
H30.583 (4)0.225 (3)0.4641 (14)0.030 (6)*
H40.164 (5)0.376 (3)0.4752 (17)0.044 (7)*
H50.113 (4)0.623 (2)0.3968 (14)0.023 (5)*
H70.002 (4)0.857 (3)0.2789 (15)0.033 (6)*
H80.208 (4)1.077 (3)0.3502 (14)0.031 (6)*
H90.095 (4)1.144 (3)0.4345 (16)0.039 (7)*
H100.495 (4)0.967 (3)0.4117 (15)0.033 (6)*
H110.220 (7)1.020 (5)0.113 (3)0.098 (13)*
H120.091 (8)1.212 (5)0.154 (3)0.104 (14)*
H130.035 (6)1.375 (4)0.244 (2)0.081 (11)*
H140.478 (6)1.267 (4)0.254 (2)0.072 (10)*
H150.595 (6)1.038 (4)0.176 (2)0.067 (9)*
H170.766 (5)0.776 (3)0.1540 (18)0.052 (8)*
H180.695 (6)0.755 (4)0.011 (2)0.067 (9)*
H190.400 (5)0.668 (3)0.030 (2)0.061 (8)*
H200.168 (5)0.591 (3)0.0761 (19)0.055 (8)*
H210.218 (5)0.613 (3)0.2145 (16)0.039 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01851 (16)0.01506 (16)0.01460 (16)0.00259 (12)0.00126 (12)0.00050 (12)
Fe20.02421 (14)0.02186 (14)0.02401 (15)0.00941 (10)0.00277 (10)0.00620 (10)
P10.0170 (2)0.0244 (2)0.0203 (2)0.00623 (17)0.00241 (16)0.00201 (17)
C10.0195 (8)0.0214 (8)0.0148 (7)0.0042 (6)0.0009 (6)0.0006 (6)
C20.0256 (9)0.0219 (8)0.0170 (8)0.0006 (7)0.0021 (6)0.0037 (6)
C30.0406 (10)0.0168 (8)0.0198 (8)0.0057 (7)0.0008 (7)0.0036 (7)
C40.0331 (10)0.0272 (9)0.0206 (9)0.0155 (8)0.0021 (7)0.0032 (7)
C50.0200 (8)0.0247 (9)0.0180 (8)0.0067 (7)0.0008 (6)0.0001 (7)
C60.0217 (8)0.0196 (8)0.0193 (8)0.0086 (6)0.0009 (6)0.0037 (6)
C70.0198 (8)0.0216 (8)0.0279 (9)0.0091 (7)0.0008 (7)0.0006 (7)
C80.0252 (9)0.0220 (9)0.0327 (10)0.0058 (7)0.0063 (7)0.0006 (7)
C90.0390 (11)0.0174 (8)0.0260 (9)0.0081 (8)0.0020 (8)0.0002 (7)
C100.0306 (9)0.0233 (9)0.0220 (9)0.0132 (7)0.0034 (7)0.0049 (7)
C110.108 (3)0.0676 (19)0.0234 (12)0.056 (2)0.0078 (14)0.0117 (12)
C120.0470 (16)0.108 (3)0.070 (2)0.0461 (19)0.0363 (16)0.071 (2)
C130.0535 (15)0.0282 (12)0.0658 (18)0.0009 (11)0.0197 (13)0.0238 (12)
C140.0469 (13)0.0370 (12)0.0384 (12)0.0247 (10)0.0026 (10)0.0136 (9)
C150.0476 (13)0.0394 (12)0.0373 (12)0.0126 (10)0.0127 (10)0.0117 (10)
C160.0285 (9)0.0273 (9)0.0196 (8)0.0034 (7)0.0033 (7)0.0008 (7)
C170.0423 (12)0.0495 (13)0.0285 (11)0.0136 (11)0.0112 (9)0.0006 (9)
C180.0616 (17)0.0714 (19)0.0244 (11)0.0150 (14)0.0148 (11)0.0022 (11)
C190.0667 (18)0.0726 (19)0.0197 (11)0.0037 (14)0.0004 (11)0.0081 (11)
C200.0539 (15)0.0633 (17)0.0326 (12)0.0153 (13)0.0045 (11)0.0149 (11)
C210.0379 (11)0.0407 (12)0.0255 (10)0.0122 (9)0.0043 (8)0.0063 (8)
Geometric parameters (Å, º) top
Fe1—C22.0451 (17)C7—C81.423 (3)
Fe1—C42.0460 (19)C7—H70.94 (2)
Fe1—C32.0487 (18)C8—C91.418 (3)
Fe1—C52.0488 (17)C8—H80.96 (2)
Fe1—C12.0513 (16)C9—C101.422 (3)
Fe2—C112.028 (3)C9—H90.93 (3)
Fe2—C122.032 (2)C10—H100.91 (2)
Fe2—C102.0433 (18)C11—C151.396 (4)
Fe2—C72.0435 (18)C11—C121.418 (5)
Fe2—C152.044 (2)C11—H110.95 (4)
Fe2—C82.0502 (19)C12—C131.416 (5)
Fe2—C132.051 (2)C12—H120.79 (4)
Fe2—C142.055 (2)C13—C141.398 (4)
Fe2—C62.0556 (17)C13—H130.94 (4)
Fe2—C92.058 (2)C14—C151.389 (4)
P1—C61.8130 (18)C14—H140.94 (3)
P1—C11.8210 (18)C15—H151.01 (3)
P1—C161.8361 (19)C16—C211.386 (3)
C1—C51.435 (2)C16—C171.397 (3)
C1—C21.436 (2)C17—C181.389 (3)
C2—C31.418 (3)C17—H171.00 (3)
C2—H20.93 (2)C18—C191.370 (4)
C3—C41.423 (3)C18—H180.93 (3)
C3—H30.91 (2)C19—C201.385 (4)
C4—C51.420 (3)C19—H190.94 (3)
C4—H40.93 (3)C20—C211.393 (3)
C5—H50.91 (2)C20—H200.88 (3)
C6—C71.434 (2)C21—H210.90 (3)
C6—C101.438 (3)
C2i—Fe1—C2179.999 (1)C2—C3—Fe169.60 (10)
C2i—Fe1—C4111.69 (8)C4—C3—Fe169.56 (10)
C2—Fe1—C468.31 (8)C2—C3—H3127.2 (15)
C2—Fe1—C4i111.69 (8)C4—C3—H3124.8 (15)
C4—Fe1—C4i179.998 (1)Fe1—C3—H3124.4 (14)
C2i—Fe1—C3139.47 (8)C5—C4—C3108.31 (16)
C2—Fe1—C340.53 (8)C5—C4—Fe169.82 (10)
C4—Fe1—C340.69 (8)C3—C4—Fe169.76 (11)
C4i—Fe1—C3139.32 (8)C5—C4—H4125.1 (17)
C2—Fe1—C3i139.47 (8)C3—C4—H4126.4 (17)
C4—Fe1—C3i139.31 (8)Fe1—C4—H4122.7 (16)
C3—Fe1—C3i180.00 (8)C4—C5—C1108.37 (16)
C2i—Fe1—C5111.48 (7)C4—C5—Fe169.60 (10)
C2—Fe1—C568.51 (7)C1—C5—Fe169.61 (9)
C4—Fe1—C540.58 (7)C4—C5—H5123.9 (14)
C4i—Fe1—C5139.42 (7)C1—C5—H5127.7 (14)
C3—Fe1—C568.46 (7)Fe1—C5—H5126.8 (14)
C3i—Fe1—C5111.54 (7)C7—C6—C10106.61 (16)
C2—Fe1—C5i111.49 (7)C7—C6—P1130.23 (14)
C4—Fe1—C5i139.42 (7)C10—C6—P1123.00 (13)
C3—Fe1—C5i111.54 (7)C7—C6—Fe269.07 (10)
C5—Fe1—C5i179.998 (2)C10—C6—Fe269.00 (10)
C2—Fe1—C1i138.95 (7)P1—C6—Fe2130.26 (9)
C4—Fe1—C1i111.19 (7)C8—C7—C6108.44 (16)
C3—Fe1—C1i111.09 (7)C8—C7—Fe269.91 (11)
C5—Fe1—C1i139.03 (7)C6—C7—Fe269.98 (10)
C2i—Fe1—C1138.95 (7)C8—C7—H7124.7 (15)
C2—Fe1—C141.05 (7)C6—C7—H7126.8 (15)
C4—Fe1—C168.81 (7)Fe2—C7—H7126.3 (14)
C4i—Fe1—C1111.19 (7)C9—C8—C7108.42 (17)
C3—Fe1—C168.90 (7)C9—C8—Fe270.10 (11)
C3i—Fe1—C1111.10 (7)C7—C8—Fe269.40 (10)
C5—Fe1—C140.97 (7)C9—C8—H8126.3 (14)
C5i—Fe1—C1139.03 (7)C7—C8—H8125.3 (14)
C1i—Fe1—C1180.00 (10)Fe2—C8—H8125.9 (14)
C11—Fe2—C1240.86 (16)C8—C9—C10107.81 (17)
C11—Fe2—C10146.78 (13)C8—C9—Fe269.52 (11)
C12—Fe2—C10171.90 (15)C10—C9—Fe269.16 (11)
C11—Fe2—C7108.50 (10)C8—C9—H9125.1 (15)
C12—Fe2—C7113.95 (11)C10—C9—H9127.1 (16)
C10—Fe2—C768.58 (7)Fe2—C9—H9126.5 (15)
C11—Fe2—C1540.11 (12)C9—C10—C6108.72 (17)
C12—Fe2—C1567.42 (12)C9—C10—Fe270.26 (11)
C10—Fe2—C15116.96 (9)C6—C10—Fe269.93 (10)
C7—Fe2—C15133.60 (9)C9—C10—H10126.9 (15)
C11—Fe2—C8132.21 (11)C6—C10—H10124.3 (15)
C12—Fe2—C8108.31 (11)Fe2—C10—H10124.2 (15)
C10—Fe2—C868.20 (8)C15—C11—C12107.0 (3)
C7—Fe2—C840.68 (7)C15—C11—Fe270.54 (14)
C15—Fe2—C8171.86 (10)C12—C11—Fe269.72 (17)
C11—Fe2—C1368.42 (14)C15—C11—H11128 (3)
C12—Fe2—C1340.56 (15)C12—C11—H11125 (3)
C10—Fe2—C13133.29 (12)Fe2—C11—H11122 (2)
C7—Fe2—C13145.35 (10)C13—C12—C11108.1 (2)
C15—Fe2—C1367.20 (10)C13—C12—Fe270.44 (14)
C8—Fe2—C13114.51 (9)C11—C12—Fe269.42 (15)
C11—Fe2—C1467.45 (11)C13—C12—H12133 (3)
C12—Fe2—C1467.22 (11)C11—C12—H12119 (3)
C10—Fe2—C14111.30 (9)Fe2—C12—H12123 (3)
C7—Fe2—C14172.87 (9)C14—C13—C12107.1 (3)
C15—Fe2—C1439.63 (10)C14—C13—Fe270.26 (13)
C8—Fe2—C14146.35 (10)C12—C13—Fe269.01 (15)
C13—Fe2—C1439.80 (10)C14—C13—H13126 (2)
C11—Fe2—C6114.47 (11)C12—C13—H13127 (2)
C12—Fe2—C6145.58 (14)Fe2—C13—H13127 (2)
C10—Fe2—C641.07 (7)C15—C14—C13108.8 (2)
C7—Fe2—C640.94 (7)C15—C14—Fe269.74 (13)
C15—Fe2—C6110.53 (9)C13—C14—Fe269.94 (13)
C8—Fe2—C668.73 (7)C15—C14—H14124 (2)
C13—Fe2—C6173.03 (11)C13—C14—H14127 (2)
C14—Fe2—C6134.39 (8)Fe2—C14—H14130 (2)
C11—Fe2—C9171.42 (13)C14—C15—C11109.0 (3)
C12—Fe2—C9132.17 (14)C14—C15—Fe270.64 (13)
C10—Fe2—C940.59 (8)C11—C15—Fe269.35 (15)
C7—Fe2—C968.37 (8)C14—C15—H15130.1 (19)
C15—Fe2—C9147.56 (10)C11—C15—H15120.8 (19)
C8—Fe2—C940.37 (8)Fe2—C15—H15122.5 (18)
C13—Fe2—C9109.29 (10)C21—C16—C17118.7 (2)
C14—Fe2—C9116.51 (9)C21—C16—P1124.65 (15)
C6—Fe2—C968.82 (7)C17—C16—P1116.63 (17)
C6—P1—C1100.46 (8)C18—C17—C16120.4 (2)
C6—P1—C16103.22 (8)C18—C17—H17119.5 (16)
C1—P1—C16100.66 (9)C16—C17—H17119.9 (16)
C5—C1—C2106.76 (15)C19—C18—C17120.2 (2)
C5—C1—P1130.84 (13)C19—C18—H18120 (2)
C2—C1—P1122.37 (13)C17—C18—H18119 (2)
C5—C1—Fe169.42 (9)C18—C19—C20120.3 (2)
C2—C1—Fe169.24 (10)C18—C19—H19117.6 (19)
P1—C1—Fe1124.65 (9)C20—C19—H19122.0 (19)
C3—C2—C1108.69 (16)C19—C20—C21119.7 (3)
C3—C2—Fe169.87 (10)C19—C20—H20121 (2)
C1—C2—Fe169.71 (10)C21—C20—H20120 (2)
C3—C2—H2129.3 (14)C16—C21—C20120.6 (2)
C1—C2—H2121.9 (14)C16—C21—H21121.5 (16)
Fe1—C2—H2123.4 (14)C20—C21—H21117.8 (16)
C2—C3—C4107.86 (16)
C6—P1—C1—C517.63 (18)C6—C7—C8—Fe259.60 (12)
C16—P1—C1—C588.12 (17)C11—Fe2—C8—C9173.79 (16)
C6—P1—C1—C2160.12 (15)C12—Fe2—C8—C9134.62 (18)
C16—P1—C1—C294.14 (15)C10—Fe2—C8—C937.60 (11)
C6—P1—C1—Fe174.25 (11)C7—Fe2—C8—C9119.67 (16)
C16—P1—C1—Fe1179.99 (10)C13—Fe2—C8—C991.39 (15)
C2i—Fe1—C1—C561.85 (15)C14—Fe2—C8—C958.43 (19)
C2—Fe1—C1—C5118.15 (15)C6—Fe2—C8—C981.91 (12)
C4—Fe1—C1—C537.26 (11)C11—Fe2—C8—C766.55 (19)
C4i—Fe1—C1—C5142.74 (11)C12—Fe2—C8—C7105.71 (18)
C3—Fe1—C1—C581.03 (11)C10—Fe2—C8—C782.07 (12)
C3i—Fe1—C1—C598.97 (11)C13—Fe2—C8—C7148.94 (15)
C5i—Fe1—C1—C5180.001 (1)C14—Fe2—C8—C7178.10 (14)
C2i—Fe1—C1—C2180.0C6—Fe2—C8—C737.76 (11)
C4—Fe1—C1—C280.89 (12)C9—Fe2—C8—C7119.67 (16)
C4i—Fe1—C1—C299.11 (12)C7—C8—C9—C100.3 (2)
C3—Fe1—C1—C237.12 (11)Fe2—C8—C9—C1058.74 (13)
C3i—Fe1—C1—C2142.88 (11)C7—C8—C9—Fe259.01 (13)
C5—Fe1—C1—C2118.15 (15)C12—Fe2—C9—C865.74 (18)
C5i—Fe1—C1—C261.85 (15)C10—Fe2—C9—C8119.45 (16)
C2i—Fe1—C1—P164.28 (16)C7—Fe2—C9—C837.54 (11)
C2—Fe1—C1—P1115.72 (16)C15—Fe2—C9—C8176.92 (15)
C4—Fe1—C1—P1163.39 (13)C13—Fe2—C9—C8105.48 (14)
C4i—Fe1—C1—P116.61 (13)C14—Fe2—C9—C8148.16 (12)
C3—Fe1—C1—P1152.84 (13)C6—Fe2—C9—C881.67 (11)
C3i—Fe1—C1—P127.16 (13)C12—Fe2—C9—C10174.81 (16)
C5—Fe1—C1—P1126.13 (16)C7—Fe2—C9—C1081.90 (11)
C5i—Fe1—C1—P153.87 (16)C15—Fe2—C9—C1057.5 (2)
C5—C1—C2—C30.4 (2)C8—Fe2—C9—C10119.45 (16)
P1—C1—C2—C3177.83 (13)C13—Fe2—C9—C10135.08 (13)
Fe1—C1—C2—C359.17 (13)C14—Fe2—C9—C1092.39 (13)
C5—C1—C2—Fe159.56 (12)C6—Fe2—C9—C1037.78 (11)
P1—C1—C2—Fe1118.66 (13)C8—C9—C10—C60.6 (2)
C4—Fe1—C2—C337.76 (11)Fe2—C9—C10—C659.56 (12)
C4i—Fe1—C2—C3142.24 (11)C8—C9—C10—Fe258.96 (13)
C3i—Fe1—C2—C3180.0C7—C6—C10—C90.7 (2)
C5—Fe1—C2—C381.56 (12)P1—C6—C10—C9175.06 (13)
C5i—Fe1—C2—C398.44 (12)Fe2—C6—C10—C959.77 (13)
C1i—Fe1—C2—C360.03 (16)C7—C6—C10—Fe259.09 (12)
C1—Fe1—C2—C3119.97 (16)P1—C6—C10—Fe2125.17 (13)
C4—Fe1—C2—C182.20 (11)C11—Fe2—C10—C9172.65 (18)
C4i—Fe1—C2—C197.80 (11)C7—Fe2—C10—C981.32 (12)
C3—Fe1—C2—C1119.97 (16)C15—Fe2—C10—C9149.51 (13)
C3i—Fe1—C2—C160.03 (16)C8—Fe2—C10—C937.41 (11)
C5—Fe1—C2—C138.41 (10)C13—Fe2—C10—C966.30 (16)
C5i—Fe1—C2—C1141.59 (10)C14—Fe2—C10—C9106.33 (13)
C1i—Fe1—C2—C1179.999 (2)C6—Fe2—C10—C9119.61 (15)
C1—C2—C3—C40.2 (2)C11—Fe2—C10—C653.0 (2)
Fe1—C2—C3—C459.24 (13)C7—Fe2—C10—C638.29 (10)
C1—C2—C3—Fe159.07 (12)C15—Fe2—C10—C690.88 (13)
C2i—Fe1—C3—C2179.999 (1)C8—Fe2—C10—C682.20 (11)
C4—Fe1—C3—C2119.20 (15)C13—Fe2—C10—C6174.09 (13)
C4i—Fe1—C3—C260.80 (15)C14—Fe2—C10—C6134.06 (12)
C5—Fe1—C3—C281.70 (11)C9—Fe2—C10—C6119.61 (15)
C5i—Fe1—C3—C298.30 (11)C12—Fe2—C11—C15117.5 (3)
C1i—Fe1—C3—C2142.42 (10)C10—Fe2—C11—C1558.1 (3)
C1—Fe1—C3—C237.58 (10)C7—Fe2—C11—C15137.02 (16)
C2i—Fe1—C3—C460.80 (15)C8—Fe2—C11—C15176.11 (13)
C2—Fe1—C3—C4119.20 (15)C13—Fe2—C11—C1579.80 (18)
C4i—Fe1—C3—C4180.0C14—Fe2—C11—C1536.72 (16)
C5—Fe1—C3—C437.50 (11)C6—Fe2—C11—C1593.31 (17)
C5i—Fe1—C3—C4142.50 (11)C10—Fe2—C11—C12175.56 (17)
C1i—Fe1—C3—C498.37 (11)C7—Fe2—C11—C12105.51 (18)
C1—Fe1—C3—C481.63 (11)C15—Fe2—C11—C12117.5 (2)
C2—C3—C4—C50.1 (2)C8—Fe2—C11—C1266.4 (2)
Fe1—C3—C4—C559.38 (13)C13—Fe2—C11—C1237.67 (17)
C2—C3—C4—Fe159.27 (13)C14—Fe2—C11—C1280.75 (19)
C2i—Fe1—C4—C598.14 (11)C6—Fe2—C11—C12149.22 (17)
C2—Fe1—C4—C581.86 (11)C15—C11—C12—C131.0 (3)
C3—Fe1—C4—C5119.49 (15)Fe2—C11—C12—C1360.05 (18)
C3i—Fe1—C4—C560.51 (15)C15—C11—C12—Fe261.02 (16)
C5i—Fe1—C4—C5180.0C11—Fe2—C12—C13119.1 (2)
C1i—Fe1—C4—C5142.39 (10)C7—Fe2—C12—C13149.94 (15)
C1—Fe1—C4—C537.61 (10)C15—Fe2—C12—C1380.83 (17)
C2i—Fe1—C4—C3142.37 (11)C8—Fe2—C12—C13106.57 (17)
C2—Fe1—C4—C337.63 (11)C14—Fe2—C12—C1337.72 (16)
C3i—Fe1—C4—C3180.000 (1)C6—Fe2—C12—C13174.55 (14)
C5—Fe1—C4—C3119.49 (15)C9—Fe2—C12—C1368.1 (2)
C5i—Fe1—C4—C360.51 (15)C7—Fe2—C12—C1190.99 (17)
C1i—Fe1—C4—C398.12 (11)C15—Fe2—C12—C1138.24 (17)
C1—Fe1—C4—C381.89 (11)C8—Fe2—C12—C11134.35 (16)
C3—C4—C5—C10.4 (2)C13—Fe2—C12—C11119.1 (2)
Fe1—C4—C5—C158.99 (12)C14—Fe2—C12—C1181.35 (18)
C3—C4—C5—Fe159.34 (13)C6—Fe2—C12—C1155.5 (2)
C2—C1—C5—C40.5 (2)C9—Fe2—C12—C11172.82 (15)
P1—C1—C5—C4177.56 (14)C11—C12—C13—C140.8 (3)
Fe1—C1—C5—C458.99 (12)Fe2—C12—C13—C1460.23 (17)
C2—C1—C5—Fe159.44 (12)C11—C12—C13—Fe259.41 (17)
P1—C1—C5—Fe1118.57 (15)C11—Fe2—C13—C1480.24 (19)
C2i—Fe1—C5—C498.69 (12)C12—Fe2—C13—C14118.2 (3)
C2—Fe1—C5—C481.31 (12)C10—Fe2—C13—C1469.4 (2)
C4i—Fe1—C5—C4180.0C7—Fe2—C13—C14171.83 (15)
C3—Fe1—C5—C437.59 (11)C15—Fe2—C13—C1436.79 (16)
C3i—Fe1—C5—C4142.41 (11)C8—Fe2—C13—C14151.90 (15)
C1i—Fe1—C5—C460.20 (15)C9—Fe2—C13—C14108.58 (17)
C1—Fe1—C5—C4119.80 (15)C11—Fe2—C13—C1237.9 (2)
C2i—Fe1—C5—C1141.51 (10)C10—Fe2—C13—C12172.36 (18)
C2—Fe1—C5—C138.49 (10)C7—Fe2—C13—C1253.6 (3)
C4—Fe1—C5—C1119.80 (15)C15—Fe2—C13—C1281.4 (2)
C4i—Fe1—C5—C160.20 (15)C8—Fe2—C13—C1289.9 (2)
C3—Fe1—C5—C182.21 (11)C14—Fe2—C13—C12118.2 (3)
C3i—Fe1—C5—C197.79 (11)C9—Fe2—C13—C12133.23 (19)
C1i—Fe1—C5—C1180.0C12—C13—C14—C150.3 (3)
C1—P1—C6—C763.73 (17)Fe2—C13—C14—C1559.08 (16)
C16—P1—C6—C739.95 (18)C12—C13—C14—Fe259.43 (16)
C1—P1—C6—C10110.91 (15)C11—Fe2—C14—C1537.15 (18)
C16—P1—C6—C10145.40 (15)C12—Fe2—C14—C1581.6 (2)
C1—P1—C6—Fe2159.66 (12)C10—Fe2—C14—C15106.98 (15)
C16—P1—C6—Fe255.97 (14)C8—Fe2—C14—C15170.70 (15)
C11—Fe2—C6—C790.42 (15)C13—Fe2—C14—C15120.0 (2)
C12—Fe2—C6—C754.1 (2)C6—Fe2—C14—C1565.63 (19)
C10—Fe2—C6—C7118.33 (15)C9—Fe2—C14—C15151.22 (14)
C15—Fe2—C6—C7133.79 (13)C11—Fe2—C14—C1382.9 (2)
C8—Fe2—C6—C737.53 (11)C12—Fe2—C14—C1338.4 (2)
C14—Fe2—C6—C7172.13 (13)C10—Fe2—C14—C13132.98 (18)
C9—Fe2—C6—C780.98 (12)C15—Fe2—C14—C13120.0 (2)
C11—Fe2—C6—C10151.25 (14)C8—Fe2—C14—C1350.7 (3)
C12—Fe2—C6—C10172.4 (2)C6—Fe2—C14—C13174.33 (17)
C7—Fe2—C6—C10118.33 (15)C9—Fe2—C14—C1388.74 (19)
C15—Fe2—C6—C10107.88 (13)C13—C14—C15—C110.3 (3)
C8—Fe2—C6—C1080.80 (12)Fe2—C14—C15—C1158.94 (16)
C14—Fe2—C6—C1069.54 (16)C13—C14—C15—Fe259.21 (16)
C9—Fe2—C6—C1037.34 (11)C12—C11—C15—C140.8 (3)
C11—Fe2—C6—P135.19 (17)Fe2—C11—C15—C1459.73 (16)
C12—Fe2—C6—P171.5 (2)C12—C11—C15—Fe260.49 (17)
C10—Fe2—C6—P1116.07 (17)C11—Fe2—C15—C14120.0 (2)
C7—Fe2—C6—P1125.61 (18)C12—Fe2—C15—C1481.1 (2)
C15—Fe2—C6—P18.18 (16)C10—Fe2—C15—C1491.42 (15)
C8—Fe2—C6—P1163.13 (15)C7—Fe2—C15—C14176.75 (12)
C14—Fe2—C6—P146.52 (19)C13—Fe2—C15—C1436.94 (16)
C9—Fe2—C6—P1153.41 (15)C6—Fe2—C15—C14135.96 (14)
C10—C6—C7—C80.5 (2)C9—Fe2—C15—C1453.4 (2)
P1—C6—C7—C8174.81 (14)C12—Fe2—C15—C1139.0 (2)
Fe2—C6—C7—C859.55 (13)C10—Fe2—C15—C11148.55 (18)
C10—C6—C7—Fe259.04 (12)C7—Fe2—C15—C1163.2 (2)
P1—C6—C7—Fe2125.64 (15)C13—Fe2—C15—C1183.1 (2)
C11—Fe2—C7—C8134.23 (16)C14—Fe2—C15—C11120.0 (2)
C12—Fe2—C7—C890.62 (19)C6—Fe2—C15—C11104.01 (19)
C10—Fe2—C7—C881.05 (12)C9—Fe2—C15—C11173.47 (19)
C15—Fe2—C7—C8171.57 (13)C6—P1—C16—C2172.89 (19)
C13—Fe2—C7—C855.7 (2)C1—P1—C16—C2130.64 (19)
C6—Fe2—C7—C8119.45 (16)C6—P1—C16—C17108.67 (17)
C9—Fe2—C7—C837.27 (11)C1—P1—C16—C17147.80 (17)
C11—Fe2—C7—C6106.32 (16)C21—C16—C17—C182.0 (3)
C12—Fe2—C7—C6149.93 (17)P1—C16—C17—C18179.5 (2)
C10—Fe2—C7—C638.41 (11)C16—C17—C18—C191.3 (4)
C15—Fe2—C7—C668.98 (16)C17—C18—C19—C200.1 (5)
C8—Fe2—C7—C6119.45 (16)C18—C19—C20—C210.8 (4)
C13—Fe2—C7—C6175.11 (18)C17—C16—C21—C201.2 (3)
C9—Fe2—C7—C682.18 (12)P1—C16—C21—C20179.61 (19)
C6—C7—C8—C90.1 (2)C19—C20—C21—C160.2 (4)
Fe2—C7—C8—C959.45 (13)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Fe3(C5H5)2(C16H13P)2]
Mr770.20
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)5.9308 (1), 9.5875 (2), 15.7529 (3)
α, β, γ (°)82.2873 (10), 89.4928 (9), 72.8206 (9)
V3)847.58 (3)
Z1
Radiation typeMo Kα
µ (mm1)1.39
Crystal size (mm)0.33 × 0.27 × 0.12
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(MULABS routine of PLATON; Spek, 2003)
Tmin, Tmax0.77, 0.84
No. of measured, independent and
observed [I > 2σ(I)] reflections
19960, 3872, 3567
Rint0.038
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.077, 1.03
No. of reflections3872
No. of parameters286
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)1.02, 0.37

Computer programs: COLLECT (Nonius, 1999), DENZO (Version 1.11.0; Otwinowski & Minor, 1997), DENZO, DIRDIF97 (Beurskens et al., 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97.

Selected geometric parameters (Å, º) top
Fe1—C22.0451 (17)Fe2—C152.044 (2)
Fe1—C42.0460 (19)Fe2—C82.0502 (19)
Fe1—C32.0487 (18)Fe2—C132.051 (2)
Fe1—C52.0488 (17)Fe2—C142.055 (2)
Fe1—C12.0513 (16)Fe2—C62.0556 (17)
Fe2—C112.028 (3)Fe2—C92.058 (2)
Fe2—C122.032 (2)P1—C61.8130 (18)
Fe2—C102.0433 (18)P1—C11.8210 (18)
Fe2—C72.0435 (18)P1—C161.8361 (19)
C6—P1—C1100.46 (8)C1—P1—C16100.66 (9)
C6—P1—C16103.22 (8)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds