Download citation
Download citation
link to html
The ability to study the structure, microstructure and evolution of materials with increasing spatial resolution is fundamental to achieving a full understanding of the underlying science of materials. Polychromatic three-dimensional X-ray microscopy (3DXM) is a recently developed nondestructive diffraction technique that enables crystallographic phase identification, determination of local crystal orientations, grain morphologies, grain interface types and orientations, and in favorable cases direct determination of the deviatoric elastic strain tensor with submicrometre spatial resolution in all three dimensions. With the added capability of an energy-scanning incident beam monochromator, the determination of absolute lattice parameters is enabled, allowing specification of the complete elastic strain tensor with three-dimensional spatial resolution. The methods associated with 3DXM are described and key applications of 3DXM are discussed, including studies of deformation in single-crystal and polycrystalline metals and semiconductors, indentation deformation, thermal grain growth in polycrystalline aluminium, the metal-insulator transition in nanoplatelet VO2, interface strengths in metal-matrix composites, high-pressure science, Sn whisker growth, and electromigration processes. Finally, the outlook for future developments associated with this technique is described.

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds