Download citation
Download citation
link to html
We report the structure of the title compound, C12H12Cl3NO2, which belongs to a group of compounds called blue quinones. It is a remarkable near-IR dye with interest for non-linear optics. It crystallized in monoclinic space group P21/a with one mol­ecule in the asymmetric unit. The molecular structure is approximately planar and exhibits little bond-length alternation, indicating a high degree of charge-transfer from the amine lone pair to the quinone.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802002283/na6139sup1.cif
Contains datablocks CRYSTALS_cif, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802002283/na6139Isup2.hkl
Contains datablock I

CCDC reference: 182611

Key indicators

  • Single-crystal X-ray study
  • T = 150 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.026
  • wR factor = 0.029
  • Data-to-parameter ratio = 10.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Recently, we isolated the title compound, (I), as a by-product during a porphyrin synthesis. Porphyrins are commonly prepared by the acid-catalyzed reaction of aldehydes with pyrroles, followed by oxidation with p-chloranil (Lindsey et al., 1987). If excess triethylamine is used to neutralize the acid prior to oxidation of the porphyrinogen with p-chloranil, the title compound is formed, as should have been expected from the known reaction of triethylamine with p-chloranil (Buckley, Dunstan & Henbest, 1957; Buckley, Henbest & Slade, 1957). This dye belongs to a class of compounds known as blue quinones. There has recently been renewed interest in these compounds in connection with non-linear optics, because of their remarkable long wavelength absorption (λmax at 680 nm in CH2Cl2) (Alnabari & Bittner, 2000). This absorption has been attributed to intramolecular charge-transfer of the type shown in Scheme 1. The crystal structure presented here (Fig. 1) provides some insight into this resonance. The shortest bond length is N1—C8, which indicates that this bond has a substantial double-bond character, as in structure B (Scheme 1), but the next bond in the π-system C8–C7 is also a partial double bond indicating a contribution from structure A (see bond lengths in Table 1). To the best of our knowledge, this is the first crystal structure of a blue quinone. Short intramolecular contacts occur between O1 an H81 and between Cl3 and H71 (Table 2), both these are shorter than the sum of the van der Waals radii (2.68 and 2.86 Å, respectively) (Rowland, 1996). These interactions cooperate to keep the amine coplanar with quinone and in that way favours π-conjugation.

Experimental top

Blue crystals were grown by layered addition of methanol to a toluene solution of the compound. All non-H atoms were refined anisotropically and H atoms were

refined isotropically.

Refinement top

H atoms were refined isotropically

Computing details top

Data collection: COLLECT (Nonius, 1997); cell refinement: DENZO and SCALEPACK; data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1996); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Watkin et al., 2001); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CRYSTALS (Watkin et al., 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids.
2,3,5-Trichloro-6-(2-diethylaminovinyl)-1,4-benzoquinone top
Crystal data top
C12H12Cl3NO2Dx = 1.562 Mg m3
Mr = 308.59Melting point: not measured K
Monoclinic, P21/aMo Kα radiation, λ = 0.71073 Å
a = 7.6548 (2) ÅCell parameters from 3052 reflections
b = 15.7782 (4) Åθ = 1–27°
c = 10.9114 (4) ŵ = 0.69 mm1
β = 95.299 (1)°T = 150 K
V = 1312.23 (7) Å3Plate, blue
Z = 40.10 × 0.05 × 0.05 mm
F(000) = 633.702
Data collection top
Enraf-Nonius KappaCCD
diffractometer
2055 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.01
ω scansθmax = 27.4°, θmin = 4.3°
Absorption correction: multi-scan
(DENZO and SCALEPACK; Otwinowski & Minor, 1996)
h = 99
Tmin = 0.959, Tmax = 0.966k = 2020
5779 measured reflectionsl = 1414
2985 independent reflections
Refinement top
Refinement on FPrimary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026All H-atom parameters refined
wR(F2) = 0.029 Chebychev polynomial with 3 parameters, 0.365, 0.183, 0.148 (Carruthers & Watkin, 1979)
S = 1.02(Δ/σ)max = 0.001
2055 reflectionsΔρmax = 0.23 e Å3
199 parametersΔρmin = 0.26 e Å3
Crystal data top
C12H12Cl3NO2V = 1312.23 (7) Å3
Mr = 308.59Z = 4
Monoclinic, P21/aMo Kα radiation
a = 7.6548 (2) ŵ = 0.69 mm1
b = 15.7782 (4) ÅT = 150 K
c = 10.9114 (4) Å0.10 × 0.05 × 0.05 mm
β = 95.299 (1)°
Data collection top
Enraf-Nonius KappaCCD
diffractometer
2985 independent reflections
Absorption correction: multi-scan
(DENZO and SCALEPACK; Otwinowski & Minor, 1996)
2055 reflections with I > 3σ(I)
Tmin = 0.959, Tmax = 0.966Rint = 0.01
5779 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026199 parameters
wR(F2) = 0.029All H-atom parameters refined
S = 1.02Δρmax = 0.23 e Å3
2055 reflectionsΔρmin = 0.26 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl20.82940 (7)0.46506 (3)0.08447 (4)0.0295
C30.8234 (2)0.36178 (11)0.13245 (16)0.0193
C40.7500 (2)0.34790 (11)0.25361 (15)0.0197
O20.71218 (17)0.40966 (8)0.31534 (12)0.0257
C50.7306 (2)0.26119 (11)0.28865 (15)0.0187
Cl30.64567 (6)0.24705 (3)0.42957 (4)0.0227
C60.7878 (2)0.1910 (1)0.22649 (15)0.0181
C10.8691 (2)0.20800 (11)0.10793 (15)0.0190
C20.8828 (2)0.29779 (11)0.06790 (16)0.0203
Cl10.97748 (6)0.31317 (3)0.06730 (4)0.0277
O10.91961 (19)0.15164 (8)0.04343 (12)0.0287
C70.7769 (2)0.10804 (11)0.27324 (16)0.0202
C80.8486 (2)0.03456 (11)0.22922 (16)0.0204
N10.85071 (19)0.03958 (9)0.28544 (13)0.0202
C90.7780 (3)0.05276 (12)0.40423 (17)0.0245
C100.5858 (3)0.07650 (16)0.3880 (2)0.0359
C110.9363 (2)0.11308 (12)0.23380 (18)0.0247
C121.1183 (3)0.12854 (14)0.2963 (2)0.0342
H710.720 (3)0.1042 (13)0.348 (2)0.0243*
H810.907 (3)0.0356 (13)0.157 (2)0.0245*
H910.849 (3)0.0967 (14)0.446 (2)0.0296*
H920.795 (3)0.0018 (14)0.453 (2)0.0296*
H1010.547 (3)0.0856 (16)0.467 (2)0.0437*
H1020.569 (3)0.1297 (17)0.338 (2)0.0437*
H1030.516 (3)0.0327 (16)0.345 (2)0.0437*
H1110.943 (3)0.1036 (14)0.150 (2)0.0297*
H1120.861 (3)0.1648 (14)0.241 (2)0.0297*
H1211.170 (3)0.1774 (16)0.257 (2)0.0408*
H1221.192 (3)0.0777 (16)0.289 (2)0.0408*
H1231.111 (3)0.1425 (16)0.380 (2)0.0408*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl20.0412 (3)0.0189 (2)0.0292 (2)0.00240 (19)0.00837 (19)0.00560 (18)
C30.0192 (8)0.0176 (8)0.0208 (8)0.0022 (6)0.0005 (6)0.0040 (6)
C40.0185 (8)0.0224 (9)0.0180 (8)0.0000 (6)0.0003 (6)0.0005 (7)
O20.0352 (7)0.0182 (6)0.0244 (6)0.0023 (5)0.0058 (5)0.0000 (5)
C50.0208 (8)0.0193 (8)0.0165 (8)0.0005 (6)0.0038 (6)0.0003 (6)
Cl30.0287 (2)0.0212 (2)0.01910 (19)0.00201 (16)0.00756 (15)0.00142 (16)
C60.0177 (7)0.0183 (8)0.0182 (8)0.0001 (6)0.0007 (6)0.0013 (6)
C10.0179 (8)0.0215 (9)0.0172 (8)0.0009 (6)0.0003 (6)0.0011 (7)
C20.0189 (8)0.0253 (9)0.0169 (8)0.0025 (7)0.0022 (6)0.0028 (7)
Cl10.0318 (2)0.0309 (2)0.0219 (2)0.00064 (19)0.01013 (17)0.00438 (18)
O10.0400 (8)0.0248 (7)0.0230 (6)0.0055 (6)0.0113 (6)0.0001 (5)
C70.0224 (8)0.0196 (9)0.0187 (8)0.0006 (7)0.0037 (7)0.0007 (7)
C80.0209 (8)0.0214 (8)0.0189 (8)0.0016 (7)0.0016 (6)0.0007 (7)
N10.0250 (7)0.0170 (7)0.0188 (7)0.0011 (6)0.0032 (6)0.0003 (6)
C90.036 (1)0.0195 (9)0.0186 (8)0.0007 (8)0.0046 (7)0.0026 (7)
C100.0353 (12)0.0395 (12)0.0345 (11)0.0047 (9)0.0118 (9)0.002 (1)
C110.0303 (9)0.0187 (9)0.0253 (9)0.0032 (7)0.0043 (7)0.0034 (7)
C120.0317 (11)0.0270 (11)0.0433 (12)0.0046 (9)0.0008 (9)0.0012 (9)
Geometric parameters (Å, º) top
Cl2—C31.7135 (17)C8—H810.95 (2)
C3—C41.500 (2)N1—C91.472 (2)
C3—C21.335 (3)N1—C111.470 (2)
C4—O21.234 (2)C9—C101.513 (3)
C4—C51.432 (2)C9—H910.97 (2)
C5—Cl31.7380 (16)C9—H920.97 (2)
C5—C61.391 (2)C10—H1010.95 (3)
C6—C11.511 (2)C10—H1021.00 (3)
C6—C71.409 (2)C10—H1030.96 (3)
C1—C21.489 (2)C11—C121.513 (3)
C1—O11.219 (2)C11—H1110.93 (2)
C2—Cl11.7198 (17)C11—H1121.01 (2)
C7—C81.387 (2)C12—H1210.98 (3)
C7—H710.96 (2)C12—H1220.99 (3)
C8—N11.320 (2)C12—H1230.94 (3)
Cl2—C3—C4115.53 (13)C9—N1—C11116.38 (14)
Cl2—C3—C2122.57 (14)N1—C9—C10112.02 (16)
C4—C3—C2121.90 (16)N1—C9—H91105.9 (13)
C3—C4—O2119.45 (15)C10—C9—H91112.0 (13)
C3—C4—C5115.56 (15)N1—C9—H92109.1 (13)
O2—C4—C5124.98 (15)C10—C9—H92110.6 (12)
C4—C5—Cl3114.54 (12)H91—C9—H92107.0 (18)
C4—C5—C6125.86 (15)C9—C10—H101108.4 (15)
Cl3—C5—C6119.31 (13)C9—C10—H102110.1 (14)
C5—C6—C1116.68 (14)H101—C10—H102109 (2)
C5—C6—C7122.08 (15)C9—C10—H103111.4 (15)
C1—C6—C7121.20 (15)H101—C10—H103110 (2)
C6—C1—C2117.79 (14)H102—C10—H103108 (2)
C6—C1—O1122.83 (15)N1—C11—C12112.26 (16)
C2—C1—O1119.35 (15)N1—C11—H111108.5 (13)
C3—C2—C1121.90 (15)C12—C11—H111109.4 (13)
C3—C2—Cl1122.47 (14)N1—C11—H112109.3 (12)
C1—C2—Cl1115.63 (13)C12—C11—H112110.3 (12)
C6—C7—C8127.73 (16)H111—C11—H112106.9 (18)
C6—C7—H71114.4 (12)C11—C12—H121108.6 (14)
C8—C7—H71117.7 (12)C11—C12—H122109.8 (14)
C7—C8—N1124.61 (16)H121—C12—H122110.4 (19)
C7—C8—H81120.6 (13)C11—C12—H123109.8 (15)
N1—C8—H81114.7 (13)H121—C12—H123108 (2)
C8—N1—C9123.02 (15)H122—C12—H123111 (2)
C8—N1—C11120.52 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H71···Cl30.96 (2)2.51 (2)3.008 (2)112 (1)
C8—H81···O10.94 (2)2.22 (2)2.832 (2)122 (2)
C9—H91···Cl3i0.97 (2)2.81 (2)3.662 (2)147 (2)
Symmetry code: (i) x+3/2, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC12H12Cl3NO2
Mr308.59
Crystal system, space groupMonoclinic, P21/a
Temperature (K)150
a, b, c (Å)7.6548 (2), 15.7782 (4), 10.9114 (4)
β (°) 95.299 (1)
V3)1312.23 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.69
Crystal size (mm)0.10 × 0.05 × 0.05
Data collection
DiffractometerEnraf-Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO and SCALEPACK; Otwinowski & Minor, 1996)
Tmin, Tmax0.959, 0.966
No. of measured, independent and
observed [I > 3σ(I)] reflections
5779, 2985, 2055
Rint0.01
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.029, 1.02
No. of reflections2055
No. of parameters199
No. of restraints?
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.23, 0.26

Computer programs: COLLECT (Nonius, 1997), DENZO and SCALEPACK (Otwinowski & Minor, 1996), SIR92 (Altomare et al., 1994), CRYSTALS (Watkin et al., 2001), ORTEP-3 (Farrugia, 1997).

Selected geometric parameters (Å, º) top
Cl2—C31.7135 (17)C1—C21.489 (2)
C3—C41.500 (2)C1—O11.219 (2)
C3—C21.335 (3)C2—Cl11.7198 (17)
C4—O21.234 (2)C7—C81.387 (2)
C4—C51.432 (2)C8—N11.320 (2)
C5—Cl31.7380 (16)N1—C91.472 (2)
C5—C61.391 (2)N1—C111.470 (2)
C6—C11.511 (2)C9—C101.513 (3)
C6—C71.409 (2)C11—C121.513 (3)
Cl2—C3—C4115.53 (13)C5—C6—C7122.08 (15)
Cl2—C3—C2122.57 (14)C1—C6—C7121.20 (15)
C4—C3—C2121.90 (16)C6—C1—C2117.79 (14)
C3—C4—O2119.45 (15)C6—C1—O1122.83 (15)
C3—C4—C5115.56 (15)C2—C1—O1119.35 (15)
O2—C4—C5124.98 (15)C3—C2—Cl1122.47 (14)
C4—C5—Cl3114.54 (12)C1—C2—Cl1115.63 (13)
C4—C5—C6125.86 (15)C6—C7—C8127.73 (16)
Cl3—C5—C6119.31 (13)C7—C8—N1124.61 (16)
C5—C6—C1116.68 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H71···Cl30.96 (2)2.51 (2)3.008 (2)112 (1)
C8—H81···O10.94 (2)2.22 (2)2.832 (2)122 (2)
C9—H91···Cl3i0.97 (2)2.81 (2)3.662 (2)147 (2)
Symmetry code: (i) x+3/2, y1/2, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds