Download citation
Download citation
link to html
In the structure of the title compound, C11H14O4S2, two sulfonyl groups are trans-fused to the five-membered ring of indane that adopts an envelope conformation. The S-Cmethyl and S-Cindyl distances, with average values of 1.752 (3) and 1.792 (5) Å, respectively, are significantly different from each other. The mol­ecules lie in pairs about inversion centers, with indyl moieties parallel to each other, forming a hydro­carbon zone in the middle of the unit cell.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803009504/na6230sup1.cif
Contains datablocks global, 2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803009504/na62302sup2.hkl
Contains datablock 2

CCDC reference: 214819

Key indicators

  • Single-crystal X-ray study
  • T = 170 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.042
  • wR factor = 0.134
  • Data-to-parameter ratio = 13.6

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Compounds with extended delocalization of π-electrons through sulfur-containing structures such as tetrathiafulvalene become electrical conductors at low temperatures when in crystalline arrays with electron-accepting systems. These observations have resulted in considerable research aimed at producing organic conductors. Synthesis of these systems requires precursors containing vicinal sulfur substitution. In this paper, we report the facile synthesis of such a precursor derived from diene which was prepared in one-step by reaction of indene with dimethyl disulfide (DMDS) in the presence of a zinc-promoted montmorillonite clay. Since the stereochemistry of the oily 1,2-diSCH3 adduct, (1), could not be determined unequivocally using NMR spectroscopy, (1) was oxidized to the crystalline disulfone, trans-2,3-bis(methylsulfonyl)indane, (2), for characterization using X-ray diffraction methods.

The crystal structure is composed of discrete molecules of (2) (Fig. 1) separated by normal van der Waals distances. The two sulfonyl groups are trans-fused to the five-membered indane ring. The C1/C2/C3/C4/C9 five-membered ring adopts a C2-envelope conformation, with C2 0.224 (8) Å out of the plane formed by the rest of the atoms in the ring; the maximum deviation of any atom from this plane being 0.001 (3) Å. The molecular dimensions in (2) are in agreement with the reported values for the corresponding dimensions (Orpen et al., 1994). It is interesting to note that the S—C distances involving the terminal methyl groups are significantly shorter [average 1.752 (3) Å] than the S—C bonds involving indyl group [average 1.792(5 Å]. The molecules of (2) lie about inversion centers with indyl moieties parallel to each other, as presented in Fig. 2, thus forming a hydrocarbon zone in the middle of the unit cell along the b axis.

Experimental top

A solution of indene (2.92 ml, 25 mmol) in 1,2-dichloroethane was added dropwise to a stirred suspension of K-10/ZnCl2 (15.92 g) (Clark et al., 1994) and DMDS (2.25 ml, 25 mmol) in dichloroethane (35 ml). After the mixture had been stirred for 3 h, the clay catalyst was removed by filtration and the filtrate was washed with aqueous edta (2 × 100 ml) toremove traces of ZnCl2 from the organic phase. The organic solution was then washed with water (1 × 100 ml) and was dried over anhydrous MgSO4. Evaporation of the solvents and excess DMDS left an oil which on distillation under high vacuum yielded the dithio adduct (1) as a pale-yellow oil (2.14 g, 41%, b.p. 379 K at 0.01 mm H g). Oxidation of this product (Aitken et al., 1994) gave the disulfone (2) in quantitative yield as colorless crystals (m.p. 415 K).

Refinement top

The H atoms were located from a difference Fourier map and were included in the refinement at idealized positions with isotropic displacement parameters 1.5 (CH3) and 1.2 (CH & CH2) times the equivalent displacement parameters of the atoms to which they were bonded, with C—H distances in the range 0.98–1.00 Å.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1994); program(s) used to solve structure: SAPI91 (Fan, 1991); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) drawing of (2), with displacement ellipsoids plotted at the 50% probability level.
[Figure 2] Fig. 2. Unit-cell packing diagram of (2).
trans-2,3-bis(methylsulfonyl)indane top
Crystal data top
C11H14O4S2F(000) = 576
Mr = 274.34Dx = 1.518 Mg m3
Monoclinic, P21/aMelting point: 415 K
Hall symbol: -P 2yabMo Kα radiation, λ = 0.71069 Å
a = 11.138 (6) ÅCell parameters from 12 reflections
b = 8.102 (2) Åθ = 15.0–30.0°
c = 13.307 (2) ŵ = 0.44 mm1
β = 91.82 (2)°T = 170 K
V = 1200.2 (7) Å3Plate, colorless
Z = 40.40 × 0.30 × 0.07 mm
Data collection top
Rigaku AFC-6S
diffractometer
1034 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
Graphite monochromatorθmax = 25.1°, θmin = 2.9°
ω/2θ scansh = 013
Absorption correction: empirical (using intensity measurements)
via ψ scans (North et al., 1968)
k = 09
Tmin = 0.843, Tmax = 0.970l = 1515
2249 measured reflections3 standard reflections every 200 reflections
2128 independent reflections intensity decay: 1.4%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.05P)2 + 0.402P]
where P = (Fo2 + 2Fc2)/3
2128 reflections(Δ/σ)max = 0.001
156 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C11H14O4S2V = 1200.2 (7) Å3
Mr = 274.34Z = 4
Monoclinic, P21/aMo Kα radiation
a = 11.138 (6) ŵ = 0.44 mm1
b = 8.102 (2) ÅT = 170 K
c = 13.307 (2) Å0.40 × 0.30 × 0.07 mm
β = 91.82 (2)°
Data collection top
Rigaku AFC-6S
diffractometer
1034 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
via ψ scans (North et al., 1968)
Rint = 0.042
Tmin = 0.843, Tmax = 0.9703 standard reflections every 200 reflections
2249 measured reflections intensity decay: 1.4%
2128 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 0.98Δρmax = 0.33 e Å3
2128 reflectionsΔρmin = 0.34 e Å3
156 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.75311 (11)0.35653 (16)0.13360 (9)0.0258 (3)
S20.49376 (11)0.69883 (16)0.20879 (10)0.0260 (3)
O10.8827 (3)0.3594 (5)0.1467 (2)0.0325 (9)
O20.7027 (3)0.4036 (5)0.0362 (2)0.0384 (10)
O30.5510 (3)0.7965 (4)0.2866 (3)0.0373 (9)
O40.3639 (3)0.6850 (4)0.2074 (3)0.0354 (9)
C10.6907 (4)0.4931 (6)0.2246 (3)0.0217 (11)
H10.72040.60760.21220.026*
C20.5516 (4)0.4934 (6)0.2164 (3)0.0219 (11)
H20.52410.42950.15560.026*
C30.5074 (4)0.4075 (6)0.3119 (3)0.0277 (12)
H3A0.44260.47220.34260.033*
H3B0.47710.29530.29630.033*
C40.6170 (4)0.3999 (6)0.3812 (4)0.0252 (12)
C50.6245 (4)0.3530 (6)0.4814 (3)0.0307 (13)
H50.55460.31810.51460.037*
C60.7346 (4)0.3577 (6)0.5326 (4)0.0294 (12)
H60.73990.32720.60160.035*
C70.8369 (5)0.4063 (6)0.4844 (4)0.0303 (13)
H70.91190.40820.52050.036*
C80.8312 (4)0.4523 (6)0.3839 (4)0.0278 (12)
H80.90130.48620.35070.033*
C90.7199 (4)0.4474 (6)0.3329 (3)0.0224 (11)
C100.7020 (4)0.1593 (6)0.1642 (4)0.0347 (13)
H10A0.73530.07830.11800.052*
H10B0.61410.15670.15850.052*
H10C0.72800.13230.23330.052*
C110.5370 (5)0.7714 (7)0.0911 (4)0.0362 (14)
H11A0.50600.88350.08050.054*
H11B0.50440.69860.03820.054*
H11C0.62490.77280.08890.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0222 (7)0.0295 (7)0.0259 (7)0.0012 (6)0.0033 (5)0.0040 (6)
S20.0230 (7)0.0268 (7)0.0282 (7)0.0031 (6)0.0007 (5)0.0033 (6)
O10.0173 (18)0.043 (2)0.037 (2)0.0013 (17)0.0032 (15)0.0048 (18)
O20.036 (2)0.056 (3)0.0240 (19)0.0071 (19)0.0002 (16)0.0003 (18)
O30.037 (2)0.036 (2)0.038 (2)0.0039 (18)0.0063 (17)0.0153 (19)
O40.0201 (19)0.040 (2)0.046 (2)0.0050 (17)0.0030 (16)0.0030 (18)
C10.019 (3)0.020 (3)0.026 (3)0.000 (2)0.002 (2)0.002 (2)
C20.020 (3)0.023 (3)0.022 (3)0.001 (2)0.000 (2)0.003 (2)
C30.022 (3)0.030 (3)0.031 (3)0.004 (2)0.001 (2)0.006 (2)
C40.021 (3)0.026 (3)0.029 (3)0.002 (2)0.000 (2)0.003 (2)
C50.037 (3)0.030 (3)0.025 (3)0.004 (3)0.006 (2)0.002 (2)
C60.038 (3)0.026 (3)0.023 (3)0.002 (3)0.006 (2)0.005 (2)
C70.030 (3)0.031 (3)0.029 (3)0.003 (2)0.008 (2)0.003 (2)
C80.023 (3)0.026 (3)0.034 (3)0.001 (2)0.003 (2)0.008 (2)
C90.020 (3)0.021 (3)0.027 (3)0.001 (2)0.001 (2)0.003 (2)
C100.029 (3)0.026 (3)0.050 (3)0.001 (2)0.009 (3)0.009 (3)
C110.042 (3)0.033 (3)0.034 (3)0.001 (3)0.007 (3)0.007 (3)
Geometric parameters (Å, º) top
S1—O21.448 (3)C4—C91.387 (6)
S1—O11.448 (3)C4—C51.386 (6)
S1—C101.749 (5)C5—C61.385 (7)
S1—C11.797 (5)C5—H50.9500
S2—O31.436 (3)C6—C71.383 (7)
S2—O41.450 (3)C6—H60.9500
S2—C111.755 (5)C7—C81.388 (7)
S2—C21.786 (5)C7—H70.9500
C1—C91.513 (6)C8—C91.394 (6)
C1—C21.549 (6)C8—H80.9500
C1—H11.0000C10—H10A0.9800
C2—C31.543 (6)C10—H10B0.9800
C2—H21.0000C10—H10C0.9800
C3—C41.507 (6)C11—H11A0.9800
C3—H3A0.9900C11—H11B0.9800
C3—H3B0.9900C11—H11C0.9800
O2—S1—O1117.4 (2)C9—C4—C5119.8 (4)
O2—S1—C10109.2 (2)C9—C4—C3111.7 (4)
O1—S1—C10108.5 (2)C5—C4—C3128.5 (4)
O2—S1—C1107.1 (2)C6—C5—C4119.4 (5)
O1—S1—C1108.3 (2)C6—C5—H5120.3
C10—S1—C1105.7 (2)C4—C5—H5120.3
O3—S2—O4118.1 (2)C7—C6—C5120.6 (4)
O3—S2—C11109.3 (2)C7—C6—H6119.7
O4—S2—C11108.4 (2)C5—C6—H6119.7
O3—S2—C2108.7 (2)C6—C7—C8120.7 (5)
O4—S2—C2106.7 (2)C6—C7—H7119.7
C11—S2—C2104.7 (2)C8—C7—H7119.7
C9—C1—C2104.6 (4)C7—C8—C9118.3 (5)
C9—C1—S1114.5 (3)C7—C8—H8120.8
C2—C1—S1111.1 (3)C9—C8—H8120.8
C9—C1—H1108.8C4—C9—C8121.1 (4)
C2—C1—H1108.8C4—C9—C1110.7 (4)
S1—C1—H1108.8C8—C9—C1128.1 (4)
C3—C2—C1106.6 (4)S1—C10—H10A109.5
C3—C2—S2110.1 (3)S1—C10—H10B109.5
C1—C2—S2111.3 (3)H10A—C10—H10B109.5
C3—C2—H2109.6S1—C10—H10C109.5
C1—C2—H2109.6H10A—C10—H10C109.5
S2—C2—H2109.6H10B—C10—H10C109.5
C4—C3—C2104.4 (4)S2—C11—H11A109.5
C4—C3—H3A110.9S2—C11—H11B109.5
C2—C3—H3A110.9H11A—C11—H11B109.5
C4—C3—H3B110.9S2—C11—H11C109.5
C2—C3—H3B110.9H11A—C11—H11C109.5
H3A—C3—H3B108.9H11B—C11—H11C109.5
O2—S1—C1—C9171.9 (3)C2—C3—C4—C98.7 (6)
O1—S1—C1—C960.5 (4)C2—C3—C4—C5171.4 (5)
C10—S1—C1—C955.5 (4)C9—C4—C5—C61.4 (8)
O2—S1—C1—C253.7 (4)C3—C4—C5—C6178.8 (5)
O1—S1—C1—C2178.8 (3)C4—C5—C6—C70.9 (8)
C10—S1—C1—C262.7 (4)C5—C6—C7—C80.4 (8)
C9—C1—C2—C313.5 (5)C6—C7—C8—C90.3 (7)
S1—C1—C2—C3110.6 (4)C5—C4—C9—C81.3 (8)
C9—C1—C2—S2106.6 (4)C3—C4—C9—C8178.8 (4)
S1—C1—C2—S2129.3 (3)C5—C4—C9—C1180.0 (4)
O3—S2—C2—C369.6 (3)C3—C4—C9—C10.1 (6)
O4—S2—C2—C358.8 (4)C7—C8—C9—C40.8 (7)
C11—S2—C2—C3173.6 (3)C7—C8—C9—C1179.2 (5)
O3—S2—C2—C148.3 (4)C2—C1—C9—C48.5 (5)
O4—S2—C2—C1176.7 (3)S1—C1—C9—C4113.4 (4)
C11—S2—C2—C168.4 (4)C2—C1—C9—C8170.1 (5)
C1—C2—C3—C413.5 (5)S1—C1—C9—C868.0 (6)
S2—C2—C3—C4107.3 (4)

Experimental details

Crystal data
Chemical formulaC11H14O4S2
Mr274.34
Crystal system, space groupMonoclinic, P21/a
Temperature (K)170
a, b, c (Å)11.138 (6), 8.102 (2), 13.307 (2)
β (°) 91.82 (2)
V3)1200.2 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.40 × 0.30 × 0.07
Data collection
DiffractometerRigaku AFC-6S
diffractometer
Absorption correctionEmpirical (using intensity measurements)
via ψ scans (North et al., 1968)
Tmin, Tmax0.843, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
2249, 2128, 1034
Rint0.042
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.134, 0.98
No. of reflections2128
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.34

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 1994), SAPI91 (Fan, 1991), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976).

Selected geometric parameters (Å, º) top
S1—O21.448 (3)S2—O31.436 (3)
S1—O11.448 (3)S2—O41.450 (3)
S1—C101.749 (5)S2—C111.755 (5)
S1—C11.797 (5)S2—C21.786 (5)
O2—S1—O1117.4 (2)O3—S2—O4118.1 (2)
O2—S1—C10109.2 (2)O3—S2—C11109.3 (2)
O1—S1—C10108.5 (2)O4—S2—C11108.4 (2)
O2—S1—C1107.1 (2)O3—S2—C2108.7 (2)
O1—S1—C1108.3 (2)O4—S2—C2106.7 (2)
C10—S1—C1105.7 (2)C11—S2—C2104.7 (2)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds