Download citation
Download citation
link to html
Mirror symmetry is retained in the crystals of the title compound, C36H36N2O5·C6H6. The trapping of the solvent (benzene) mol­ecule in the crystal lattice as space filler with no strong interactions with the solute mol­ecule presumably plays an important role in the retention of molecular site symmetry. The crystal structure is stabilized by van der Waals interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801003956/na6059sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801003956/na6059Isup2.hkl
Contains datablock I

CCDC reference: 162809

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.009 Å
  • R factor = 0.066
  • wR factor = 0.191
  • Data-to-parameter ratio = 14.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_731 Alert C Bond Calc 1.31(3), Rep 1.305(13) .... 2.31 s.u-Ratio C1B -C2B 1.555 1.555 PLAT_731 Alert C Bond Calc 1.33(3), Rep 1.332(13) .... 2.31 s.u-Ratio C1B -C3B 1.555 5.665 PLAT_731 Alert C Bond Calc 1.30(4), Rep 1.303(13) .... 3.08 s.u-Ratio C2B -C3B 1.555 1.555 PLAT_731 Alert C Bond Calc 1.33(3), Rep 1.332(13) .... 2.31 s.u-Ratio C3B -C1B 1.555 5.665
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
4 Alert Level C = Please check

Comment top

Crystallographic studies on symmetrically shaped molecules, with a view to understand the nature and strength of intermolecular interactions, are expected to provide information regarding their role in effecting symmetry carry-over from the free state to the solid and obtain information about specific interactions. The symmetry of a molecule in the solid state is often found reduced than that observed in the free state as the molecules tend to pack as closely as possible upon crystallization (Kitaigorodskii, 1973), giving rise to a variety of intermolecular interactions. While inversion centre is often carried over into the crystal, the retention of mirror or twofold symmetry by molecules seems to depend on the presence, nature and strength of the intermolecular interactions. The present crystal structure (I) is a good example of the retention of mirror symmetry by a molecule in the crystal state.

Fig. 1 shows the crystallographic numbering scheme adopted. All four six-membered rings which constitute the diazaadamantanone cage adopt the chair conformation which is the most preferred conformation for adamantanes, irrespective of substitution. The molecule is bisected by a mirror plane passing through atoms C2, N1, N3, C10 and O11 of the diazaadamantanone cage. The solvent benzene molecule is trapped in the crystal lattice and held inside the channel running along the c axis by van der Waals interactions (Fig. 2). In the absence of C—H···X-type hydrogen bonds, the solvent molecule presumably plays a role in optimizing packing efficiency within the lattice. The absence of C—H···X-type interactions may be attributed to the deficiency of acceptors compared to donors (phenyl C—H) whose presence otherwise might have had a considerable influence on the molecular conformation.

Experimental top

Colourless single crystals were obtained as transparent needles by slow evaporation of a benzene solution at room temperature.

Refinement top

All the H atoms were located from a difference Fourier map and were allowed to ride on the heavier atoms to which they are attached using default values for bond lengths and displacement parameters.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1999); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. ORTEP diagram (PLATON; Spek, 1999) with displacement ellipsoids drawn at the 40% probability level showing the numbering scheme adopted.
[Figure 2] Fig. 2. Figure showing the solvent benzene molecule trapped inside channels running along the c axis.
4,8,9,10-Tetra(4-methoxyphenyl)-1,3-diazaadamantan-6-one-benzene solvate top
Crystal data top
C36H36N2O5·C6H6F(000) = 1392
Mr = 654.78Dx = 1.224 Mg m3
Orthorhombic, PnmaCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ac 2nCell parameters from 25 reflections
a = 16.6240 (5) Åθ = 16–26°
b = 26.0007 (16) ŵ = 0.64 mm1
c = 8.2207 (7) ÅT = 293 K
V = 3553.3 (4) Å3Needles, colourless
Z = 40.33 × 0.22 × 0.18 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
2226 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.010
Graphite monochromatorθmax = 70.0°, θmin = 3.4°
/w–2/q scansh = 020
Absorption correction: ψ scan
(North et al., 1968)
k = 031
Tmin = 0.864, Tmax = 0.892l = 010
3401 measured reflections2 standard reflections every 200 reflections
3401 independent reflections intensity decay: 0.1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.191 w = 1/[σ2(Fo2) + (0.0399P)2 + 6.1627P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
3401 reflectionsΔρmax = 0.29 e Å3
230 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00090 (11)
Crystal data top
C36H36N2O5·C6H6V = 3553.3 (4) Å3
Mr = 654.78Z = 4
Orthorhombic, PnmaCu Kα radiation
a = 16.6240 (5) ŵ = 0.64 mm1
b = 26.0007 (16) ÅT = 293 K
c = 8.2207 (7) Å0.33 × 0.22 × 0.18 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
2226 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.010
Tmin = 0.864, Tmax = 0.8922 standard reflections every 200 reflections
3401 measured reflections intensity decay: 0.1%
3401 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.191H-atom parameters constrained
S = 1.13Δρmax = 0.29 e Å3
3401 reflectionsΔρmin = 0.20 e Å3
230 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.3199 (2)0.25000.2382 (5)0.0376 (9)
C20.4080 (3)0.25000.2495 (6)0.0397 (11)
H2A0.42480.28010.31030.048*0.50
H2B0.42480.21990.31030.048*0.50
N30.4496 (2)0.25000.0909 (5)0.0386 (9)
C40.42588 (19)0.29796 (13)0.0049 (4)0.0378 (8)
H40.43670.32590.08170.045*
C50.33314 (19)0.29789 (13)0.0201 (4)0.0399 (8)
H50.31610.32860.08000.048*
C60.2918 (2)0.29584 (13)0.1496 (4)0.0395 (8)
H60.23410.29120.13020.047*
C100.3093 (3)0.25000.1103 (6)0.0402 (11)
O110.2731 (2)0.25000.2391 (4)0.0513 (9)
C410.4747 (2)0.31038 (12)0.1447 (4)0.0367 (8)
C420.5587 (2)0.31181 (14)0.1355 (5)0.0460 (9)
H420.58370.30290.03840.055*
C430.6051 (2)0.32602 (14)0.2657 (5)0.0474 (9)
H430.66090.32560.25690.057*
C440.5693 (2)0.34093 (13)0.4101 (4)0.0432 (8)
C450.4865 (2)0.34060 (14)0.4229 (4)0.0453 (9)
H450.46160.35090.51880.054*
C460.4408 (2)0.32464 (14)0.2903 (4)0.0450 (9)
H460.38510.32360.30070.054*
O470.62036 (15)0.35496 (11)0.5339 (3)0.0570 (7)
C480.5862 (3)0.3659 (2)0.6866 (5)0.0822 (16)
H48A0.62790.37510.76190.123*
H48B0.55830.33600.72600.123*
H48C0.54900.39390.67610.123*
C610.3010 (2)0.34442 (13)0.2511 (4)0.0412 (8)
C620.2767 (2)0.34370 (14)0.4137 (4)0.0462 (9)
H620.25990.31290.46020.055*
C630.2771 (2)0.38790 (15)0.5065 (5)0.0522 (10)
H630.25970.38680.61390.063*
C640.3032 (2)0.43397 (15)0.4404 (5)0.0560 (10)
C650.3290 (3)0.43554 (15)0.2823 (5)0.0632 (12)
H650.34770.46610.23770.076*
C660.3270 (3)0.39082 (15)0.1889 (5)0.0579 (11)
H660.34380.39230.08110.070*
O670.3004 (2)0.47552 (11)0.5421 (4)0.0791 (10)
C680.3254 (4)0.52372 (18)0.4764 (8)0.109 (2)
H68A0.32090.54980.55850.164*
H68B0.38020.52130.44100.164*
H68C0.29170.53250.38560.164*
C1B0.4342 (9)0.4969 (12)0.090 (2)0.162 (5)
H1B0.38840.49470.15470.195*
C2B0.4424 (14)0.5339 (7)0.016 (3)0.161 (5)
H2B10.40140.55780.02830.193*
C3B0.5072 (19)0.5378 (5)0.1042 (16)0.155 (5)
H3B0.51250.56490.17730.186*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.038 (2)0.038 (2)0.036 (2)0.0000.0003 (18)0.000
C20.049 (3)0.034 (2)0.036 (3)0.0000.006 (2)0.000
N30.037 (2)0.042 (2)0.036 (2)0.0000.0059 (18)0.000
C40.0393 (18)0.0388 (18)0.0352 (18)0.0017 (15)0.0019 (15)0.0007 (15)
C50.0375 (18)0.0435 (19)0.0388 (19)0.0024 (15)0.0008 (15)0.0006 (16)
C60.0386 (18)0.0428 (19)0.0370 (18)0.0045 (15)0.0012 (15)0.0017 (16)
C100.028 (2)0.051 (3)0.042 (3)0.0000.002 (2)0.000
O110.044 (2)0.068 (2)0.042 (2)0.0000.0075 (17)0.000
C410.0383 (17)0.0350 (17)0.0367 (18)0.0006 (14)0.0002 (15)0.0005 (14)
C420.0423 (19)0.047 (2)0.048 (2)0.0005 (16)0.0041 (17)0.0048 (17)
C430.0369 (18)0.052 (2)0.053 (2)0.0029 (16)0.0000 (17)0.0016 (19)
C440.045 (2)0.0388 (19)0.046 (2)0.0040 (16)0.0088 (17)0.0047 (17)
C450.045 (2)0.053 (2)0.0376 (19)0.0032 (17)0.0028 (16)0.0031 (17)
C460.0379 (18)0.055 (2)0.042 (2)0.0020 (16)0.0024 (16)0.0022 (17)
O470.0518 (15)0.0679 (18)0.0512 (16)0.0067 (13)0.0122 (13)0.0066 (14)
C480.070 (3)0.120 (4)0.056 (3)0.012 (3)0.012 (2)0.015 (3)
C610.0420 (18)0.0389 (18)0.0429 (19)0.0036 (15)0.0023 (17)0.0034 (17)
C620.051 (2)0.044 (2)0.044 (2)0.0034 (17)0.0015 (18)0.0032 (17)
C630.057 (2)0.056 (2)0.044 (2)0.0047 (19)0.0063 (19)0.0026 (19)
C640.060 (2)0.049 (2)0.059 (3)0.0022 (19)0.003 (2)0.009 (2)
C650.086 (3)0.038 (2)0.065 (3)0.002 (2)0.016 (2)0.002 (2)
C660.076 (3)0.049 (2)0.048 (2)0.003 (2)0.013 (2)0.0018 (19)
O670.111 (3)0.0510 (17)0.075 (2)0.0044 (17)0.015 (2)0.0179 (16)
C680.159 (6)0.046 (3)0.123 (5)0.015 (3)0.031 (5)0.023 (3)
C1B0.134 (9)0.240 (15)0.112 (9)0.055 (10)0.019 (7)0.069 (9)
C2B0.188 (13)0.125 (9)0.170 (12)0.071 (9)0.088 (9)0.071 (8)
C3B0.281 (16)0.082 (6)0.103 (7)0.064 (9)0.048 (10)0.021 (5)
Geometric parameters (Å, º) top
N1—C21.467 (6)C44—O471.375 (4)
N1—C61.473 (4)C44—C451.381 (5)
N1—C6i1.473 (4)C45—C461.392 (5)
C2—N31.476 (6)O47—C481.407 (5)
N3—C41.487 (4)C61—C661.379 (5)
N3—C4i1.487 (4)C61—C621.397 (5)
C4—C411.509 (4)C62—C631.379 (5)
C4—C51.555 (4)C63—C641.385 (5)
C5—C101.503 (4)C64—O671.367 (5)
C5—C61.556 (5)C64—C651.370 (6)
C6—C611.521 (5)C65—C661.394 (5)
C10—O111.217 (6)O67—C681.426 (5)
C10—C5i1.503 (4)C1B—C2B1.305 (13)
C41—C461.374 (5)C1B—C3Bii1.332 (13)
C41—C421.398 (5)C2B—C3B1.303 (13)
C42—C431.370 (5)C3B—C1Bii1.332 (13)
C43—C441.384 (5)
C2—N1—C6110.4 (2)C43—C42—C41121.8 (3)
C2—N1—C6i110.4 (2)C42—C43—C44120.2 (3)
C6—N1—C6i108.0 (4)O47—C44—C45124.1 (3)
N1—C2—N3114.3 (4)O47—C44—C43116.3 (3)
C2—N3—C4107.2 (2)C45—C44—C43119.6 (3)
C2—N3—C4i107.2 (2)C44—C45—C46119.1 (3)
C4—N3—C4i114.0 (4)C41—C46—C45122.5 (3)
N3—C4—C41115.1 (3)C44—O47—C48117.7 (3)
N3—C4—C5109.0 (3)C66—C61—C62117.2 (3)
C41—C4—C5115.2 (3)C66—C61—C6123.7 (3)
C10—C5—C4109.1 (3)C62—C61—C6119.0 (3)
C10—C5—C6107.3 (3)C63—C62—C61121.1 (4)
C4—C5—C6108.6 (3)C62—C63—C64120.4 (4)
N1—C6—C61111.6 (3)O67—C64—C65124.6 (4)
N1—C6—C5109.3 (3)O67—C64—C63115.7 (4)
C61—C6—C5114.7 (3)C65—C64—C63119.7 (4)
O11—C10—C5i124.0 (2)C64—C65—C66119.4 (4)
O11—C10—C5124.0 (2)C61—C66—C65122.2 (4)
C5i—C10—C5111.9 (4)C64—O67—C68117.0 (4)
C46—C41—C42116.7 (3)C2B—C1B—C3Bii118.7 (10)
C46—C41—C4123.1 (3)C3B—C2B—C1B121.1 (10)
C42—C41—C4119.9 (3)C2B—C3B—C1Bii120.2 (10)
C6—N1—C2—N359.7 (2)C4—C41—C42—C43175.9 (3)
C6i—N1—C2—N359.7 (2)C41—C42—C43—C441.9 (6)
N1—C2—N3—C461.4 (2)C42—C43—C44—O47179.5 (3)
N1—C2—N3—C4i61.4 (2)C42—C43—C44—C451.0 (6)
C2—N3—C4—C41168.3 (3)O47—C44—C45—C46178.7 (3)
C4i—N3—C4—C4173.3 (4)C43—C44—C45—C460.7 (6)
C2—N3—C4—C560.6 (4)C42—C41—C46—C450.9 (5)
C4i—N3—C4—C557.9 (4)C4—C41—C46—C45173.9 (3)
N3—C4—C5—C1056.2 (4)C44—C45—C46—C411.8 (6)
C41—C4—C5—C1074.9 (4)C45—C44—O47—C485.0 (6)
N3—C4—C5—C660.5 (4)C43—C44—O47—C48174.4 (4)
C41—C4—C5—C6168.4 (3)N1—C6—C61—C66139.3 (4)
C2—N1—C6—C6172.4 (4)C5—C6—C61—C6614.3 (5)
C6i—N1—C6—C61166.9 (2)N1—C6—C61—C6245.5 (4)
C2—N1—C6—C555.6 (4)C5—C6—C61—C62170.5 (3)
C6i—N1—C6—C565.1 (4)C66—C61—C62—C631.4 (5)
C10—C5—C6—N160.7 (3)C6—C61—C62—C63174.1 (3)
C4—C5—C6—N157.2 (4)C61—C62—C63—C641.2 (6)
C10—C5—C6—C61173.0 (3)C62—C63—C64—O67179.4 (4)
C4—C5—C6—C6169.1 (4)C62—C63—C64—C650.2 (6)
C4—C5—C10—O11122.5 (4)O67—C64—C65—C66178.2 (4)
C6—C5—C10—O11120.0 (5)C63—C64—C65—C661.4 (7)
C4—C5—C10—C5i59.2 (5)C62—C61—C66—C650.3 (6)
C6—C5—C10—C5i58.3 (4)C6—C61—C66—C65175.0 (4)
N3—C4—C41—C46133.1 (3)C64—C65—C66—C611.1 (7)
C5—C4—C41—C464.9 (5)C65—C64—O67—C680.9 (7)
N3—C4—C41—C4252.3 (4)C63—C64—O67—C68178.7 (4)
C5—C4—C41—C42179.6 (3)C3Bii—C1B—C2B—C3B1.5 (17)
C46—C41—C42—C430.9 (5)C1B—C2B—C3B—C1Bii1.5 (18)
Symmetry codes: (i) x, y+1/2, z; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC36H36N2O5·C6H6
Mr654.78
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)293
a, b, c (Å)16.6240 (5), 26.0007 (16), 8.2207 (7)
V3)3553.3 (4)
Z4
Radiation typeCu Kα
µ (mm1)0.64
Crystal size (mm)0.33 × 0.22 × 0.18
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.864, 0.892
No. of measured, independent and
observed [I > 2σ(I)] reflections
3401, 3401, 2226
Rint0.010
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.191, 1.13
No. of reflections3401
No. of parameters230
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.20

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1999), SHELXL97.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds