Download citation
Download citation
link to html
Multireflection grazing-incidence X-ray diffraction (MGIXD) was used to determine the stress- and strain-free lattice parameter in the surface layer of mechanically treated (polished and ground) tungsten and austenitic steel. It was shown that reliable diffraction stress analysis is possible only when an appropriate grain interaction model is applied to an anisotropic sample. Therefore, verification of the X-ray stress factors (XSFs) was accomplished by measuring relative lattice strains during an in situ tensile test. The results obtained using the MGIXD and standard methods (χ and ω geometries) show that the Reuss and free-surface grain interaction models agree with the experimental data. Moreover, a new interpretation of the MGIXD results was proposed and applied for the first time to measure the probability of stacking faults as a function of penetration depth for a polished and ground austenitic sample. The XSF models verified in the tensile test were used in the analysis of residual stress components.

Supporting information

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S1600576715002666/nb5129sup1.pdf
Supplementary material


Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds