Download citation
Download citation
link to html
The title compound, [Zn4(OH)2(C8H4O4)3(C2H6OS)4]·2H2O, has been prepared from the self-assembly reaction of Zn(ClO4)2, NaOMe and H2bdc in di­methyl sulfoxide. The polymer exhibits a zeotype structure with microporous layers of ca 10.22 × 12.29 Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801009175/na6080sup1.cif
Contains datablocks I, Zn

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801009175/na6080Isup2.hkl
Contains datablock I

CCDC reference: 156028

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.009 Å
  • R factor = 0.052
  • wR factor = 0.127
  • Data-to-parameter ratio = 14.4

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Amber Alert Alert Level B:
PLAT_420 Alert B D-H Without Acceptor O - H1O ?
Yellow Alert Alert Level C:
PLAT_213 Alert C Atom C1 has ADP max/min Ratio ........... 3.20
0 Alert Level A = Potentially serious problem
1 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

Microporous material based on metal-organic polymers is a new field of great current interest in inorganic and new material chemistry. A current goal in this sense is to build a genuinely stable and useful metal–organic zeotype by selecting appropriate building blocks and organic ligands (Schnebeck et al., 1999; Scherer et al., 1999; Gardner et al., 1995; Hennigar et al., 1997). In the last few years, much effort has been devoted to the use of transition metal ions with exo-bidentate ligands, such as polypyridyl or pyrazines and 1,4-benzenedicarboxylate, to generate polymeric metal–organic coordination polymers with two- or three-dimensional networks. Very recently, Goodgame and Williams reported a new type of metal–organic large-pore zeotype [Zn(dimto)2]n(dmf)n [dimto is 2,4,6-tri(1-imidazolyl)-1,3,5-triazine-2-one and dmf is N,N-dimethylformamide], which was generated from zinc bromide and 2,4,6-tri(1-imidazolyl)-1,3,5-triazine (timt) (Goodgame et al., 1999). Li reported a porous polymer [{Zn4O(bdc)3}(dmf)8(C6H5Cl)]n, which could absorb and deabsorb nitrogen gas (Li et al., 1999).

Herein we report a coordination polymer with a porous zeotype structure [{Zn4(OH)2(bdc)3(dmso)4}2H2O]n, (I), which is built from [Zn4(OH)2]6+ rhombic cluster unit and 1,4-benzenedicarboxylate. The crystallographic analysis reveals that the title compound constitutes the basic building blocks. The four Zn atoms are connected by two hydroxide groups forming a tetranuclear [Zn4(OH)2] cluster unit (Fig. 1). Such cluster units are linked by bdc ligand through µ and µ4 bridges to form a two-dimensional microporous layers with the dimensions of 10.22 × 12.29 Å. Four dimethyl sulfoxide (DMSO) solvent molecules are each weekly coordinated to each zinc(II) center.

Bdc ligands link metal–hydroxide cluster of Zn4(OH)2 forming a three-dimensional network with microporous structure. Such three-demensional coordination polymer with metal cluster and hydroxide bridges is quite rare in metal–organic polymers (Li et al., 1999). As shown in Fig. 1, ZnII atoms adopt two different coordination environments. One is tetracoordinated in a distorted tetrahedral fashion of ZnO4, with three O atoms from different bdc ligands and one O atom from hydroxyl. The other is hexacoordinated in a distorted octahedral fashion of ZnO6 of six O atoms, two from different hydroxyls, two from bdc ligands and the others from two DMSO molecules. Zn—O bonds fall in the range of 2.079 (4)–2.107 (4) Å. There are two different kinds of coordination modes of the bdc ligand, one acts as a µ4-bridge linking four Zn atoms, the other acts as a µ bridge linking two Zn atoms.

Experimental top

A mixture of 1,4-benzene dicarboxylic acid (H2bdc) (0.166 g, 1 mmol) and NaOMe (0.055 g, 1 mmol) in 25 ml of DMSO was stirred for 30 min. To the reaction mixture, solid Zn(ClO4)2·6H2O (0.372 g, 1 mmol) was added. After stirrinf for 8 h at 323 K, the reaction mixture was filtered to give a colorless solution. Slow diffusing with diethyl ether containing triethylamine (0.025 ml) into the filtrate, natural evaporation of the filtrate in air yielded a large amount of colorless block crystals of the title compound.

Refinement top

The positions of the H atoms were generated geometrically (C—H bond fixed at 0.96 Å) and treated by a mixture of independent and constrained refinement, assigned isotropic displacement parameters, and allowed to ride on their respective parent C atoms before the final cycle of least-squares refinement. Hydroxo and water H atoms were placed in calculated positions (Nardelli, 1995, 1999).

Computing details top

Data collection: SMART (Siemens, 1994); cell refinement: SMART; data reduction: SMART; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of (I). Displacement ellipsoids are plotted at the 40% probability level.
[Figure 2] Fig. 2. Packing diagram of (I).
Tris(µ-1,4-benzenedicarboxylate)tetrakis(dimethyl sulfoxide)di-µ3-hydroxo-tetrazinc dihydrate top
Crystal data top
[Zn4(OH)2(C8H4O4)3(C2H6OS)4]·2H2ODx = 1.671 Mg m3
Mr = 1136.38Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 145 reflections
a = 14.4988 (2) Åθ = 2.2–25.0°
b = 17.1659 (1) ŵ = 2.36 mm1
c = 18.1536 (5) ÅT = 293 K
V = 4518.16 (14) Å3Plate, colorless
Z = 40.36 × 0.32 × 0.26 mm
F(000) = 2312
Data collection top
Smart CCD
diffractometer
3986 independent reflections
Radiation source: fine-focus sealed tube2600 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 1017
Tmin = 0.445, Tmax = 0.542k = 208
12140 measured reflectionsl = 2118
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0691P)2 + 17.1727P]
where P = (Fo2 + 2Fc2)/3
3986 reflections(Δ/σ)max = 0.001
276 parametersΔρmax = 1.88 e Å3
3 restraintsΔρmin = 0.62 e Å3
Crystal data top
[Zn4(OH)2(C8H4O4)3(C2H6OS)4]·2H2OV = 4518.16 (14) Å3
Mr = 1136.38Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 14.4988 (2) ŵ = 2.36 mm1
b = 17.1659 (1) ÅT = 293 K
c = 18.1536 (5) Å0.36 × 0.32 × 0.26 mm
Data collection top
Smart CCD
diffractometer
3986 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
2600 reflections with I > 2σ(I)
Tmin = 0.445, Tmax = 0.542Rint = 0.058
12140 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0523 restraints
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0691P)2 + 17.1727P]
where P = (Fo2 + 2Fc2)/3
3986 reflectionsΔρmax = 1.88 e Å3
276 parametersΔρmin = 0.62 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.55551 (5)0.06052 (4)0.54823 (4)0.0276 (2)
Zn20.34708 (5)0.05295 (4)0.60236 (4)0.0270 (2)
S10.62938 (15)0.20725 (11)0.46236 (11)0.0530 (6)
S20.73751 (15)0.04497 (14)0.64932 (12)0.0646 (6)
O0.4193 (3)0.0397 (2)0.5129 (2)0.0260 (9)
H1O0.3903 (7)0.0724 (7)0.4789 (8)0.047*
O10.5771 (4)0.1320 (3)0.4588 (2)0.0492 (13)
O20.6927 (3)0.0796 (3)0.5822 (2)0.0496 (13)
O110.5409 (3)0.0143 (2)0.6402 (2)0.0359 (11)
O120.3956 (3)0.0159 (3)0.6800 (2)0.0380 (11)
O130.4844 (3)0.3425 (3)0.8885 (2)0.0436 (12)
O140.6315 (3)0.3431 (3)0.8528 (2)0.0402 (11)
O210.2186 (3)0.0194 (3)0.5967 (3)0.0512 (14)
O220.2152 (4)0.1107 (3)0.5125 (4)0.0736 (18)
C10.7294 (9)0.1879 (8)0.4128 (8)0.167 (7)
H1A0.76890.15460.44120.250*
H1B0.76080.23590.40240.250*
H1C0.71370.16250.36730.250*
C20.5754 (11)0.2669 (6)0.3958 (7)0.167 (8)
H2A0.51680.28420.41420.251*
H2B0.56640.23780.35130.251*
H2C0.61370.31130.38580.251*
C30.6908 (6)0.0934 (7)0.7263 (4)0.087 (3)
H3A0.62790.07750.73320.130*
H3B0.69310.14860.71840.130*
H3C0.72600.08040.76940.130*
C40.8496 (5)0.0862 (6)0.6520 (5)0.079 (3)
H4A0.88590.06540.61240.118*
H4B0.87840.07380.69820.118*
H4C0.84530.14180.64700.118*
C110.4772 (5)0.0409 (3)0.6793 (3)0.0299 (15)
C120.4993 (4)0.1076 (4)0.7296 (3)0.0306 (15)
C130.5848 (5)0.1421 (4)0.7274 (4)0.0403 (17)
H13A0.63090.12080.69800.048*
C140.6032 (5)0.2086 (4)0.7686 (4)0.0410 (17)
H14A0.66120.23180.76660.049*
C150.5346 (4)0.2402 (4)0.8127 (3)0.0311 (15)
C160.4494 (5)0.2048 (4)0.8163 (4)0.0385 (16)
H16A0.40400.22520.84690.046*
C170.4314 (4)0.1391 (4)0.7749 (3)0.0337 (15)
H17A0.37350.11580.77730.040*
C180.5507 (5)0.3142 (3)0.8553 (3)0.0299 (14)
C210.1803 (4)0.0549 (5)0.5457 (4)0.0426 (17)
C220.0858 (4)0.0265 (4)0.5231 (4)0.0396 (17)
C230.0384 (5)0.0649 (5)0.4680 (4)0.0490 (19)
H23A0.06420.10890.44630.059*
C240.0471 (5)0.0388 (5)0.4447 (4)0.051 (2)
H24A0.07840.06510.40750.061*
O1W0.3082 (15)0.2097 (12)0.4212 (10)0.429 (16)
H2OW0.2861 (15)0.2497 (13)0.4523 (11)0.772*
H1OW0.2817 (15)0.1618 (14)0.4409 (10)0.772*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0319 (4)0.0251 (4)0.0258 (4)0.0042 (3)0.0006 (3)0.0033 (3)
Zn20.0280 (4)0.0240 (4)0.0291 (4)0.0010 (3)0.0030 (3)0.0011 (3)
S10.0799 (15)0.0353 (10)0.0439 (11)0.0202 (10)0.0025 (10)0.0008 (9)
S20.0618 (14)0.0663 (15)0.0657 (14)0.0012 (12)0.0192 (11)0.0018 (11)
O0.028 (2)0.022 (2)0.028 (2)0.0044 (18)0.0016 (17)0.0001 (17)
O10.069 (3)0.038 (3)0.040 (3)0.020 (3)0.000 (2)0.004 (2)
O20.044 (3)0.067 (4)0.038 (3)0.009 (3)0.008 (2)0.002 (3)
O110.044 (3)0.028 (2)0.036 (2)0.007 (2)0.008 (2)0.006 (2)
O120.048 (3)0.032 (3)0.034 (3)0.012 (2)0.000 (2)0.007 (2)
O130.050 (3)0.033 (3)0.048 (3)0.005 (2)0.006 (2)0.018 (2)
O140.041 (3)0.030 (3)0.049 (3)0.001 (2)0.003 (2)0.009 (2)
O210.034 (3)0.078 (4)0.042 (3)0.012 (3)0.002 (2)0.005 (3)
O220.048 (3)0.050 (4)0.122 (5)0.016 (3)0.021 (3)0.015 (4)
C10.147 (12)0.126 (12)0.227 (16)0.069 (10)0.135 (12)0.044 (11)
C20.32 (2)0.059 (7)0.120 (10)0.037 (10)0.126 (12)0.029 (7)
C30.073 (6)0.145 (10)0.043 (5)0.009 (7)0.003 (4)0.019 (6)
C40.047 (5)0.115 (8)0.074 (6)0.005 (5)0.014 (4)0.018 (6)
C110.041 (4)0.022 (3)0.027 (3)0.003 (3)0.007 (3)0.002 (3)
C120.037 (4)0.022 (3)0.033 (4)0.003 (3)0.003 (3)0.003 (3)
C130.046 (4)0.032 (4)0.043 (4)0.002 (3)0.002 (3)0.012 (3)
C140.037 (4)0.033 (4)0.052 (4)0.004 (3)0.007 (3)0.013 (3)
C150.042 (4)0.021 (3)0.030 (3)0.001 (3)0.001 (3)0.002 (3)
C160.045 (4)0.032 (4)0.038 (4)0.001 (3)0.008 (3)0.010 (3)
C170.037 (4)0.029 (3)0.036 (4)0.008 (3)0.001 (3)0.003 (3)
C180.045 (4)0.016 (3)0.028 (3)0.000 (3)0.004 (3)0.003 (3)
C210.029 (4)0.049 (5)0.049 (4)0.003 (4)0.001 (3)0.020 (4)
C220.025 (3)0.048 (4)0.045 (4)0.002 (3)0.004 (3)0.007 (3)
C230.037 (4)0.049 (5)0.061 (5)0.010 (4)0.003 (3)0.004 (4)
C240.034 (4)0.062 (5)0.058 (5)0.001 (4)0.011 (4)0.001 (4)
O1W0.57 (3)0.35 (3)0.36 (2)0.02 (2)0.37 (2)0.015 (19)
Geometric parameters (Å, º) top
Zn1—O12.058 (4)C2—H2A0.9600
Zn1—Oi2.079 (4)C2—H2B0.9600
Zn1—O13ii2.104 (4)C2—H2C0.9600
Zn1—O2.107 (4)C3—H3A0.9600
Zn1—O22.108 (5)C3—H3B0.9600
Zn1—O112.117 (4)C3—H3C0.9600
Zn1—Zn1i3.1582 (13)C4—H4A0.9600
Zn2—O1.947 (4)C4—H4B0.9600
Zn2—O211.953 (4)C4—H4C0.9600
Zn2—O121.969 (4)C11—C121.498 (8)
Zn2—O14ii1.986 (4)C12—C131.375 (9)
S1—O11.500 (5)C12—C171.394 (9)
S1—C11.739 (11)C13—C141.390 (9)
S1—C21.767 (10)C13—H13A0.9300
S2—O21.503 (5)C14—C151.387 (9)
S2—C31.762 (9)C14—H14A0.9300
S2—C41.774 (8)C15—C161.377 (9)
O—Zn1i2.079 (4)C15—C181.507 (8)
O—H1O0.9343C16—C171.380 (9)
O11—C111.252 (7)C16—H16A0.9300
O12—C111.258 (7)C17—H17A0.9300
O13—C181.234 (7)C21—C221.510 (9)
O13—Zn1iii2.104 (4)C22—C231.382 (9)
O14—C181.273 (7)C22—C24iv1.384 (10)
O14—Zn2iii1.986 (4)C23—C241.384 (9)
O21—C211.240 (8)C23—H23A0.9300
O22—C211.239 (9)C24—C22iv1.384 (10)
C1—H1A0.9600C24—H24A0.9300
C1—H1B0.9600O1W—H2OW0.9448
C1—H1C0.9600O1W—H1OW0.9752
O1—Zn1—Oi92.62 (17)H2A—C2—H2B109.5
O1—Zn1—O13ii90.02 (19)S1—C2—H2C109.5
Oi—Zn1—O13ii173.89 (17)H2A—C2—H2C109.5
O1—Zn1—O90.18 (17)H2B—C2—H2C109.5
Oi—Zn1—O82.04 (15)S2—C3—H3A109.5
O13ii—Zn1—O92.45 (16)S2—C3—H3B109.5
O1—Zn1—O289.72 (19)H3A—C3—H3B109.5
Oi—Zn1—O296.83 (18)S2—C3—H3C109.5
O13ii—Zn1—O288.69 (19)H3A—C3—H3C109.5
O—Zn1—O2178.86 (18)H3B—C3—H3C109.5
O1—Zn1—O11176.95 (19)S2—C4—H4A109.5
Oi—Zn1—O1186.34 (16)S2—C4—H4B109.5
O13ii—Zn1—O1191.30 (18)H4A—C4—H4B109.5
O—Zn1—O1192.51 (16)S2—C4—H4C109.5
O2—Zn1—O1187.56 (17)H4A—C4—H4C109.5
O1—Zn1—Zn1i91.84 (13)H4B—C4—H4C109.5
Oi—Zn1—Zn1i41.35 (10)O11—C11—O12125.1 (6)
O13ii—Zn1—Zn1i133.08 (13)O11—C11—C12117.8 (6)
O—Zn1—Zn1i40.69 (10)O12—C11—C12117.1 (6)
O2—Zn1—Zn1i138.18 (15)C13—C12—C17119.1 (6)
O11—Zn1—Zn1i89.26 (12)C13—C12—C11120.3 (6)
O—Zn2—O21115.80 (18)C17—C12—C11120.4 (6)
O—Zn2—O12109.58 (17)C12—C13—C14120.8 (6)
O21—Zn2—O12101.6 (2)C12—C13—H13A119.6
O—Zn2—O14ii111.29 (18)C14—C13—H13A119.6
O21—Zn2—O14ii115.8 (2)C15—C14—C13119.5 (6)
O12—Zn2—O14ii100.96 (19)C15—C14—H14A120.2
O1—S1—C1103.6 (5)C13—C14—H14A120.2
O1—S1—C2104.3 (4)C16—C15—C14119.9 (6)
C1—S1—C297.3 (8)C16—C15—C18119.1 (6)
O2—S2—C3106.9 (4)C14—C15—C18121.0 (6)
O2—S2—C4105.2 (4)C15—C16—C17120.3 (6)
C3—S2—C498.1 (4)C15—C16—H16A119.9
Zn2—O—Zn1i129.5 (2)C17—C16—H16A119.9
Zn2—O—Zn1103.31 (17)C16—C17—C12120.4 (6)
Zn1i—O—Zn197.96 (15)C16—C17—H17A119.8
Zn2—O—H1O103.7C12—C17—H17A119.8
Zn1i—O—H1O103.0O13—C18—O14125.6 (6)
Zn1—O—H1O121.5O13—C18—C15117.5 (6)
S1—O1—Zn1123.8 (3)O14—C18—C15116.9 (6)
S2—O2—Zn1125.7 (3)O22—C21—O21124.0 (7)
C11—O11—Zn1137.9 (4)O22—C21—C22119.2 (7)
C11—O12—Zn2122.2 (4)O21—C21—C22116.8 (7)
C18—O13—Zn1iii142.4 (4)C23—C22—C24iv119.4 (6)
C18—O14—Zn2iii118.6 (4)C23—C22—C21119.6 (7)
C21—O21—Zn2108.8 (5)C24iv—C22—C21121.0 (7)
S1—C1—H1A109.5C22—C23—C24120.8 (7)
S1—C1—H1B109.5C22—C23—H23A119.6
H1A—C1—H1B109.5C24—C23—H23A119.6
S1—C1—H1C109.5C23—C24—C22iv119.8 (7)
H1A—C1—H1C109.5C23—C24—H24A120.1
H1B—C1—H1C109.5C22iv—C24—H24A120.1
S1—C2—H2A109.5H2OW—O1W—H1OW105.1
S1—C2—H2B109.5
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1/2, z+3/2; (iii) x+1, y1/2, z+3/2; (iv) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1OW···O220.981.842.731 (16)150
O1W—H2OW···S1v0.942.853.636 (14)142
Symmetry code: (v) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Zn4(OH)2(C8H4O4)3(C2H6OS)4]·2H2O
Mr1136.38
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)14.4988 (2), 17.1659 (1), 18.1536 (5)
V3)4518.16 (14)
Z4
Radiation typeMo Kα
µ (mm1)2.36
Crystal size (mm)0.36 × 0.32 × 0.26
Data collection
DiffractometerSmart CCD
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.445, 0.542
No. of measured, independent and
observed [I > 2σ(I)] reflections
12140, 3986, 2600
Rint0.058
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.128, 1.05
No. of reflections3986
No. of parameters276
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0691P)2 + 17.1727P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.88, 0.62

Computer programs: SMART (Siemens, 1994), SMART, SHELXTL (Sheldrick, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
Zn1—O12.058 (4)Zn1—Zn1i3.1582 (13)
Zn1—Oi2.079 (4)Zn2—O1.947 (4)
Zn1—O13ii2.104 (4)Zn2—O211.953 (4)
Zn1—O2.107 (4)Zn2—O121.969 (4)
Zn1—O22.108 (5)Zn2—O14ii1.986 (4)
Zn1—O112.117 (4)
O1—Zn1—Oi92.62 (17)O1—Zn1—Zn1i91.84 (13)
O1—Zn1—O13ii90.02 (19)Oi—Zn1—Zn1i41.35 (10)
Oi—Zn1—O13ii173.89 (17)O13ii—Zn1—Zn1i133.08 (13)
O1—Zn1—O90.18 (17)O—Zn1—Zn1i40.69 (10)
Oi—Zn1—O82.04 (15)O2—Zn1—Zn1i138.18 (15)
O13ii—Zn1—O92.45 (16)O11—Zn1—Zn1i89.26 (12)
O1—Zn1—O289.72 (19)O—Zn2—O21115.80 (18)
Oi—Zn1—O296.83 (18)O—Zn2—O12109.58 (17)
O13ii—Zn1—O288.69 (19)O21—Zn2—O12101.6 (2)
O—Zn1—O2178.86 (18)O—Zn2—O14ii111.29 (18)
O1—Zn1—O11176.95 (19)O21—Zn2—O14ii115.8 (2)
Oi—Zn1—O1186.34 (16)O12—Zn2—O14ii100.96 (19)
O13ii—Zn1—O1191.30 (18)Zn2—O—Zn1i129.5 (2)
O—Zn1—O1192.51 (16)Zn2—O—Zn1103.31 (17)
O2—Zn1—O1187.56 (17)Zn1i—O—Zn197.96 (15)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1OW···O220.981.842.731 (16)150
O1W—H2OW···S1iii0.942.853.636 (14)142
Symmetry code: (iii) x1/2, y+1/2, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds