Download citation
Download citation
link to html
The new, non-linear, optically active crystal of the title compound, C14H13N2+·I, has bond lengths and angles in the usual ranges, compared with similar structures retrieved from the literature. As in the case of the earlier known aza­aromatic halides and polyhalides, we have observed the same short H...X (X = Cl, I) distance for the C—H...X interaction.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802005354/na6142sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802005354/na6142Isup2.hkl
Contains datablock I

CCDC reference: 185769

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.009 Å
  • R factor = 0.042
  • wR factor = 0.148
  • Data-to-parameter ratio = 16.5

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Amber Alert Alert Level B:
REFLT_03 From the CIF: _diffrn_reflns_theta_max 27.49 From the CIF: _reflns_number_total 2586 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 3017 Completeness (_total/calc) 85.71% Alert B: < 90% complete (theta max?)
Yellow Alert Alert Level C:
PLAT_360 Alert C Short C(sp3)-C(sp3) Bond C(13) - C(14) = 1.39 Ang.
0 Alert Level A = Potentially serious problem
1 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

Quaternary salts of azaaromatics are the subject of many reports due to their interesting application possibilities, e.g. they may be used in non-linear optics (Struganowa, 2000; Burtman et al., 2000), in the construction of electronic devices (Gittins et al., 2000; Bryce et al., 2001), as photochromic (Sotomayor et al., 2000) and electrochromic (Cummins et al., 2000) materials, as chemosensors (Goodal & Williams, 2000; Maidwell et al., 2000), laser dyes (Nishigaki & Nakamura, 2001; Gawinecki & Trzebiatowska, 2001) and NAD model systems (Zhu et al., 2001; Mikata et al., 2000). Some of these salts are biologically active (Goda & Saito, 2000) and also show anticancer properties (Nakanishi & Suzuki, 2001; Palm et al., 2000). In a number of reactions, they serve as synthons (Bennasar et al., 2001; Kuethe & Comins, 2000); their use in supramolecular chemistry systems should also be mentioned (Balzani et al., 2000; Loeb & Wisner, 2000). The crystal structures of similar compounds with two azaaromatic N atoms which can be unprotonated, mono- or diprotonated are described by (Hensen et al., 2000; Wang et al., 1999a,b). For all these structures, short H···X (X = Cl, I) contacts to aromatic H atoms are found. Furthermore, the crystal packing is stabilized by several short X···H—C contacts (Hensen et al., 2000).

Experimental top

According to the procedure whose detailed description is reported in the literature (Dondela & Sliwa, 2000; Chrzastek et al., 1999; Chrzastek & Sliwa, 2001), a solution of benzo[c]-1,5-naphthyridine (1.8 g, 10 mmol) and ethyl iodide (34.79 g, 223 mmol) in benzene (72 ml) was refluxed for 10 h. The resulting yellow solid was filtered off and recrystallized twice from distilled benzene. Single crystals were grown by slow cooling of a chloroform solution from 313 to 293 K at a rate of ca 0.7 K h-1 in an apparatus described previously by Marciniak (2002). To prevent solvent evaporation, the solution was covered with a practically immiscible layer of demineralized water.

Refinement top

The traditional X-ray photographic methods such as Laue and rotation (camera RKD 86, Mo radiation) and Weissenberg (camera RGNS 2, Cu radiation) were used for the preliminary examination of the crystal structure. For the data collection a four circle DARCH-1 diffractometer with a scintillation detector was used. The positions of the H atoms were generated and refined by the SHELXL97 constraints.

Computing details top

Data collection: DARCH software; cell refinement: DARCH software; data reduction: DARCH software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2000); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The constituent ions of the C14N13N2+·I- compound.
[Figure 2] Fig. 2. The unit-cell contents viewed along a.
5-ethylbenzo[c]-1,5-naphthyridinium iodide top
Crystal data top
C14H13N2+·IDx = 1.703 Mg m3
Dm = not measered Mg m3
Dm measured by not measured
Mr = 336.16Melting point: 491 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
a = 6.589 (1) ÅCell parameters from 74 reflections
b = 13.365 (3) Åθ = 3.0–25.0°
c = 14.892 (3) ŵ = 2.42 mm1
β = 91.62 (3)°T = 293 K
V = 1310.9 (4) Å3Prism, clear pale yellow
Z = 40.45 × 0.18 × 0.10 mm
F(000) = 656
Data collection top
DARCH-1
diffractometer
2586 independent reflections
Radiation source: BSW X-ray tube2399 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω–2θ scansθmax = 27.5°, θmin = 2.7°
Absorption correction: empirical (using intensity measurements)
(DIFABS; Walker & Stuart, 1983)
h = 88
Tmin = 0.577, Tmax = 0.785k = 017
2586 measured reflectionsl = 019
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.148 w = 1/[σ2(Fo2) + (0.0748P)2 + 0.56P]
where P = (Fo2 + 2Fc2)/3
S = 1.34(Δ/σ)max = 0.004
2586 reflectionsΔρmax = 0.65 e Å3
157 parametersΔρmin = 0.82 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0060 (13)
Crystal data top
C14H13N2+·IV = 1310.9 (4) Å3
Mr = 336.16Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.589 (1) ŵ = 2.42 mm1
b = 13.365 (3) ÅT = 293 K
c = 14.892 (3) Å0.45 × 0.18 × 0.10 mm
β = 91.62 (3)°
Data collection top
DARCH-1
diffractometer
2586 independent reflections
Absorption correction: empirical (using intensity measurements)
(DIFABS; Walker & Stuart, 1983)
2399 reflections with I > 2σ(I)
Tmin = 0.577, Tmax = 0.785Rint = 0.043
2586 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.34Δρmax = 0.65 e Å3
2586 reflectionsΔρmin = 0.82 e Å3
157 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.73326 (6)0.34075 (3)0.16387 (3)0.0839 (2)
N10.1607 (9)0.5160 (4)0.2667 (3)0.0810 (12)
N20.2553 (7)0.4824 (4)0.4235 (4)0.0855 (13)
C10.2731 (9)0.4395 (4)0.2883 (3)0.0760 (13)
H10.39020.42840.25630.091*
C20.2260 (8)0.3720 (4)0.3584 (4)0.0693 (11)
C30.3587 (9)0.2943 (5)0.3807 (4)0.0820 (14)
H30.47970.28690.35080.098*
C40.3092 (10)0.2288 (5)0.4471 (4)0.0898 (16)
H40.39800.17750.46380.108*
C50.1242 (7)0.2395 (3)0.4897 (3)0.0879 (16)
H50.09020.19380.53390.106*
C60.0079 (7)0.3148 (3)0.4685 (3)0.0773 (13)
H60.13070.31980.49740.093*
C70.0423 (8)0.3843 (4)0.4031 (3)0.0678 (11)
C80.0815 (8)0.4702 (4)0.3786 (3)0.0713 (12)
C90.3652 (10)0.5629 (6)0.4023 (6)0.104 (2)
H90.48420.57400.43300.124*
C100.3107 (15)0.6325 (6)0.3357 (7)0.112 (3)
H100.39260.68790.32400.134*
C110.1389 (13)0.6187 (5)0.2886 (5)0.098 (2)
H110.10230.66300.24370.118*
C120.0190 (10)0.5347 (4)0.3108 (4)0.0784 (14)
C130.2335 (17)0.5785 (5)0.1907 (6)0.120 (3)
H13A0.17510.64480.19550.21 (4)*
H13B0.37980.58540.19710.21 (4)*
C140.187 (2)0.5409 (7)0.1054 (5)0.151 (5)
H14A0.24390.47530.09970.23 (4)*
H14B0.24200.58430.06100.23 (4)*
H14C0.04200.53740.09690.23 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0805 (3)0.0862 (3)0.0852 (3)0.00962 (17)0.00636 (19)0.01661 (16)
N10.114 (4)0.061 (2)0.068 (2)0.000 (2)0.005 (2)0.0006 (19)
N20.068 (2)0.090 (3)0.098 (3)0.001 (2)0.010 (2)0.022 (3)
C10.096 (4)0.067 (3)0.066 (3)0.007 (3)0.006 (2)0.011 (2)
C20.074 (3)0.058 (3)0.076 (3)0.002 (2)0.004 (2)0.008 (2)
C30.080 (3)0.080 (4)0.086 (3)0.009 (3)0.002 (3)0.008 (3)
C40.101 (4)0.076 (4)0.092 (4)0.022 (3)0.003 (3)0.004 (3)
C50.116 (5)0.074 (3)0.074 (3)0.000 (3)0.004 (3)0.008 (3)
C60.084 (3)0.076 (3)0.072 (3)0.006 (3)0.010 (2)0.001 (2)
C70.068 (3)0.067 (3)0.068 (2)0.004 (2)0.0070 (19)0.007 (2)
C80.073 (3)0.065 (3)0.075 (3)0.001 (2)0.011 (2)0.014 (2)
C90.074 (3)0.096 (5)0.140 (6)0.010 (3)0.020 (4)0.029 (4)
C100.111 (5)0.080 (4)0.142 (7)0.027 (4)0.049 (5)0.015 (4)
C110.116 (5)0.075 (4)0.102 (4)0.012 (4)0.042 (4)0.005 (3)
C120.095 (4)0.063 (3)0.076 (3)0.002 (3)0.025 (3)0.008 (2)
C130.199 (10)0.063 (4)0.099 (4)0.015 (4)0.027 (5)0.016 (3)
C140.271 (14)0.104 (6)0.080 (4)0.028 (7)0.028 (6)0.014 (4)
Geometric parameters (Å, º) top
I1—I10.0000 (9)C6—C71.393 (7)
N1—C11.297 (8)C6—H60.9300
N1—C121.393 (8)C7—C81.449 (7)
N1—C131.496 (8)C8—C121.398 (8)
N2—C91.330 (9)C9—C101.414 (13)
N2—C81.353 (7)C9—H90.9300
C1—C21.421 (8)C10—C111.361 (13)
C1—H10.9300C10—H100.9300
C2—C71.407 (7)C11—C121.406 (9)
C2—C31.392 (8)C11—H110.9300
C3—C41.366 (9)C13—C141.392 (13)
C3—H30.9300C13—H13A0.9700
C4—C51.398 (8)C13—H13B0.9700
C4—H40.9300C14—H14A0.9600
C5—C61.3617C14—H14B0.9600
C5—H50.9300C14—H14C0.9600
C1—N1—C12120.7 (5)N2—C8—C7116.7 (5)
C1—N1—C13115.7 (6)C12—C8—C7119.7 (5)
C12—N1—C13123.5 (6)N2—C9—C10123.4 (7)
C9—N2—C8116.3 (6)N2—C9—H9118.3
N1—C1—C2123.2 (5)C10—C9—H9118.3
N1—C1—H1118.4C11—C10—C9120.3 (7)
C2—C1—H1118.4C11—C10—H10119.9
C7—C2—C3121.1 (5)C9—C10—H10119.9
C7—C2—C1118.8 (5)C10—C11—C12117.2 (7)
C3—C2—C1120.1 (5)C10—C11—H11121.4
C4—C3—C2119.3 (5)C12—C11—H11121.4
C4—C3—H3120.3N1—C12—C11120.8 (6)
C2—C3—H3120.3N1—C12—C8120.1 (5)
C3—C4—C5119.4 (5)C11—C12—C8119.1 (6)
C3—C4—H4120.3C14—C13—N1114.9 (7)
C5—C4—H4120.3C14—C13—H13A108.5
C6—C5—C4122.0 (3)N1—C13—H13A108.5
C6—C5—H5119.0C14—C13—H13B108.5
C4—C5—H5119.0N1—C13—H13B108.5
C5—C6—C7119.5 (3)H13A—C13—H13B107.5
C5—C6—H6120.3C13—C14—H14A109.5
C7—C6—H6120.3C13—C14—H14B109.5
C6—C7—C2118.5 (5)H14A—C14—H14B109.5
C6—C7—C8124.1 (5)C13—C14—H14C109.5
C2—C7—C8117.3 (5)H14A—C14—H14C109.5
N2—C8—C12123.6 (5)H14B—C14—H14C109.5
C12—N1—C1—C21.7 (8)C2—C7—C8—N2178.5 (5)
C13—N1—C1—C2179.6 (6)C6—C7—C8—C12178.9 (5)
N1—C1—C2—C74.3 (8)C2—C7—C8—C122.1 (7)
N1—C1—C2—C3176.9 (5)C8—N2—C9—C101.3 (10)
C7—C2—C3—C40.0 (9)N2—C9—C10—C110.6 (12)
C1—C2—C3—C4178.7 (6)C9—C10—C11—C121.4 (10)
C2—C3—C4—C51.7 (9)C1—N1—C12—C11178.8 (6)
C3—C4—C5—C61.4 (8)C13—N1—C12—C113.5 (9)
C4—C5—C6—C70.7 (4)C1—N1—C12—C80.7 (8)
C5—C6—C7—C22.4 (5)C13—N1—C12—C8177.1 (6)
C5—C6—C7—C8176.6 (3)C10—C11—C12—N1179.1 (6)
C3—C2—C7—C62.1 (8)C10—C11—C12—C80.4 (9)
C1—C2—C7—C6176.7 (5)N2—C8—C12—N1178.9 (5)
C3—C2—C7—C8176.9 (5)C7—C8—C12—N10.4 (7)
C1—C2—C7—C84.3 (7)N2—C8—C12—C111.6 (8)
C9—N2—C8—C122.4 (8)C7—C8—C12—C11179.0 (5)
C9—N2—C8—C7178.2 (5)C1—N1—C13—C1480.8 (11)
C6—C7—C8—N20.5 (7)C12—N1—C13—C1497.1 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···I10.932.923.832 (6)166
C10—H10···I1i0.933.043.937 (8)162
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H13N2+·I
Mr336.16
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.589 (1), 13.365 (3), 14.892 (3)
β (°) 91.62 (3)
V3)1310.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.42
Crystal size (mm)0.45 × 0.18 × 0.10
Data collection
DiffractometerDARCH-1
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(DIFABS; Walker & Stuart, 1983)
Tmin, Tmax0.577, 0.785
No. of measured, independent and
observed [I > 2σ(I)] reflections
2586, 2586, 2399
Rint0.043
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.148, 1.34
No. of reflections2586
No. of parameters157
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.82

Computer programs: DARCH software, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2000), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···I10.932.923.832 (6)166
C10—H10···I1i0.933.043.937 (8)162
Symmetry code: (i) x, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds