Download citation
Download citation
link to html
In the title compound, C60H48N44+·4PF6·4H2O, the tetra­cation as a whole assumes a chair-like conformation, as seen by joining the centroids of the bridging ter­phenyl­ene moieties with the four methyl­ene C atoms. Two inversion-related hexa­fluoro­phophate anions are inserted into the cavity of the centrosymmetric tetracation, whereas the other two anions are situated away from the cavity. The size of the cavity is approximately 13.23 × 12.86 Å2. The four water mol­ecules are partly inserted into the cavity. In the crystal, the cations, anions and water mol­ecules are held together by O—H...O, O—H...F, C—H...F and C—H...O intermolecular hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802020068/na6177sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802020068/na6177Isup2.hkl
Contains datablock I

CCDC reference: 202324

Key indicators

  • Single-crystal X-ray study
  • T = 183 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.062
  • wR factor = 0.149
  • Data-to-parameter ratio = 17.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
RINTA_01 Alert C The value of Rint is greater than 0.10 Rint given 0.114
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

4,4'-Bipyridinium-based tetracationic cyclophanes are found to be versatile macrocycles for constructing rotaxanes and catenanes (Amabilino & Stoddart, 1995). They have potential uses in resolving racemic substrates containing π-electron-rich aromatic rings (Asakawa et al., 1996) and function as non-sequence specific DNA photo cleaving agents (Lorente et al., 1999). cyclo-Bis(paraquat-m-terphenylene) is such a tetracationic cyclophane synthesized by refluxing an equimolar mixture of m-terphenyldibromide (Hart & Rajakumar, 1995) and 4,4'-bipyridine in acetonitrile for 48 h followed by column chromatography and counter-ion exchange with NH4PF6. We report here the structure of the tetracation as its tetrakis(hexafluorophophate) tetrahydrate, (I).

The asymmetric unit of (I) consists of one-half of the (C60H48N4)4+ tetracation, two PF6anions and two water molecules. The other half of the tetracation is generated by a crystallographic inversion centre, as shown in Fig. 1. The centrosymmetric macrocyclic tetracation as a whole assumes a chair-like conformation, as seen by joining the centroids of the bridging terphenylene moieties with the four methylene C atoms. The mean planes through the terphenylene ring and bipyridinium ring are inclined by angles of 132.85 (3) and 97.45 (4)° with respect to the methylene plane. In the terphenylene system, the two outer rings are twisted from the central ring by 24.7 (1) and 18.9 (1)°. The dihedral angle between the two connected pyridinium rings is 15.2 (1)°. The macrocyclic valance angles at the methylene C atoms, C19 [110.9 (2)°] and C30 [111.8 (2)°], agree with the values reported for the pyridine-bridged phanes of 4,4'-bipyridine (Scheytza et al., 1999), but these values are larger than those reported for cyclo-bis(paraquat-p-phenylene) tetrakis(hexafluorophophate) (Odell et al., 1988). The overall dimensions of the macrocyclic tetracation are 13.23 Å between the centroids of the bonds connecting pyridinium rings and 12.86 Å between C12 and C12i [symmetry code: (i) −x, 1 − y, −z].

In the solid state, two inversion-related hexafluorophophate anions are inserted into the cavity of the centrosymmetric tetracation. The two P atoms, P1 and its centrosymmetric equivalent at (-x, 1 − y, −z), lie on the opposite sides of the methylene plane, at 0.874 (1) Å, and the distances separating them from the centroids of the bonds connecting pyridinium rings are each 3.975 Å. The other two anions lie on the opposite sides of the methylene plane at 5.133 (1) Å. The water O atoms, O1W and O2W, are located at 2.125 (3) and 1.989 (3) Å from the methylene plane. The four anions and the four water molecules are linked together by O—H···O and O—H···F hydrogen bonds to form discrete centrosymmetric units, as shown in Fig. 2. These units are linked to the macrocyclic tetracations through C—H···F hydrogen bonds (Table 2), to form a network structure. Two short intermolecular C···F contacts, C21···F4 [2.889 (3) Å] and C27···F6(-x, 1/2 + y, 1/2 − z) [2.933 (4) Å], are observed in the structure. But they are not indicative of C—H···F hydrogen bonding as the H21···F4 or H27···F6 distances are longer than the sum of the van der Waals radii.

Experimental top

The title compound was synthesized by refluxing an equimolar mixture of m-terphenyldibromide (Hart & Rajakumar, 1995) and 4,4'-bipyridine in acetonitrile for 48 h, followed by column chromatography and counter-ion exchange with NH4PF6 (Rajakumar & Srinivasan, 2002). Single crystals suitable for X-ray studies were grown by vapour diffusion of diisopropyl ether into a solution of (I) in acetonitrile.

Refinement top

The H atoms of the tetracation were fixed geometrically and allowed to ride on the corresponding non-H atoms, with C—H distances of 0.93 or 0.96 Å, and with Uiso(H) = 1.2Ueq(C). The H atoms of the water molecules were located from a difference map and their positional parameters were refined with restraints on the O—H distances; the isotropic displacement parameters were set equal to 1.5Ueq(O). The reflection (132) was removed during refinement, as the observed and calculated structure factors showed a large disagreement. The Rint value is high (0.114), owing to the poor diffraction quality of the crystal.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. The structure of the macrocyclic tetracation in the title compound. Displacement ellipsoids are drawn at 50% probability level. Only the contents of the asymmetric unit have been numbered.
[Figure 2] Fig. 2. The structure of the title compound, showing the arrangement of anions and water molecules.
(I) top
Crystal data top
C60H48N4+·4PF6·4H2OF(000) = 1504
Mr = 1476.97Dx = 1.569 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8192 reflections
a = 11.7669 (1) Åθ = 2.5–28.3°
b = 16.0300 (2) ŵ = 0.24 mm1
c = 18.4544 (2) ÅT = 183 K
β = 116.089 (1)°Slab, yellow
V = 3126.27 (6) Å30.46 × 0.30 × 0.26 mm
Z = 2
Data collection top
Siemens SMART CCD area-detector
diffractometer
7566 independent reflections
Radiation source: fine-focus sealed tube4043 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.114
Detector resolution: 8.33 pixels mm-1θmax = 28.4°, θmin = 2.5°
ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 219
Tmin = 0.896, Tmax = 0.939l = 2224
18437 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.0121P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.91(Δ/σ)max < 0.001
7565 reflectionsΔρmax = 0.47 e Å3
446 parametersΔρmin = 0.58 e Å3
5 restraintsExtinction correction: SHELXTL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0050 (6)
Crystal data top
C60H48N4+·4PF6·4H2OV = 3126.27 (6) Å3
Mr = 1476.97Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.7669 (1) ŵ = 0.24 mm1
b = 16.0300 (2) ÅT = 183 K
c = 18.4544 (2) Å0.46 × 0.30 × 0.26 mm
β = 116.089 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
7566 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4043 reflections with I > 2σ(I)
Tmin = 0.896, Tmax = 0.939Rint = 0.114
18437 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0635 restraints
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 0.91Δρmax = 0.47 e Å3
7565 reflectionsΔρmin = 0.58 e Å3
446 parameters
Special details top

Experimental. The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different ϕ angle (0, 88 and 180°) for the crystal and each exposure of 30 s covered 0.3° in ω. The crystal-to-detector distance was 5 cm and the detector swing angle was −35°. Crystal decay was monitored by repeating fifty initial frames at the end of data collection and analysing the intensity of duplicate reflections, and was found to be negligible.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.12774 (8)0.57455 (5)0.16459 (5)0.0358 (2)
P20.18831 (7)0.08421 (5)0.00478 (4)0.02685 (19)
F10.0405 (2)0.63028 (14)0.18874 (15)0.0830 (8)
F20.0280 (2)0.57778 (13)0.07263 (12)0.0661 (6)
F30.21883 (19)0.51821 (13)0.14097 (13)0.0648 (6)
F40.2319 (2)0.56876 (14)0.25554 (11)0.0717 (7)
F50.19416 (19)0.65642 (11)0.15146 (12)0.0583 (6)
F60.06272 (16)0.49212 (11)0.17671 (11)0.0491 (5)
F70.19394 (16)0.18290 (11)0.01615 (11)0.0469 (5)
F80.06869 (16)0.09720 (11)0.01288 (11)0.0443 (5)
F90.18191 (16)0.01376 (10)0.00559 (10)0.0439 (5)
F100.30869 (16)0.07251 (11)0.02214 (11)0.0438 (5)
F110.09707 (17)0.07557 (11)0.09880 (10)0.0458 (5)
F120.27959 (16)0.09389 (11)0.08871 (10)0.0438 (5)
O1W0.2339 (3)0.33865 (18)0.14669 (17)0.0710 (8)
H1W10.183 (4)0.322 (2)0.1007 (13)0.106*
H2W10.233 (4)0.3903 (7)0.139 (2)0.106*
O2W0.0514 (3)0.26365 (19)0.0086 (2)0.0816 (9)
H1W20.005 (4)0.225 (2)0.009 (3)0.122*
H2W20.002 (4)0.301 (2)0.012 (3)0.122*
N10.5285 (2)0.69532 (14)0.35766 (13)0.0270 (5)
N20.0789 (2)0.86641 (14)0.19719 (14)0.0266 (5)
C10.3027 (2)0.17855 (17)0.11955 (16)0.0260 (6)
C20.4201 (3)0.17936 (19)0.11921 (17)0.0326 (7)
H20.44120.13680.14530.039*
C30.5066 (3)0.24130 (19)0.08136 (17)0.0328 (7)
H30.58510.23960.08210.039*
C40.4789 (2)0.30699 (17)0.04166 (16)0.0249 (6)
C50.3596 (3)0.30665 (17)0.04321 (17)0.0297 (6)
H50.33770.34980.01810.036*
C60.2726 (3)0.24401 (18)0.08107 (17)0.0313 (7)
H60.19370.24550.08090.038*
C70.5751 (2)0.37157 (17)0.00191 (16)0.0251 (6)
C80.6744 (3)0.38919 (19)0.01728 (18)0.0338 (7)
H80.67930.36140.06010.041*
C90.7657 (3)0.4470 (2)0.02590 (18)0.0366 (7)
H90.83140.45760.01210.044*
C100.7603 (3)0.48925 (18)0.08945 (18)0.0330 (7)
H100.82220.52850.11780.040*
C110.6632 (2)0.47384 (16)0.11185 (16)0.0262 (6)
C120.5718 (2)0.41520 (16)0.06669 (16)0.0247 (6)
H120.50570.40460.08020.030*
C130.6593 (2)0.51759 (16)0.18131 (16)0.0248 (6)
C140.7663 (3)0.55611 (19)0.24060 (18)0.0353 (7)
H140.84240.55290.23680.042*
C150.7629 (3)0.59849 (19)0.30430 (18)0.0354 (7)
H150.83570.62420.34210.042*
C160.6523 (2)0.60307 (17)0.31243 (16)0.0270 (6)
C170.5454 (3)0.56397 (19)0.25548 (17)0.0328 (7)
H170.47020.56600.26060.039*
C180.5491 (3)0.52196 (18)0.19122 (17)0.0302 (7)
H180.47620.49600.15380.036*
C190.6496 (3)0.64937 (19)0.38273 (17)0.0331 (7)
H19A0.65970.61010.42510.040*
H19B0.71960.68840.40420.040*
C200.4477 (3)0.67449 (18)0.38806 (16)0.0296 (6)
H200.47090.63450.42850.036*
C210.3316 (3)0.71164 (17)0.35996 (16)0.0289 (6)
H210.27640.69630.38140.035*
C220.2951 (2)0.77166 (16)0.30027 (15)0.0224 (6)
C230.3830 (2)0.79395 (17)0.27179 (17)0.0286 (6)
H230.36300.83510.23250.034*
C240.4979 (3)0.75561 (18)0.30133 (17)0.0315 (7)
H240.55610.77130.28240.038*
C250.1658 (2)0.80767 (16)0.26569 (16)0.0230 (6)
C260.0868 (3)0.79645 (19)0.30271 (18)0.0348 (7)
H260.11680.76890.35200.042*
C270.0347 (3)0.82553 (19)0.26744 (18)0.0356 (7)
H270.08710.81680.29250.043*
C280.0043 (3)0.88032 (18)0.16074 (18)0.0322 (7)
H280.03550.90970.11240.039*
C290.1177 (3)0.85160 (18)0.19426 (17)0.0325 (7)
H290.16870.86190.16850.039*
C300.2132 (2)0.89381 (18)0.15814 (18)0.0333 (7)
H30A0.22430.93520.11720.040*
H30B0.23420.91980.19820.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0435 (5)0.0268 (4)0.0408 (5)0.0115 (4)0.0219 (4)0.0076 (4)
P20.0279 (4)0.0255 (4)0.0308 (4)0.0018 (3)0.0163 (3)0.0003 (3)
F10.1095 (19)0.0482 (14)0.140 (2)0.0025 (13)0.0996 (19)0.0119 (14)
F20.0721 (15)0.0508 (14)0.0476 (12)0.0161 (11)0.0010 (11)0.0073 (10)
F30.0706 (14)0.0515 (14)0.0927 (17)0.0008 (11)0.0545 (14)0.0094 (12)
F40.0766 (16)0.0773 (17)0.0426 (12)0.0392 (12)0.0091 (11)0.0043 (11)
F50.0832 (15)0.0348 (11)0.0697 (14)0.0282 (10)0.0454 (12)0.0112 (10)
F60.0453 (11)0.0342 (11)0.0627 (13)0.0151 (8)0.0190 (10)0.0054 (9)
F70.0549 (12)0.0269 (10)0.0679 (13)0.0031 (8)0.0352 (10)0.0015 (9)
F80.0382 (10)0.0509 (12)0.0576 (12)0.0016 (8)0.0337 (9)0.0006 (9)
F90.0486 (11)0.0281 (10)0.0505 (11)0.0016 (8)0.0178 (9)0.0057 (8)
F100.0400 (10)0.0509 (12)0.0557 (12)0.0025 (8)0.0349 (9)0.0013 (9)
F110.0473 (11)0.0515 (12)0.0317 (10)0.0064 (9)0.0110 (8)0.0017 (9)
F120.0378 (10)0.0584 (13)0.0329 (10)0.0086 (9)0.0134 (8)0.0054 (9)
O1W0.076 (2)0.0548 (18)0.085 (2)0.0184 (16)0.0375 (17)0.0041 (16)
O2W0.069 (2)0.051 (2)0.107 (2)0.0071 (14)0.0215 (19)0.0237 (18)
N10.0273 (12)0.0243 (13)0.0276 (12)0.0025 (10)0.0105 (10)0.0050 (10)
N20.0257 (12)0.0195 (12)0.0357 (14)0.0022 (10)0.0144 (11)0.0009 (11)
C10.0272 (15)0.0225 (14)0.0273 (14)0.0044 (11)0.0110 (12)0.0016 (12)
C20.0291 (16)0.0335 (17)0.0384 (17)0.0049 (13)0.0179 (13)0.0056 (14)
C30.0272 (15)0.0380 (18)0.0372 (16)0.0014 (13)0.0179 (13)0.0026 (14)
C40.0251 (14)0.0241 (15)0.0271 (14)0.0066 (11)0.0127 (12)0.0074 (12)
C50.0329 (16)0.0240 (15)0.0362 (16)0.0085 (12)0.0190 (13)0.0009 (13)
C60.0258 (15)0.0284 (16)0.0446 (18)0.0047 (12)0.0198 (14)0.0010 (14)
C70.0288 (15)0.0221 (14)0.0273 (14)0.0064 (12)0.0152 (12)0.0071 (12)
C80.0372 (17)0.0344 (17)0.0370 (17)0.0012 (14)0.0231 (14)0.0006 (14)
C90.0320 (17)0.0428 (19)0.0433 (18)0.0047 (14)0.0241 (15)0.0014 (15)
C100.0336 (16)0.0294 (16)0.0400 (18)0.0004 (13)0.0199 (14)0.0016 (14)
C110.0246 (14)0.0211 (14)0.0320 (15)0.0063 (11)0.0116 (12)0.0090 (12)
C120.0257 (14)0.0212 (14)0.0297 (14)0.0062 (11)0.0145 (12)0.0086 (12)
C130.0264 (15)0.0164 (13)0.0311 (15)0.0052 (11)0.0123 (12)0.0044 (12)
C140.0244 (16)0.0373 (18)0.0459 (19)0.0007 (13)0.0172 (14)0.0042 (15)
C150.0257 (16)0.0379 (18)0.0390 (17)0.0013 (13)0.0110 (13)0.0058 (15)
C160.0250 (15)0.0239 (15)0.0292 (15)0.0042 (12)0.0093 (12)0.0015 (12)
C170.0255 (15)0.0382 (18)0.0385 (17)0.0011 (13)0.0177 (13)0.0036 (14)
C180.0244 (15)0.0282 (16)0.0349 (16)0.0002 (12)0.0102 (12)0.0044 (13)
C190.0281 (16)0.0357 (17)0.0331 (16)0.0092 (13)0.0114 (13)0.0013 (14)
C200.0350 (16)0.0272 (16)0.0285 (15)0.0018 (13)0.0158 (13)0.0027 (13)
C210.0302 (15)0.0269 (15)0.0344 (16)0.0002 (13)0.0186 (13)0.0024 (13)
C220.0288 (14)0.0151 (13)0.0244 (14)0.0024 (11)0.0127 (11)0.0048 (11)
C230.0301 (16)0.0232 (15)0.0360 (16)0.0044 (12)0.0179 (13)0.0056 (13)
C240.0353 (17)0.0262 (16)0.0395 (17)0.0003 (13)0.0223 (14)0.0052 (13)
C250.0270 (14)0.0166 (13)0.0282 (14)0.0008 (11)0.0146 (12)0.0047 (11)
C260.0374 (17)0.0360 (18)0.0366 (17)0.0100 (14)0.0214 (14)0.0108 (14)
C270.0358 (17)0.0365 (18)0.0436 (18)0.0062 (14)0.0258 (15)0.0087 (15)
C280.0358 (17)0.0286 (16)0.0342 (16)0.0013 (13)0.0172 (14)0.0057 (13)
C290.0326 (16)0.0328 (17)0.0363 (17)0.0008 (13)0.0190 (14)0.0053 (14)
C300.0255 (15)0.0266 (16)0.0451 (18)0.0053 (12)0.0131 (14)0.0014 (14)
Geometric parameters (Å, º) top
P1—F11.566 (2)C9—H90.93
P1—F21.584 (2)C10—C111.397 (3)
P1—F41.587 (2)C10—H100.93
P1—F61.5912 (18)C11—C121.396 (4)
P1—F51.5995 (18)C11—C131.480 (4)
P1—F31.602 (2)C12—H120.93
P2—F91.5880 (18)C13—C181.389 (3)
P2—F121.5889 (17)C13—C141.397 (4)
P2—F81.5920 (16)C14—C151.374 (4)
P2—F101.5948 (16)C14—H140.93
P2—F111.5950 (17)C15—C161.375 (4)
P2—F71.6010 (18)C15—H150.93
O1W—H1W10.84 (2)C16—C171.385 (4)
O1W—H2W10.84 (1)C16—C191.507 (4)
O2W—H1W20.83 (4)C17—C181.381 (4)
O2W—H2W20.83 (4)C17—H170.93
N1—C201.341 (3)C18—H180.93
N1—C241.347 (3)C19—H19A0.97
N1—C191.486 (3)C19—H19B0.97
N2—C271.337 (3)C20—C211.366 (4)
N2—C281.339 (3)C20—H200.93
N2—C301.486 (3)C21—C221.381 (4)
C1—C21.379 (4)C21—H210.93
C1—C61.397 (4)C22—C231.397 (3)
C1—C30i1.517 (4)C22—C251.484 (4)
C2—C31.373 (4)C23—C241.362 (4)
C2—H20.93C23—H230.93
C3—C41.400 (4)C24—H240.93
C3—H30.93C25—C291.378 (4)
C4—C51.392 (3)C25—C261.386 (3)
C4—C71.483 (4)C26—C271.366 (4)
C5—C61.384 (4)C26—H260.93
C5—H50.93C27—H270.93
C6—H60.93C28—C291.369 (4)
C7—C81.392 (3)C28—H280.93
C7—C121.400 (4)C29—H290.93
C8—C91.376 (4)C30—C1i1.517 (4)
C8—H80.93C30—H30A0.97
C9—C101.379 (4)C30—H30B0.97
F1—P1—F290.94 (13)C11—C10—H10119.6
F1—P1—F491.76 (14)C12—C11—C10117.3 (3)
F2—P1—F4177.30 (14)C12—C11—C13121.8 (2)
F1—P1—F691.03 (11)C10—C11—C13120.9 (3)
F2—P1—F690.11 (10)C11—C12—C7122.9 (2)
F4—P1—F689.91 (11)C11—C12—H12118.6
F1—P1—F590.01 (12)C7—C12—H12118.6
F2—P1—F589.56 (11)C18—C13—C14116.5 (2)
F4—P1—F590.37 (11)C18—C13—C11121.7 (2)
F6—P1—F5178.92 (12)C14—C13—C11121.8 (2)
F1—P1—F3179.12 (14)C15—C14—C13122.2 (3)
F2—P1—F389.78 (12)C15—C14—H14118.9
F4—P1—F387.52 (13)C13—C14—H14118.9
F6—P1—F389.46 (11)C14—C15—C16120.3 (3)
F5—P1—F389.50 (11)C14—C15—H15119.8
F9—P2—F1290.63 (10)C16—C15—H15119.8
F9—P2—F890.67 (10)C15—C16—C17118.7 (3)
F12—P2—F890.07 (9)C15—C16—C19120.0 (2)
F9—P2—F1090.07 (10)C17—C16—C19121.3 (2)
F12—P2—F1089.63 (9)C18—C17—C16120.7 (3)
F8—P2—F10179.21 (11)C18—C17—H17119.6
F9—P2—F1190.02 (10)C16—C17—H17119.6
F12—P2—F11179.34 (11)C17—C18—C13121.4 (3)
F8—P2—F1190.08 (10)C17—C18—H18119.3
F10—P2—F1190.21 (9)C13—C18—H18119.3
F9—P2—F7179.45 (12)N1—C19—C16110.9 (2)
F12—P2—F789.92 (10)N1—C19—H19A109.5
F8—P2—F789.36 (9)C16—C19—H19A109.5
F10—P2—F789.90 (9)N1—C19—H19B109.5
F11—P2—F789.43 (10)C16—C19—H19B109.5
H1W1—O1W—H2W1100.8 (15)H19A—C19—H19B108.0
H1W2—O2W—H2W2100 (5)N1—C20—C21120.5 (3)
C20—N1—C24120.2 (2)N1—C20—H20119.8
C20—N1—C19120.4 (2)C21—C20—H20119.8
C24—N1—C19119.3 (2)C20—C21—C22121.0 (3)
C27—N2—C28120.5 (2)C20—C21—H21119.5
C27—N2—C30119.5 (2)C22—C21—H21119.5
C28—N2—C30120.0 (2)C21—C22—C23117.1 (2)
C2—C1—C6117.9 (3)C21—C22—C25121.0 (2)
C2—C1—C30i119.8 (2)C23—C22—C25121.8 (2)
C6—C1—C30i122.3 (2)C24—C23—C22120.2 (3)
C3—C2—C1121.8 (3)C24—C23—H23119.9
C3—C2—H2119.1C22—C23—H23119.9
C1—C2—H2119.1N1—C24—C23120.9 (3)
C2—C3—C4121.3 (3)N1—C24—H24119.5
C2—C3—H3119.4C23—C24—H24119.5
C4—C3—H3119.4C29—C25—C26117.1 (2)
C5—C4—C3116.8 (3)C29—C25—C22121.5 (2)
C5—C4—C7122.4 (2)C26—C25—C22121.4 (2)
C3—C4—C7120.7 (2)C27—C26—C25120.6 (3)
C6—C5—C4121.9 (3)C27—C26—H26119.7
C6—C5—H5119.0C25—C26—H26119.7
C4—C5—H5119.0N2—C27—C26120.6 (3)
C5—C6—C1120.3 (2)N2—C27—H27119.7
C5—C6—H6119.8C26—C27—H27119.7
C1—C6—H6119.8N2—C28—C29120.4 (3)
C8—C7—C12117.2 (3)N2—C28—H28119.8
C8—C7—C4122.0 (2)C29—C28—H28119.8
C12—C7—C4120.7 (2)C28—C29—C25120.9 (3)
C9—C8—C7121.2 (3)C28—C29—H29119.6
C9—C8—H8119.4C25—C29—H29119.6
C7—C8—H8119.4N2—C30—C1i111.8 (2)
C8—C9—C10120.5 (3)N2—C30—H30A109.2
C8—C9—H9119.8C1i—C30—H30A109.2
C10—C9—H9119.8N2—C30—H30B109.2
C9—C10—C11120.9 (3)C1i—C30—H30B109.2
C9—C10—H10119.6H30A—C30—H30B107.9
C6—C1—C2—C31.1 (4)C19—C16—C17—C18179.8 (3)
C30i—C1—C2—C3176.6 (3)C16—C17—C18—C130.2 (4)
C1—C2—C3—C40.4 (5)C14—C13—C18—C171.5 (4)
C2—C3—C4—C50.6 (4)C11—C13—C18—C17179.0 (3)
C2—C3—C4—C7177.4 (3)C20—N1—C19—C16115.3 (3)
C3—C4—C5—C60.9 (4)C24—N1—C19—C1661.7 (3)
C7—C4—C5—C6177.1 (3)C15—C16—C19—N1142.0 (3)
C4—C5—C6—C10.2 (4)C17—C16—C19—N138.5 (4)
C2—C1—C6—C50.8 (4)C24—N1—C20—C212.7 (4)
C30i—C1—C6—C5176.8 (3)C19—N1—C20—C21174.3 (2)
C5—C4—C7—C8158.1 (3)N1—C20—C21—C220.4 (4)
C3—C4—C7—C824.0 (4)C20—C21—C22—C231.7 (4)
C5—C4—C7—C1224.4 (4)C20—C21—C22—C25175.6 (2)
C3—C4—C7—C12153.5 (3)C21—C22—C23—C241.6 (4)
C12—C7—C8—C90.2 (4)C25—C22—C23—C24175.7 (3)
C4—C7—C8—C9177.4 (3)C20—N1—C24—C232.8 (4)
C7—C8—C9—C100.2 (5)C19—N1—C24—C23174.2 (3)
C8—C9—C10—C110.6 (5)C22—C23—C24—N10.6 (4)
C9—C10—C11—C120.9 (4)C21—C22—C25—C29164.1 (3)
C9—C10—C11—C13178.4 (3)C23—C22—C25—C2913.0 (4)
C10—C11—C12—C70.9 (4)C21—C22—C25—C2613.9 (4)
C13—C11—C12—C7178.5 (2)C23—C22—C25—C26168.9 (3)
C8—C7—C12—C110.5 (4)C29—C25—C26—C272.3 (4)
C4—C7—C12—C11177.1 (2)C22—C25—C26—C27175.9 (3)
C12—C11—C13—C1819.1 (4)C28—N2—C27—C260.8 (4)
C10—C11—C13—C18161.5 (3)C30—N2—C27—C26177.1 (3)
C12—C11—C13—C14160.4 (3)C25—C26—C27—N21.0 (5)
C10—C11—C13—C1418.9 (4)C27—N2—C28—C291.1 (4)
C18—C13—C14—C152.0 (4)C30—N2—C28—C29176.7 (3)
C11—C13—C14—C15178.5 (3)N2—C28—C29—C250.3 (4)
C13—C14—C15—C161.2 (5)C26—C25—C29—C281.9 (4)
C14—C15—C16—C170.2 (4)C22—C25—C29—C28176.2 (3)
C14—C15—C16—C19179.7 (3)C27—N2—C30—C1i75.0 (3)
C15—C16—C17—C180.7 (4)C28—N2—C30—C1i102.8 (3)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O2W0.84 (2)1.96 (3)2.782 (4)166 (4)
O1W—H2W1···F30.84 (1)2.06 (1)2.883 (4)167 (4)
O2W—H1W2···F70.83 (4)2.49 (5)3.222 (4)147 (4)
O2W—H1W2···F80.83 (4)2.19 (4)2.963 (4)155 (5)
O2W—H2W2···F2i0.83 (4)2.20 (4)2.890 (4)141 (5)
C19—H19A···F9ii0.972.323.051 (4)131
C21—H21···F7iii0.932.493.365 (4)158
C24—H24···O1Wiv0.932.483.161 (5)130
C27—H27···O1Wiii0.932.463.364 (5)163
C28—H28···F9v0.932.433.321 (3)160
C29—H29···F12i0.932.463.384 (4)171
C30—H30B···F4iii0.972.533.280 (4)134
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1/2, z+1/2; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC60H48N4+·4PF6·4H2O
Mr1476.97
Crystal system, space groupMonoclinic, P21/c
Temperature (K)183
a, b, c (Å)11.7669 (1), 16.0300 (2), 18.4544 (2)
β (°) 116.089 (1)
V3)3126.27 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.46 × 0.30 × 0.26
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.896, 0.939
No. of measured, independent and
observed [I > 2σ(I)] reflections
18437, 7566, 4043
Rint0.114
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.149, 0.91
No. of reflections7565
No. of parameters446
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.58

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXTL (Sheldrick, 1997), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Selected geometric parameters (Å, º) top
N1—C201.341 (3)N2—C301.486 (3)
N1—C241.347 (3)C4—C71.483 (4)
N1—C191.486 (3)C11—C131.480 (4)
N2—C271.337 (3)C22—C251.484 (4)
N2—C281.339 (3)
N1—C19—C16110.9 (2)N2—C30—C1i111.8 (2)
C3—C4—C7—C824.0 (4)C17—C16—C19—N138.5 (4)
C5—C4—C7—C1224.4 (4)C23—C22—C25—C2913.0 (4)
C12—C11—C13—C1819.1 (4)C21—C22—C25—C2613.9 (4)
C10—C11—C13—C1418.9 (4)C27—N2—C30—C1i75.0 (3)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O2W0.84 (2)1.96 (3)2.782 (4)166 (4)
O1W—H2W1···F30.84 (1)2.06 (1)2.883 (4)167 (4)
O2W—H1W2···F70.83 (4)2.49 (5)3.222 (4)147 (4)
O2W—H1W2···F80.83 (4)2.19 (4)2.963 (4)155 (5)
O2W—H2W2···F2i0.83 (4)2.20 (4)2.890 (4)141 (5)
C19—H19A···F9ii0.972.323.051 (4)131
C21—H21···F7iii0.932.493.365 (4)158
C24—H24···O1Wiv0.932.483.161 (5)130
C27—H27···O1Wiii0.932.463.364 (5)163
C28—H28···F9v0.932.433.321 (3)160
C29—H29···F12i0.932.463.384 (4)171
C30—H30B···F4iii0.972.533.280 (4)134
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1/2, z+1/2; (v) x, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds