Download citation
Download citation
link to html
In the title complex, [PtCl2(C10H16NO3P)2]·0.5H2O, two diethyl 2-pyridyl­methyl­phospho­nate (pmpe) ligands are coordinated to the Pt atom via their pyridyl N atoms. Two cis-chloro ligands complete the distorted square-planar Pt coordination environment. The two pmpe ligands exhibit significantly different conformations. Some atoms in ethoxy groups are positionally disordered. In the crystal structure, a water molecule is found with half-occupancy. Apart from typical hydrogen-bond O(water)—H...O interactions, weak C—H...O and C—H...Cl contacts are also observed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680301002X/na6232sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680301002X/na6232Isup2.hkl
Contains datablock I

CCDC reference: 214785

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.012 Å
  • Disorder in solvent or counterion
  • R factor = 0.036
  • wR factor = 0.089
  • Data-to-parameter ratio = 14.7

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_302 Alert C Anion/Solvent Disorder ....................... 50.00 Perc.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

The platinum(II) coordination compound cis-[PtCl2(NH3)2], cis-[diaminedichloroplatinum(II)], clinically known as `cisplatin', is one of the most important anticancer drugs successfully used in treatment of several types of tumours, e.g. testicular, ovarian and bladder carcinomas. Nevertheless, severe side effects of cisplatin, such as vomiting, ear damage, kidney toxicity, have been reported. Therefore, intensive investigations in the group of platinum(II)–amine complexes with potential lower toxicity and similar or improved activity were performed (Lippert, 1999). In recent years, a novel antitumour complex, cis-aminedichloro(2-methylpyridine)platinum(II) (AMD-473), has been selected for clinical trials (Holford et al., 1998). A new class of platinum(II) coordination compounds containing phosphonic acid ligands have been also investigated and showed promising cytostatic activity against osteosarcoma (Klenner et al., 1993; Bloemink et al., 1994).

Our preliminary studies have shown that platinum(II) complexes with diethyl 2-, 3-, or 4-pyridylmethylphosphonate (pmpe) ligands of the general formula cis-[PtCl2(pmpe)2], were able to evoke in vitro histamine release from murine mast cells (Brzezińska-Błaszczyk et al., 1996) and exhibited in vivo cytostatic activity against mice Sa 180 sarcoma solid tumour (Ochocki et al., 1995). In this paper, we describe crystal and molecular structure of the complex, cis-[PtCl2(2-pmpe)2]·0.5H2O, (I).

The platinum(II) centre in (I) is coordinated to two N atoms of diethyl 2-pyridylmethylphosphonate ligands. Two cis chloro ions complete the square-planar coordination environment of the metal. The geometry at the Pt1 centre is essentially planar. The maximum deviation from the mean planes defined by atoms Pt1, Cl1, Cl2, N1 and N2 is 0.111 (5) Å for N2 atom. The Pt1—N1/N2 and Pt1—Cl1/Cl2 bond lengths are equal within 3σ, respectively (Table 1). The observed metal–ligand distances, Pt1—N and Pt1—Cl, are shorter than the literature values (Orpen et al., 1989) of 2.05 (5) and 2.32 (4) Å, respectively.

The two diethyl 2-pyridylmethylphosphonate ligands are not equal, but have significantly different conformations. Firstly, the mean planes of the two pyridyl rings, N1–C6 and N2–C11, have different orientations with respect to the Pt1 coordination plane. The dihedral angles between these mean planes are 70.5 (2) and 85.9 (2)°, respectively. Whereas the dihedral angle between the corresponding pyridyl planes is 79.6 (2)°. Secondly, some differences are observed with regard to the rotation of the phosphonate groups about the C1—C2 and C11—C12 bonds, as shown by the torsion angles (see Table 1).

Atoms P1 and P2 adopt distorted tetrahedral configurations. However, the angular parameters, presented in Table 1, indicate that tetrahedral environment around P2 is more deformed. The differences in the deformations of the PO3C tetrahedra can be explained by steric effects of the disordered atoms within ethoxy groups. The spatial requirements are different for disordered terminal methyl group (C31) than for disordered CH2 fragment (C50) (see Experimental). The latter one is closer to phosphorus atom so its influence on the geometry around P2 is substantial.

It is worth noting that one half water molecule is found in the crystal lattice of (I). Atom H72 of the solvent water molecule forms a bifurcated hydrogen bond with non-ester atoms O4 and O1 of the phosphonate groups. As shown in Fig. 2, the molecules of the complex and water are linked into a [010] chain through the hydrogen bond O(water)-H···O.

Additionally, the crystal packing of (I) is stabilized by a number of C—H···O and C—H···Cl interactions. The geometries of the mentioned contacts are presented in Table 2.

In conclusion, a search of the November 2002 release of the Cambridge Structural Database (Allen, 2002) suggests that the present structure is a novel type of platinum complex with diethyl pyridylmethylphosphonate ligands.

Experimental top

The title complex was prepared by adding two molecular equivalents of diethyl 2-pyridylmethylphosphonate to K2PtCl4 in a water/ethanol solution. The reaction mixture was stirred at 303 K for 2 h and partly evaporated. The resulting solution was cooled and the transparent yellow crystals suitable for X-ray studies formed after a few days (Ochocki, 1997).

Refinement top

The largest peak of residual electron density was 2.03 Å from H50D atom. During the refinement of (I) the four ethoxy groups revealed very large atomic displacement parameters. Finally, only the two atoms, methyl C31 and methylene C50, appeared to be disordered. The final site-occupation factors refined to 0.55 (5):0.44 (5) for C31A/C31B and 0.68 (5):0.32 (5) for C50A/C50B. Similar restraints were used to the refinement of the atomic displacement parameters of those disordered atoms. Moreover, bond-length restraints were applied to all C—C bonds involving the disordered atoms and additionally to the C20—C21 and C60—C61 bonds. Satisfactory refinement results were obtained when one half occupancy O atom of crystallization water molecule were defined in the asymmetric unit. This yields four water molecules per unit cell. The water H atoms were found in difference maps and refined with geometric restraints [O—H = 0.97 (3) Å and H···H = 1.53 (3) Å] and with Uiso(H) = 1.5Ueq(O). All other atoms were placed in geometrically idealized positions (C—H = 0.93–0.98 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) [or 1.5Ueq methyl C atom]. The reflections with 2θ above 50° was omitted because of their bad quality.

Computing details top

Data collection: CrysAlis CCD (UNIL IC and Kuma Diffraction Instruments, 2001); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (UNIL IC and Kuma Diffraction Instruments, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1998); software used to prepare material for publication: PARST97 (Nardelli, 1996).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with the atom-numbering scheme. The minor disorder components (atoms C31B and C50B) have been omitted for clarity. Displacement ellipsoids are drawn at the 20% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure of title complex, showing the formation of a chain along [010]. H atoms bonded to C atoms have been omitted.
(I) top
Crystal data top
[PtCl2(C10H16NO3P)2]·0.5H2OF(000) = 2888
Mr = 733.40Dx = 1.744 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7015 reflections
a = 25.6017 (13) Åθ = 1.6–22.2°
b = 9.5475 (4) ŵ = 5.37 mm1
c = 23.6965 (16) ÅT = 293 K
β = 105.343 (5)°Plate, yellow
V = 5585.7 (5) Å30.5 × 0.3 × 0.1 mm
Z = 8
Data collection top
Kuma KM4CCD
diffractometer
4909 independent reflections
Radiation source: CX-Mo12x0.4-S Seifert Mo tube3852 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.099
ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: numerical
(X-RED; Stoe & Cie, 1999)
h = 3030
Tmin = 0.063, Tmax = 0.505k = 1111
29455 measured reflectionsl = 2328
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0429P)2]
where P = (Fo2 + 2Fc2)/3
4909 reflections(Δ/σ)max = 0.001
333 parametersΔρmax = 1.33 e Å3
41 restraintsΔρmin = 1.54 e Å3
Crystal data top
[PtCl2(C10H16NO3P)2]·0.5H2OV = 5585.7 (5) Å3
Mr = 733.40Z = 8
Monoclinic, C2/cMo Kα radiation
a = 25.6017 (13) ŵ = 5.37 mm1
b = 9.5475 (4) ÅT = 293 K
c = 23.6965 (16) Å0.5 × 0.3 × 0.1 mm
β = 105.343 (5)°
Data collection top
Kuma KM4CCD
diffractometer
4909 independent reflections
Absorption correction: numerical
(X-RED; Stoe & Cie, 1999)
3852 reflections with I > 2σ(I)
Tmin = 0.063, Tmax = 0.505Rint = 0.099
29455 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03641 restraints
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 1.33 e Å3
4909 reflectionsΔρmin = 1.54 e Å3
333 parameters
Special details top

Experimental. In order to monitor crystal decay, 2 standard frames were recorded after every 20 frames.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pt10.215520 (9)0.35552 (2)0.073931 (9)0.04371 (10)
Cl10.25073 (7)0.14718 (16)0.11412 (8)0.0632 (4)
Cl20.29047 (7)0.47539 (18)0.12544 (7)0.0643 (4)
N10.1493 (2)0.2490 (5)0.0272 (2)0.0457 (12)
C60.1446 (3)0.2344 (7)0.0307 (3)0.0554 (16)
H60.17060.27480.04650.067*
C50.1026 (3)0.1618 (7)0.0669 (3)0.069 (2)
H50.09940.15590.10680.083*
C40.0656 (3)0.0982 (9)0.0430 (4)0.085 (3)
H40.03750.04590.06650.103*
C30.0699 (3)0.1113 (8)0.0143 (3)0.076 (2)
H30.04400.07010.03020.091*
C20.1125 (3)0.1858 (6)0.0502 (3)0.0519 (16)
C10.1193 (3)0.1957 (7)0.1152 (3)0.0526 (16)
H1A0.14640.26660.13080.063*
H1B0.13340.10700.13270.063*
P10.06003 (8)0.23641 (18)0.13831 (8)0.0596 (5)
O10.0157 (2)0.1378 (5)0.1215 (3)0.0863 (17)
O20.0816 (2)0.2576 (5)0.2059 (2)0.0740 (14)
C200.0921 (6)0.1366 (11)0.2434 (4)0.132 (4)
H20A0.12770.09920.24510.158*
H20B0.06550.06440.22800.158*
C210.0892 (5)0.1783 (13)0.3033 (4)0.147 (5)
H21A0.11970.23640.32120.220*
H21B0.08970.09600.32670.220*
H21C0.05630.22930.30060.220*
O30.0473 (2)0.3888 (5)0.1149 (2)0.0705 (13)
C300.0009 (4)0.4617 (12)0.1183 (5)0.123 (4)
H30A0.00860.53780.14630.147*0.55 (5)
H30B0.02470.39810.13170.147*0.55 (5)
H30C0.00620.56160.12070.147*0.45 (5)
H30D0.01040.43360.15370.147*0.45 (5)
C31A0.0295 (13)0.519 (4)0.0594 (7)0.151 (12)0.55 (5)
H31A0.00980.59780.05060.227*0.55 (5)
H31B0.06540.54770.05950.227*0.55 (5)
H31C0.03170.44760.03030.227*0.55 (5)
C31B0.0477 (10)0.432 (5)0.0664 (13)0.144 (15)0.45 (5)
H31D0.03640.44420.03120.216*0.45 (5)
H31E0.07670.49610.06630.216*0.45 (5)
H31F0.05990.33790.06860.216*0.45 (5)
N20.1876 (2)0.5411 (5)0.0350 (2)0.0474 (12)
C70.1999 (3)0.5679 (7)0.0162 (3)0.0639 (18)
H70.21760.49970.03220.077*
C80.1868 (4)0.6927 (9)0.0450 (3)0.085 (2)
H80.19550.70950.08010.102*
C90.1607 (4)0.7916 (10)0.0213 (4)0.105 (3)
H90.15180.87760.03970.126*
C100.1478 (4)0.7640 (8)0.0295 (4)0.088 (3)
H100.12920.83080.04530.106*
C110.1617 (3)0.6390 (6)0.0578 (3)0.0560 (16)
C120.1487 (3)0.6010 (7)0.1143 (3)0.0636 (19)
H12A0.17890.54730.13760.076*
H12B0.11750.53920.10480.076*
P20.13488 (9)0.73807 (19)0.15893 (9)0.0715 (6)
O40.0879 (3)0.8234 (7)0.1316 (3)0.134 (3)
O50.1807 (4)0.8424 (7)0.1759 (4)0.132 (3)
C50A0.2269 (10)0.776 (3)0.2105 (18)0.181 (9)0.68 (5)
H50A0.24200.71420.18630.217*0.68 (5)
H50B0.21710.71930.24020.217*0.68 (5)
C50B0.242 (2)0.811 (6)0.1825 (18)0.158 (12)0.32 (5)
H50C0.24880.71130.18480.189*0.32 (5)
H50D0.25370.85060.15040.189*0.32 (5)
C510.2682 (7)0.8826 (15)0.2392 (6)0.181 (5)
H51A0.26080.96940.21810.272*0.68 (5)
H51B0.30370.85010.23900.272*0.68 (5)
H51C0.26670.89680.27880.272*0.68 (5)
H51D0.25810.97970.23670.272*0.32 (5)
H51E0.30690.87510.24670.272*0.32 (5)
H51F0.25680.83890.27040.272*0.32 (5)
O60.1296 (3)0.6503 (5)0.2123 (3)0.097 (2)
C600.1133 (5)0.7112 (9)0.2608 (4)0.128 (4)
H60A0.08340.77540.24660.153*
H60B0.14330.76230.28610.153*
C610.0965 (6)0.5934 (12)0.2938 (5)0.157 (5)
H61A0.07750.52420.26670.235*
H61B0.07320.62870.31630.235*
H61C0.12800.55180.31960.235*
O70.0050 (6)0.8768 (15)0.1840 (5)0.108 (4)0.50
H710.018 (6)0.805 (17)0.208 (8)0.162*0.50
H720.018 (6)0.922 (19)0.163 (8)0.162*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.04355 (16)0.04300 (14)0.04934 (16)0.00022 (11)0.02065 (11)0.00233 (11)
Cl10.0660 (11)0.0563 (9)0.0728 (11)0.0170 (8)0.0282 (9)0.0147 (8)
Cl20.0533 (10)0.0718 (11)0.0671 (10)0.0128 (8)0.0144 (8)0.0010 (8)
N10.048 (3)0.037 (2)0.057 (3)0.004 (2)0.023 (3)0.003 (2)
C60.058 (4)0.057 (4)0.055 (4)0.001 (3)0.020 (3)0.000 (3)
C50.074 (5)0.081 (5)0.053 (4)0.011 (4)0.018 (4)0.014 (4)
C40.077 (6)0.093 (6)0.092 (6)0.037 (5)0.034 (5)0.036 (5)
C30.072 (5)0.082 (5)0.083 (5)0.034 (4)0.036 (4)0.023 (4)
C20.057 (4)0.040 (3)0.067 (4)0.000 (3)0.031 (4)0.002 (3)
C10.055 (4)0.049 (3)0.063 (4)0.005 (3)0.033 (3)0.001 (3)
P10.0595 (11)0.0569 (10)0.0737 (12)0.0087 (9)0.0374 (10)0.0083 (9)
O10.071 (3)0.087 (4)0.120 (4)0.029 (3)0.059 (3)0.026 (3)
O20.089 (4)0.080 (3)0.065 (3)0.001 (3)0.043 (3)0.000 (3)
C200.165 (12)0.119 (9)0.127 (9)0.023 (7)0.067 (9)0.029 (7)
C210.149 (11)0.211 (13)0.092 (7)0.039 (9)0.051 (8)0.035 (8)
O30.057 (3)0.067 (3)0.094 (4)0.009 (2)0.031 (3)0.005 (3)
C300.102 (8)0.116 (8)0.167 (10)0.031 (7)0.064 (7)0.013 (7)
C31A0.135 (15)0.149 (15)0.163 (14)0.017 (9)0.029 (9)0.008 (9)
C31B0.131 (16)0.144 (17)0.152 (17)0.010 (9)0.027 (9)0.009 (9)
N20.053 (3)0.046 (3)0.048 (3)0.004 (2)0.022 (3)0.002 (2)
C70.080 (5)0.057 (4)0.063 (4)0.001 (4)0.034 (4)0.001 (4)
C80.120 (8)0.075 (5)0.069 (5)0.005 (5)0.040 (5)0.022 (4)
C90.156 (10)0.073 (5)0.094 (6)0.035 (6)0.049 (7)0.045 (5)
C100.129 (8)0.051 (4)0.094 (6)0.018 (5)0.049 (6)0.011 (4)
C110.063 (4)0.046 (3)0.065 (4)0.001 (3)0.028 (4)0.004 (3)
C120.080 (5)0.047 (3)0.075 (5)0.000 (3)0.040 (4)0.002 (3)
P20.0907 (15)0.0499 (10)0.0837 (14)0.0014 (10)0.0406 (12)0.0074 (10)
O40.164 (7)0.124 (5)0.129 (6)0.086 (5)0.065 (5)0.019 (4)
O50.168 (8)0.097 (5)0.146 (7)0.027 (5)0.065 (6)0.011 (4)
C50A0.179 (10)0.183 (10)0.183 (10)0.004 (5)0.052 (5)0.007 (5)
C50B0.158 (13)0.156 (12)0.160 (12)0.002 (5)0.044 (5)0.001 (5)
C510.191 (7)0.180 (7)0.169 (7)0.008 (5)0.041 (5)0.004 (5)
O60.156 (6)0.066 (3)0.100 (4)0.007 (3)0.087 (4)0.005 (3)
C600.198 (12)0.093 (7)0.125 (8)0.019 (8)0.100 (9)0.033 (6)
C610.204 (15)0.177 (11)0.126 (9)0.065 (11)0.107 (10)0.035 (9)
O70.108 (10)0.127 (11)0.074 (8)0.018 (8)0.001 (7)0.009 (7)
Geometric parameters (Å, º) top
Pt1—N12.035 (5)N2—C111.340 (7)
Pt1—N22.038 (5)N2—C71.354 (7)
Pt1—Cl12.2851 (15)C7—C81.370 (10)
Pt1—Cl22.2896 (16)C7—H70.9300
N1—C21.351 (7)C8—C91.361 (11)
N1—C61.352 (7)C8—H80.9300
C6—C51.373 (9)C9—C101.355 (10)
C6—H60.9300C9—H90.9300
C5—C41.368 (10)C10—C111.370 (9)
C5—H50.9300C10—H100.9300
C4—C31.338 (10)C11—C121.506 (9)
C4—H40.9300C12—P21.776 (7)
C3—C21.389 (9)C12—H12A0.9700
C3—H30.9300C12—H12B0.9700
C2—C11.506 (8)P2—O41.455 (7)
C1—P11.786 (6)P2—O51.509 (8)
C1—H1A0.9700P2—O61.554 (5)
C1—H1B0.9700O5—C50A1.40 (3)
P1—O11.447 (5)O5—C50B1.56 (6)
P1—O31.560 (5)C50A—C511.498 (3)
P1—O21.562 (5)C50A—H50A0.9700
O2—C201.440 (10)C50A—H50B0.9700
C20—C211.495 (14)C50B—C511.499 (3)
C20—H20A0.9700C50B—H50C0.9700
C20—H20B0.9700C50B—H50D0.9700
C21—H21A0.9600C51—H51A0.9600
C21—H21B0.9600C51—H51B0.9600
C21—H21C0.9600C51—H51C0.9600
O3—C301.437 (9)C51—H51D0.9600
C30—C31B1.498 (3)C51—H51E0.9600
C30—C31A1.498 (3)C51—H51F0.9600
C30—H30A0.9700O6—C601.443 (9)
C30—H30B0.9700C60—C611.496 (16)
C30—H30C0.9700C60—H60A0.9700
C30—H30D0.9700C60—H60B0.9700
C31A—H31A0.9600C61—H61A0.9600
C31A—H31B0.9600C61—H61B0.9600
C31A—H31C0.9600C61—H61C0.9600
C31B—H31D0.9600O7—H710.98 (3)
C31B—H31E0.9600O7—H720.97 (19)
C31B—H31F0.9600
N1—Pt1—N292.65 (18)H31D—C31B—H31F109.5
N1—Pt1—Cl188.38 (13)H31E—C31B—H31F109.5
N2—Pt1—Cl1176.34 (14)C11—N2—C7119.1 (5)
N1—Pt1—Cl2179.22 (14)C11—N2—Pt1125.1 (4)
N2—Pt1—Cl287.18 (14)C7—N2—Pt1115.7 (4)
Cl1—Pt1—Cl291.74 (6)N2—C7—C8121.7 (6)
C2—N1—C6118.6 (5)N2—C7—H7119.1
C2—N1—Pt1125.0 (4)C8—C7—H7119.1
C6—N1—Pt1116.2 (4)C9—C8—C7118.7 (7)
N1—C6—C5122.1 (6)C9—C8—H8120.7
N1—C6—H6118.9C7—C8—H8120.7
C5—C6—H6118.9C10—C9—C8119.6 (7)
C4—C5—C6118.6 (7)C10—C9—H9120.2
C4—C5—H5120.7C8—C9—H9120.2
C6—C5—H5120.7C9—C10—C11120.7 (7)
C3—C4—C5120.0 (7)C9—C10—H10119.6
C3—C4—H4120.0C11—C10—H10119.6
C5—C4—H4120.0N2—C11—C10120.2 (6)
C4—C3—C2120.6 (7)N2—C11—C12116.1 (5)
C4—C3—H3119.7C10—C11—C12123.7 (6)
C2—C3—H3119.7C11—C12—P2118.5 (5)
N1—C2—C3120.0 (6)C11—C12—H12A107.7
N1—C2—C1118.8 (6)P2—C12—H12A107.7
C3—C2—C1121.2 (6)C11—C12—H12B107.7
C2—C1—P1116.7 (5)P2—C12—H12B107.7
C2—C1—H1A108.1H12A—C12—H12B107.1
P1—C1—H1A108.1O4—P2—O5104.0 (5)
C2—C1—H1B108.1O4—P2—O6115.1 (4)
P1—C1—H1B108.1O5—P2—O6111.6 (4)
H1A—C1—H1B107.3O4—P2—C12114.8 (4)
O1—P1—O3115.7 (3)O5—P2—C12112.5 (4)
O1—P1—O2114.0 (3)O6—P2—C1299.3 (3)
O3—P1—O2103.1 (3)C50A—O5—P2109.4 (10)
O1—P1—C1116.2 (3)P2—O5—C50B126 (2)
O3—P1—C1102.1 (3)O5—C50A—C51110 (2)
O2—P1—C1104.1 (3)O5—C50A—H50A109.7
C20—O2—P1119.1 (5)C51—C50A—H50A109.7
O2—C20—C21109.0 (8)O5—C50A—H50B109.7
O2—C20—H20A109.9C51—C50A—H50B109.7
C21—C20—H20A109.9H50A—C50A—H50B108.2
O2—C20—H20B109.9C51—C50B—O5102 (3)
C21—C20—H20B109.9C51—C50B—H50C111.3
H20A—C20—H20B108.3O5—C50B—H50C111.3
C20—C21—H21A109.5C51—C50B—H50D111.3
C20—C21—H21B109.5O5—C50B—H50D111.3
H21A—C21—H21B109.5H50C—C50B—H50D109.2
C20—C21—H21C109.5C50A—C51—H51A109.5
H21A—C21—H21C109.5C50A—C51—H51B109.5
H21B—C21—H21C109.5H51A—C51—H51B109.5
C30—O3—P1122.3 (6)C50A—C51—H51C109.5
O3—C30—C31B112.0 (14)H51A—C51—H51C109.5
O3—C30—C31A109.8 (12)H51B—C51—H51C109.5
O3—C30—H30A109.7C50B—C51—H51D109.5
C31A—C30—H30A109.7C50B—C51—H51E109.5
O3—C30—H30B109.7H51D—C51—H51E109.5
C31A—C30—H30B109.7C50B—C51—H51F109.5
H30A—C30—H30B108.2H51D—C51—H51F109.5
O3—C30—H30C109.2H51E—C51—H51F109.5
C31B—C30—H30C109.2C60—O6—P2122.5 (5)
O3—C30—H30D109.2O6—C60—C61107.2 (7)
C31B—C30—H30D109.2O6—C60—H60A110.3
H30C—C30—H30D107.9C61—C60—H60A110.3
C30—C31A—H31A109.5O6—C60—H60B110.3
C30—C31A—H31B109.5C61—C60—H60B110.3
H31A—C31A—H31B109.5H60A—C60—H60B108.5
C30—C31A—H31C109.5C60—C61—H61A109.5
H31A—C31A—H31C109.5C60—C61—H61B109.5
H31B—C31A—H31C109.5H61A—C61—H61B109.5
C30—C31B—H31D109.5C60—C61—H61C109.5
C30—C31B—H31E109.5H61A—C61—H61C109.5
H31D—C31B—H31E109.5H61B—C61—H61C109.5
C30—C31B—H31F109.5H71—O7—H72104 (4)
N2—Pt1—N1—C2115.0 (5)N1—Pt1—N2—C786.4 (5)
Cl1—Pt1—N1—C268.5 (4)Cl2—Pt1—N2—C792.8 (4)
N2—Pt1—N1—C669.3 (4)C11—N2—C7—C80.4 (10)
Cl1—Pt1—N1—C6107.2 (4)Pt1—N2—C7—C8175.6 (6)
C2—N1—C6—C52.4 (9)N2—C7—C8—C90.1 (13)
Pt1—N1—C6—C5178.3 (5)C7—C8—C9—C100.9 (15)
N1—C6—C5—C42.4 (11)C8—C9—C10—C111.4 (15)
C6—C5—C4—C32.1 (13)C7—N2—C11—C100.2 (10)
C5—C4—C3—C21.8 (14)Pt1—N2—C11—C10175.7 (6)
C6—N1—C2—C32.0 (9)C7—N2—C11—C12179.1 (6)
Pt1—N1—C2—C3177.5 (5)Pt1—N2—C11—C125.3 (8)
C6—N1—C2—C1176.9 (5)C9—C10—C11—N21.1 (13)
Pt1—N1—C2—C11.3 (7)C9—C10—C11—C12180.0 (8)
C4—C3—C2—N11.7 (12)N2—C11—C12—P2160.1 (5)
C4—C3—C2—C1177.1 (7)C10—C11—C12—P221.0 (10)
N1—C2—C1—P1134.7 (5)C11—C12—P2—O461.7 (7)
C3—C2—C1—P146.5 (8)C11—C12—P2—O556.9 (8)
C2—C1—P1—O160.8 (6)C11—C12—P2—O6175.1 (6)
C2—C1—P1—O366.0 (5)O4—P2—O5—C50A171 (2)
C2—C1—P1—O2173.0 (4)O6—P2—O5—C50A47 (2)
O1—P1—O2—C2046.9 (8)C12—P2—O5—C50A64 (2)
O3—P1—O2—C20173.1 (7)O4—P2—O5—C50B153 (3)
C1—P1—O2—C2080.7 (7)O6—P2—O5—C50B82 (3)
P1—O2—C20—C21156.2 (8)C12—P2—O5—C50B28 (3)
O1—P1—O3—C3046.7 (7)P2—O5—C50A—C51167 (2)
O2—P1—O3—C3078.4 (7)P2—O5—C50B—C51134 (2)
C1—P1—O3—C30173.8 (7)O4—P2—O6—C6051.3 (9)
P1—O3—C30—C31B87 (2)O5—P2—O6—C6066.8 (9)
P1—O3—C30—C31A128 (2)C12—P2—O6—C60174.4 (8)
N1—Pt1—N2—C1197.8 (5)P2—O6—C60—C61163.1 (8)
Cl2—Pt1—N2—C1182.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H72···O1i0.97 (19)2.28 (19)3.016 (15)132 (14)
O7—H72···O40.97 (19)2.31 (17)3.002 (18)128 (12)
C3—H3···O10.932.543.211 (10)129
C4—H4···O1ii0.932.393.289 (10)164
C7—H7···Cl1iii0.932.693.571 (7)159
C10—H10···O40.932.543.239 (12)132
C12—H12B···O30.972.363.296 (9)162
C20—H20B···O7iv0.972.563.529 (18)178
C60—H60A···O70.972.553.474 (17)160
Symmetry codes: (i) x, y+1, z; (ii) x, y, z; (iii) x+1/2, y+1/2, z; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formula[PtCl2(C10H16NO3P)2]·0.5H2O
Mr733.40
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)25.6017 (13), 9.5475 (4), 23.6965 (16)
β (°) 105.343 (5)
V3)5585.7 (5)
Z8
Radiation typeMo Kα
µ (mm1)5.37
Crystal size (mm)0.5 × 0.3 × 0.1
Data collection
DiffractometerKuma KM4CCD
diffractometer
Absorption correctionNumerical
(X-RED; Stoe & Cie, 1999)
Tmin, Tmax0.063, 0.505
No. of measured, independent and
observed [I > 2σ(I)] reflections
29455, 4909, 3852
Rint0.099
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.089, 1.02
No. of reflections4909
No. of parameters333
No. of restraints41
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.33, 1.54

Computer programs: CrysAlis CCD (UNIL IC and Kuma Diffraction Instruments, 2001), CrysAlis CCD, CrysAlis RED (UNIL IC and Kuma Diffraction Instruments, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1998), PARST97 (Nardelli, 1996).

Selected geometric parameters (Å, º) top
Pt1—N12.035 (5)P1—O31.560 (5)
Pt1—N22.038 (5)P1—O21.562 (5)
Pt1—Cl12.2851 (15)C11—C121.506 (9)
Pt1—Cl22.2896 (16)C12—P21.776 (7)
C2—C11.506 (8)P2—O41.455 (7)
C1—P11.786 (6)P2—O51.509 (8)
P1—O11.447 (5)P2—O61.554 (5)
N1—Pt1—N292.65 (18)O1—P1—C1116.2 (3)
N1—Pt1—Cl188.38 (13)O3—P1—C1102.1 (3)
N2—Pt1—Cl1176.34 (14)O2—P1—C1104.1 (3)
N1—Pt1—Cl2179.22 (14)O4—P2—O5104.0 (5)
N2—Pt1—Cl287.18 (14)O4—P2—O6115.1 (4)
Cl1—Pt1—Cl291.74 (6)O5—P2—O6111.6 (4)
O1—P1—O3115.7 (3)O4—P2—C12114.8 (4)
O1—P1—O2114.0 (3)O5—P2—C12112.5 (4)
O3—P1—O2103.1 (3)O6—P2—C1299.3 (3)
N1—C2—C1—P1134.7 (5)N2—C11—C12—P2160.1 (5)
C3—C2—C1—P146.5 (8)C10—C11—C12—P221.0 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H72···O1i0.97 (19)2.28 (19)3.016 (15)132 (14)
O7—H72···O40.97 (19)2.31 (17)3.002 (18)128 (12)
C3—H3···O10.932.543.211 (10)129
C4—H4···O1ii0.932.393.289 (10)164
C7—H7···Cl1iii0.932.693.571 (7)159
C10—H10···O40.932.543.239 (12)132
C12—H12B···O30.972.363.296 (9)162
C20—H20B···O7iv0.972.563.529 (18)178
C60—H60A···O70.972.553.474 (17)160
Symmetry codes: (i) x, y+1, z; (ii) x, y, z; (iii) x+1/2, y+1/2, z; (iv) x, y1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds