Download citation
Download citation
link to html
In the title compound, 2C6H11N3O22+·2SO42−·3H2O, both diprotonated histidinium cations are linked by strong hydrogen bonds by water mol­ecules and normal hydrogen bonds by sulfate anions. The Cγ atom has a gauche II conformation with respect to the amino N atom and it is trans to the C′ atom for both mol­ecules. The imidazolinium rings are normal to the carbon skeletal plane, as expected.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801009758/na6086sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801009758/na6086Isup2.hkl
Contains datablock I

CCDC reference: 170769

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.012 Å
  • Disorder in solvent or counterion
  • R factor = 0.052
  • wR factor = 0.147
  • Data-to-parameter ratio = 6.7

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry
Red Alert Alert Level A:
DIFF_012 Alert A _diffrn_reflns_av_R_equivalents is missing R factor for symmetry-equivalent intensities. The following tests will not be performed RINTA
Yellow Alert Alert Level C:
PLAT_302 Alert C Anion/Solvent Disorder ....................... 7.00 Perc. PLAT_354 Alert C Short O-H Bond (0.82A) OW1 - HW2 = 0.68 Ang. PLAT_354 Alert C Short O-H Bond (0.82A) OW2 - HW3 = 0.64 Ang. General Notes
FORMU_01 There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: C6 H14 N3 O7.5 S1 Atom count from _chemical_formula_moiety:C12 H28 N6 O15 S2 FORMU_01 There is a discrepancy between the atom counts in the _chemical_formula_sum and the formula from the _atom_site* data. Atom count from _chemical_formula_sum:C6 H14 N3 O7.5 S1 Atom count from the _atom_site data: C6 H14 N3 O7.515 S1 REFLT_03 From the CIF: _diffrn_reflns_theta_max 67.95 From the CIF: _reflns_number_total 2303 Count of symmetry unique reflns 2144 Completeness (_total/calc) 107.42% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 159 Fraction of Friedel pairs measured 0.074 Are heavy atom types Z>Si present yes WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure
1 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
3 Alert Level C = Please check

Comment top

The crystal structures of L-histidine (Madden et al., 1972), L-histidine hydrochloride monohydrate (Fuess et al., 1977), DL-histidine hydrochloride dihydrate (Bennett et al., 1970), L-histidinium dinitrate (Asath Bahadur, 1992), DL-histidinium dinitrate (Asath Bahadur, 1992), DL-histidinium sulfamate (Asath Bahadur, 1992) and DL-histidine perchlorate (Asath Bahadur, 1992) have been reported earlier. In the present study, the crystal structure determination of bis(L-histidinium sulfate) trihydrate, (I), was undertaken.

The two crystallographically independent diprotonated histidinium molecules (A and B) have similar geometries. The histidinium molecule consists of two groups of nearly coplanar atoms. The chain has a straight conformation in molecules A and B which adopts the open form, as is present in L-histidine (Madden et al., 1972) and DL-histidine hydrochloride (Bennett et al., 1970). The conformation angles are such that χ1 is in the gauche II conformation [-61.9 (7) and -53.8 (7)°] for both molecules having a closed conformation (Pratap et al., 2000) (Table 1).

The sulfate anion links the amino N atom and the imidazolinium group of both molecules A and B and the water molecules through hydrogen bonds and stabilizes the structure (Table 2). The sulfate anion links the imidazolinium rings of both molecules, extending as a chain along the a axis (N12—H12A···O3i, N13—H13···O1iv, N22—H22A···O8'v and N22—H23···O6vii). A three-centered (bifurcated) hydrogen bond is observed in the case of the amino N atom of molecule A with sulfate O atoms (Jeffrey & Saenger, 1991). The water molecules OW1 and OW2, as acceptors, link the carboxyl O atom of both molecules through strong hydrogen bonds. Both crystallographically independent sulfate anions are linked to the three water molecules by hydrogen bonds. Molecules A and B are engaged in a straight (S1) head-to-tail sequence since the hydrogen bonds, viz. N11—H11C···O2Aiii and N21—H21C···O1Av, connect the amino acids along the 101 plane (Vijayan, 1988), as a closed dimer (Jeffrey & Saenger, 1991).

Experimental top

The title compound, (I), was crystallized in aqueous solution of DL-histidine and sulfuric acid by slow evaporation. The density of the sample was measured by flotation technique using a mixture of carbon tetrachloride and xylene.

Refinement top

One of the O atoms (O8) of the sulfate anion is disordered and the site-occupation factor of O8 and O8' are 0.74 (2) and 0.29 (2), respectively. The H atoms of the water molecules were located from difference Fourier maps and refined, leading to short O—H bonds, since the H atoms of the water molecules cannot be fixed by HFIX constraints, while all other H atoms were fixed by geometric restraints using HFIX and were allowed to ride on the preceding atom.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1999); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structures of the two independent cations showing the atomic numbering scheme and 50% probability displacement ellipsoids (Johnson, 1976).
Bis(L-histidinium sulfate) trihydrate top
Crystal data top
2C6H11N3O22+·2SO42·3H2OZ = 2
Mr = 280.26F(000) = 294
Triclinic, P1Dx = 1.572 Mg m3
Dm = 1.568 Mg m3
Dm measured by flotation method
a = 8.3400 (13) ÅCu Kα radiation, λ = 1.5418 Å
b = 8.9291 (11) ÅCell parameters from 25 reflections
c = 10.724 (2) Åθ = 15.2–23.8°
α = 102.576 (13)°µ = 2.81 mm1
β = 107.704 (15)°T = 293 K
γ = 119.667 (11)°Needles, colorless
V = 592.03 (16) Å30.5 × 0.3 × 0.15 mm
Data collection top
Enraf-Nonius sealed-tube
diffractometer
2280 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeθmax = 68.0°, θmin = 4.8°
Graphite monochromatorh = 010
ω–2θ scansk = 109
Absorption correction: ψ scan
(North et al., 1968)
l = 1212
Tmin = 0.418, Tmax = 0.65625 standard reflections every 3 reflections
2303 measured reflections intensity decay: none
2303 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.052 w = 1/[σ2(Fo2) + (0.1061P)2 + 0.447P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.148(Δ/σ)max = 0.014
S = 1.05Δρmax = 0.79 e Å3
2303 reflectionsΔρmin = 0.48 e Å3
346 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
4 restraintsExtinction coefficient: 0.042 (4)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.03 (3)
Crystal data top
2C6H11N3O22+·2SO42·3H2Oγ = 119.667 (11)°
Mr = 280.26V = 592.03 (16) Å3
Triclinic, P1Z = 2
a = 8.3400 (13) ÅCu Kα radiation
b = 8.9291 (11) ŵ = 2.81 mm1
c = 10.724 (2) ÅT = 293 K
α = 102.576 (13)°0.5 × 0.3 × 0.15 mm
β = 107.704 (15)°
Data collection top
Enraf-Nonius sealed-tube
diffractometer
2303 independent reflections
Absorption correction: ψ scan
(North et al., 1968)
2280 reflections with I > 2σ(I)
Tmin = 0.418, Tmax = 0.65625 standard reflections every 3 reflections
2303 measured reflections intensity decay: none
Refinement top
R[F2 > 2σ(F2)] = 0.052H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.148Δρmax = 0.79 e Å3
S = 1.05Δρmin = 0.48 e Å3
2303 reflectionsAbsolute structure: Flack (1983)
346 parametersAbsolute structure parameter: 0.03 (3)
4 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.03763 (15)0.60380 (13)0.40015 (11)0.0331 (3)
O10.0732 (9)0.7682 (8)0.3749 (7)0.0662 (16)
O20.0783 (7)0.5676 (6)0.4815 (5)0.0468 (10)
O30.2439 (8)0.6471 (9)0.4826 (7)0.0680 (15)
O40.0875 (10)0.4308 (8)0.2637 (6)0.0705 (15)
S20.40467 (19)0.69101 (18)0.03876 (15)0.0453 (4)
O50.4892 (16)0.7160 (10)0.0605 (8)0.111 (3)
O60.3650 (10)0.5184 (8)0.0550 (7)0.0674 (15)
O70.5773 (14)0.8652 (10)0.1742 (8)0.103 (3)
O80.2146 (17)0.674 (2)0.027 (2)0.148 (9)0.74 (2)
O8'0.269 (3)0.723 (2)0.1008 (18)0.053 (6)0.29 (2)
O1A0.4086 (7)0.3484 (6)0.3882 (4)0.0490 (10)
O1B0.4502 (10)0.3011 (8)0.5873 (5)0.0653 (15)
H1B0.43790.38660.61280.098*
C110.4482 (9)0.2748 (8)0.4639 (6)0.0393 (12)
C120.4990 (9)0.1391 (7)0.4179 (6)0.0330 (11)
H120.37610.00810.38570.040*
N110.5364 (8)0.1485 (6)0.2909 (5)0.0394 (10)
H11A0.56610.06810.26330.059*
H11B0.64420.26790.31700.059*
H11C0.42100.11490.21690.059*
C130.6873 (11)0.1832 (9)0.5451 (6)0.0487 (15)
H13A0.81010.31180.57590.058*
H13B0.65900.18370.62640.058*
C140.7404 (9)0.0479 (8)0.5140 (7)0.0405 (13)
N120.6058 (8)0.1443 (7)0.4802 (6)0.0421 (11)
H12A0.48350.20140.47480.051*
C150.6976 (11)0.2250 (9)0.4576 (9)0.0541 (17)
H150.63920.35430.43020.065*
N130.8798 (12)0.0955 (10)0.4799 (10)0.073 (2)
H130.96850.11510.47280.087*
C160.9155 (12)0.0787 (11)0.5164 (11)0.066 (2)
H161.03690.19490.53850.079*
O2A1.2077 (7)0.1007 (7)1.0362 (5)0.0535 (11)
O2B0.8902 (8)0.1261 (8)0.8411 (5)0.0694 (15)
H2B0.95540.15750.81360.104*
C211.0216 (9)0.0283 (8)0.9656 (6)0.0365 (12)
C220.9210 (8)0.1188 (8)1.0076 (6)0.0339 (11)
H220.81340.03201.02810.041*
N211.0880 (7)0.3008 (6)1.1423 (4)0.0359 (9)
H21A1.03290.35671.16970.054*
H21B1.18860.37901.12550.054*
H21C1.14300.27631.21290.054*
C230.8163 (10)0.1520 (9)0.8836 (6)0.0404 (12)
H23A0.91860.22240.85410.048*
H23B0.70090.02800.80040.048*
C240.7332 (9)0.2588 (8)0.9200 (6)0.0359 (11)
N220.8443 (9)0.4537 (8)0.9632 (7)0.0478 (12)
H22A0.96710.52700.97160.057*
C250.7365 (12)0.5110 (10)0.9894 (9)0.0557 (17)
H250.78020.63691.02030.067*
N230.5561 (9)0.3623 (8)0.9650 (7)0.0523 (13)
H230.45850.36500.97420.063*
C260.5496 (10)0.2023 (10)0.9223 (8)0.0492 (14)
H260.44030.07810.89920.059*
OW10.3466 (10)0.5063 (7)0.6637 (6)0.0544 (12)
HW10.361 (13)0.526 (12)0.752 (10)0.06 (2)*
HW20.287 (11)0.529 (10)0.626 (8)0.034 (19)*
OW20.0771 (12)0.7555 (12)0.7679 (7)0.083 (2)
HW30.077 (11)0.716 (9)0.710 (8)0.033 (17)*
HW40.109 (17)0.707 (14)0.819 (12)0.08 (3)*
OW30.9820 (10)0.9524 (10)0.2202 (8)0.092 (2)
HW51.01350.88750.27470.050*
HW60.84650.92310.20540.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0424 (6)0.0385 (6)0.0397 (6)0.0314 (5)0.0270 (5)0.0220 (5)
O10.076 (3)0.073 (3)0.122 (5)0.063 (3)0.070 (4)0.075 (3)
O20.042 (2)0.059 (3)0.048 (2)0.0303 (19)0.0312 (18)0.0238 (19)
O30.048 (3)0.088 (3)0.100 (4)0.047 (3)0.041 (3)0.068 (3)
O40.090 (4)0.071 (3)0.057 (3)0.056 (3)0.042 (3)0.009 (2)
S20.0461 (8)0.0567 (8)0.0614 (9)0.0393 (7)0.0330 (7)0.0384 (7)
O50.154 (7)0.065 (4)0.075 (4)0.034 (4)0.072 (4)0.029 (3)
O60.086 (4)0.065 (3)0.106 (4)0.058 (3)0.072 (3)0.056 (3)
O70.146 (7)0.079 (4)0.072 (4)0.081 (5)0.033 (4)0.014 (3)
O80.075 (7)0.216 (14)0.28 (2)0.109 (9)0.116 (11)0.217 (17)
O8'0.084 (12)0.049 (9)0.049 (10)0.047 (8)0.047 (8)0.022 (7)
O1A0.070 (3)0.054 (2)0.0387 (18)0.051 (2)0.0190 (18)0.0196 (17)
O1B0.121 (4)0.093 (4)0.051 (2)0.096 (4)0.052 (3)0.042 (2)
C110.036 (3)0.041 (3)0.037 (3)0.027 (2)0.009 (2)0.014 (2)
C120.041 (3)0.031 (2)0.036 (2)0.027 (2)0.018 (2)0.016 (2)
N110.048 (3)0.038 (2)0.045 (2)0.031 (2)0.027 (2)0.0205 (18)
C130.063 (4)0.046 (3)0.039 (3)0.044 (3)0.011 (3)0.011 (2)
C140.036 (3)0.033 (2)0.052 (3)0.024 (2)0.014 (2)0.018 (2)
N120.042 (3)0.042 (2)0.054 (3)0.030 (2)0.024 (2)0.027 (2)
C150.059 (4)0.040 (3)0.082 (5)0.040 (3)0.033 (4)0.030 (3)
N130.074 (4)0.064 (4)0.123 (6)0.058 (4)0.059 (4)0.049 (4)
C160.047 (4)0.047 (3)0.110 (6)0.029 (3)0.040 (4)0.041 (4)
O2A0.048 (2)0.063 (3)0.052 (2)0.042 (2)0.0201 (19)0.015 (2)
O2B0.056 (3)0.063 (3)0.058 (3)0.041 (2)0.013 (2)0.010 (2)
C210.048 (3)0.038 (3)0.040 (3)0.035 (3)0.025 (2)0.017 (2)
C220.037 (2)0.041 (3)0.034 (2)0.028 (2)0.019 (2)0.017 (2)
N210.047 (2)0.045 (2)0.0267 (19)0.035 (2)0.0177 (18)0.0152 (17)
C230.049 (3)0.058 (3)0.030 (2)0.042 (3)0.019 (2)0.019 (2)
C240.039 (3)0.046 (3)0.034 (3)0.032 (2)0.018 (2)0.019 (2)
N220.046 (3)0.048 (3)0.067 (3)0.034 (2)0.032 (3)0.033 (3)
C250.061 (4)0.055 (4)0.075 (5)0.042 (3)0.039 (4)0.038 (3)
N230.048 (3)0.065 (3)0.074 (4)0.045 (3)0.040 (3)0.034 (3)
C260.039 (3)0.051 (3)0.061 (4)0.030 (3)0.025 (3)0.022 (3)
OW10.082 (4)0.058 (3)0.047 (3)0.056 (3)0.031 (2)0.024 (2)
OW20.116 (5)0.127 (6)0.039 (3)0.104 (5)0.033 (3)0.018 (3)
OW30.076 (4)0.102 (5)0.100 (4)0.048 (4)0.039 (4)0.068 (4)
Geometric parameters (Å, º) top
S1—O11.451 (4)N13—H130.8600
S1—O41.452 (5)C16—H160.9300
S1—O21.458 (4)O2A—C211.217 (7)
S1—O31.469 (5)O2B—C211.303 (7)
S2—O81.436 (9)O2B—H2B0.8200
S2—O51.443 (7)C21—C221.517 (7)
S2—O71.459 (7)C22—N211.477 (7)
S2—O61.471 (5)C22—C231.530 (8)
S2—O8'1.581 (15)C22—H220.9800
O8'—O81.20 (2)N21—H21A0.8900
O1A—C111.218 (7)N21—H21B0.8900
O1B—C111.286 (8)N21—H21C0.8900
O1B—H1B0.8200C23—C241.484 (8)
C11—C121.505 (8)C23—H23A0.9700
C12—N111.497 (7)C23—H23B0.9700
C12—C131.527 (8)C24—C261.364 (9)
C12—H120.9800C24—N221.376 (8)
N11—H11A0.8900N22—C251.302 (10)
N11—H11B0.8900N22—H22A0.8600
N11—H11C0.8900C25—N231.314 (10)
C13—C141.487 (8)C25—H250.9300
C13—H13A0.9700N23—C261.370 (9)
C13—H13B0.9700N23—H230.8600
C14—C161.336 (10)C26—H260.9300
C14—N121.382 (8)OW1—HW10.88 (9)
N12—C151.322 (9)OW1—HW20.68 (8)
N12—H12A0.8600OW2—HW30.65 (8)
C15—N131.274 (10)OW2—HW40.82 (12)
C15—H150.9300OW3—HW50.976 (6)
N13—C161.366 (10)OW3—HW60.975 (7)
O1—S1—O4111.5 (4)N12—C15—H15125.8
O1—S1—O2109.4 (3)C15—N13—C16110.9 (6)
O4—S1—O2107.5 (3)C15—N13—H13124.5
O1—S1—O3108.2 (3)C16—N13—H13124.5
O4—S1—O3109.3 (4)C14—C16—N13105.9 (6)
O2—S1—O3110.9 (3)C14—C16—H16127.0
O8—S2—O5105.1 (8)N13—C16—H16127.0
O8—S2—O7116.0 (10)C21—O2B—H2B109.5
O5—S2—O7102.1 (5)O2A—C21—O2B124.4 (5)
O8—S2—O6112.6 (5)O2A—C21—C22123.1 (5)
O5—S2—O6109.2 (4)O2B—C21—C22112.4 (5)
O7—S2—O6111.0 (4)N21—C22—C21107.6 (4)
O8—S2—O8'46.4 (9)N21—C22—C23111.6 (4)
O5—S2—O8'145.9 (8)C21—C22—C23111.0 (4)
O7—S2—O8'81.4 (7)N21—C22—H22108.9
O6—S2—O8'100.7 (7)C21—C22—H22108.9
O8—O8'—S260.4 (8)C23—C22—H22108.9
O8'—O8—S273.2 (10)C22—N21—H21A109.5
C11—O1B—H1B109.5C22—N21—H21B109.5
O1A—C11—O1B125.2 (5)H21A—N21—H21B109.5
O1A—C11—C12121.6 (5)C22—N21—H21C109.5
O1B—C11—C12113.2 (5)H21A—N21—H21C109.5
N11—C12—C11109.3 (4)H21B—N21—H21C109.5
N11—C12—C13111.7 (5)C24—C23—C22114.9 (4)
C11—C12—C13111.4 (4)C24—C23—H23A108.5
N11—C12—H12108.1C22—C23—H23A108.5
C11—C12—H12108.1C24—C23—H23B108.5
C13—C12—H12108.1C22—C23—H23B108.5
C12—N11—H11A109.5H23A—C23—H23B107.5
C12—N11—H11B109.5C26—C24—N22105.0 (5)
H11A—N11—H11B109.5C26—C24—C23132.4 (6)
C12—N11—H11C109.5N22—C24—C23122.6 (5)
H11A—N11—H11C109.5C25—N22—C24110.1 (5)
H11B—N11—H11C109.5C25—N22—H22A124.9
C14—C13—C12115.6 (5)C24—N22—H22A124.9
C14—C13—H13A108.4N22—C25—N23109.0 (6)
C12—C13—H13A108.4N22—C25—H25125.5
C14—C13—H13B108.4N23—C25—H25125.5
C12—C13—H13B108.4C25—N23—C26108.5 (6)
H13A—C13—H13B107.4C25—N23—H23125.8
C16—C14—N12106.6 (6)C26—N23—H23125.8
C16—C14—C13130.5 (6)C24—C26—N23107.4 (6)
N12—C14—C13122.9 (6)C24—C26—H26126.3
C15—N12—C14108.1 (5)N23—C26—H26126.3
C15—N12—H12A125.9HW1—OW1—HW2114 (8)
C14—N12—H12A125.9HW3—OW2—HW4102 (9)
N13—C15—N12108.4 (5)HW5—OW3—HW6108.4 (6)
N13—C15—H15125.8
O5—S2—O8'—O840.2 (17)N12—C14—C16—N131.8 (10)
O7—S2—O8'—O8139.1 (11)C13—C14—C16—N13179.6 (7)
O6—S2—O8'—O8111.0 (11)C15—N13—C16—C140.6 (11)
O5—S2—O8—O8'158.0 (10)O2A—C21—C22—N210.4 (8)
O7—S2—O8—O8'46.1 (11)O2B—C21—C22—N21174.9 (5)
O6—S2—O8—O8'83.3 (13)O2A—C21—C22—C23122.8 (6)
O1A—C11—C12—N1111.9 (8)O2B—C21—C22—C2352.5 (7)
O1B—C11—C12—N11168.5 (5)N21—C22—C23—C2453.8 (7)
O1A—C11—C12—C13135.9 (6)C21—C22—C23—C24173.8 (5)
O1B—C11—C12—C1344.6 (7)C22—C23—C24—C2682.1 (8)
N11—C12—C13—C1461.9 (7)C22—C23—C24—N2297.2 (7)
C11—C12—C13—C14175.6 (6)C26—C24—N22—C250.1 (8)
C12—C13—C14—C16118.4 (9)C23—C24—N22—C25179.5 (6)
C12—C13—C14—N1264.2 (9)C24—N22—C25—N230.3 (9)
C16—C14—N12—C152.5 (9)N22—C25—N23—C260.6 (9)
C13—C14—N12—C15179.5 (6)N22—C24—C26—N230.5 (7)
C14—N12—C15—N132.1 (9)C23—C24—C26—N23179.8 (6)
N12—C15—N13—C161.0 (11)C25—N23—C26—C240.7 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1B—H1B···OW10.821.682.474 (6)162
N11—H11A···O7i0.891.922.795 (8)169
N11—H11B···O2ii0.892.233.046 (6)153
N11—H11B···O4ii0.892.323.055 (8)140
N11—H11C···O2Aiii0.892.122.989 (6)164
N12—H12A···O3i0.861.822.662 (7)166
N13—H13···O1iv0.861.982.794 (8)156
O2B—H2B···OW2iv0.821.672.485 (7)172
N21—H21A···O4v0.891.862.714 (6)161
N21—H21B···O6v0.891.892.767 (7)170
N21—H21C···O1Av0.892.092.895 (6)149
N22—H22A···O8v0.861.812.665 (11)175
N22—H22A···O8v0.861.952.713 (19)148
N23—H23···O6vi0.862.052.821 (7)150
OW1—HW1···O5vi0.88 (9)1.87 (9)2.629 (9)144 (7)
OW1—HW2···O30.68 (8)2.08 (8)2.684 (8)148 (8)
OW2—HW3···O20.65 (8)2.09 (8)2.666 (7)149 (8)
OW2—HW4···O8vi0.82 (12)1.79 (12)2.588 (14)162 (10)
OW3—HW5···O1ii0.981.802.775 (13)180
OW3—HW6···O70.981.932.909 (15)179
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z; (iii) x1, y, z1; (iv) x+1, y1, z; (v) x+1, y, z+1; (vi) x, y, z+1.

Experimental details

Crystal data
Chemical formula2C6H11N3O22+·2SO42·3H2O
Mr280.26
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.3400 (13), 8.9291 (11), 10.724 (2)
α, β, γ (°)102.576 (13), 107.704 (15), 119.667 (11)
V3)592.03 (16)
Z2
Radiation typeCu Kα
µ (mm1)2.81
Crystal size (mm)0.5 × 0.3 × 0.15
Data collection
DiffractometerEnraf-Nonius sealed-tube
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.418, 0.656
No. of measured, independent and
observed [I > 2σ(I)] reflections
2303, 2303, 2280
Rint?
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.148, 1.05
No. of reflections2303
No. of parameters346
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.79, 0.48
Absolute structureFlack (1983)
Absolute structure parameter0.03 (3)

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1999), SHELXL97.

Selected geometric parameters (Å, º) top
O1A—C111.218 (7)O2A—C211.217 (7)
O1B—C111.286 (8)O2B—C211.303 (7)
O1A—C11—C12—N1111.9 (8)O2A—C21—C22—N210.4 (8)
N11—C12—C13—C1461.9 (7)N21—C22—C23—C2453.8 (7)
C11—C12—C13—C14175.6 (6)C21—C22—C23—C24173.8 (5)
C12—C13—C14—C16118.4 (9)C22—C23—C24—C2682.1 (8)
C12—C13—C14—N1264.2 (9)C22—C23—C24—N2297.2 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1B—H1B···OW10.821.682.474 (6)162
N11—H11A···O7i0.891.922.795 (8)169
N11—H11B···O2ii0.892.233.046 (6)153
N11—H11B···O4ii0.892.323.055 (8)140
N11—H11C···O2Aiii0.892.122.989 (6)164
N12—H12A···O3i0.861.822.662 (7)166
N13—H13···O1iv0.861.982.794 (8)156
O2B—H2B···OW2iv0.821.672.485 (7)172
N21—H21A···O4v0.891.862.714 (6)161
N21—H21B···O6v0.891.892.767 (7)170
N21—H21C···O1Av0.892.092.895 (6)149
N22—H22A···O8v0.861.812.665 (11)175
N22—H22A···O8'v0.861.952.713 (19)148
N23—H23···O6vi0.862.052.821 (7)150
OW1—HW1···O5vi0.88 (9)1.87 (9)2.629 (9)144 (7)
OW1—HW2···O30.68 (8)2.08 (8)2.684 (8)148 (8)
OW2—HW3···O20.65 (8)2.09 (8)2.666 (7)149 (8)
OW2—HW4···O8vi0.82 (12)1.79 (12)2.588 (14)162 (10)
OW3—HW5···O1ii0.981.802.775 (13)180
OW3—HW6···O70.981.932.909 (15)179
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z; (iii) x1, y, z1; (iv) x+1, y1, z; (v) x+1, y, z+1; (vi) x, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds