Download citation
Download citation
link to html
In the title complex, {[Ag(C20H20N2S2)](NO3)·CHCl3}n, the coordination about the Ag atom is a slightly distorted tetrahedron, involving the two S atoms of the ligand and two N-atom donors from two amine groups of two adjacent complexes related by centrosymmetry, so building up a chain running all along the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104009473/na1660sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104009473/na1660Isup2.hkl
Contains datablock I

CCDC reference: 243583

Comment top

As a favourable and fashionable connecting node for the construction of coordination polymers, the AgI ion shows a good coordination tendency with S or N donors. The study of Ag complexes of N-containing heterocyclic thioether ligands has mainly focused on pyridine derivatives (Sharma et al., 1999; Constable et al., 2002; Xie et al., 2004; Xie & Bu, 2003; Bu et al., 2003), although examples with other heterocyclic thioether ligands have also been reported (Hong et al., 2000; Zou et al., 2004). Dithioethers, a type of ditopic ligand, can be used as bridging ligands in the construction of coordination polymers with soft metal ions, and a series of bis(phenylthio)alkane and bis(heteroarylthio)alkane flexible ligands and their Ag complexes have been prepared and characterized (Li et al., 2003; Bu, Hou et al., 2002; Bu, Chen et al., 2002). In this paper, we report the crystal structure of the title novel Ag complex, (I), with a relatively rigid bis(heteroarylthioether) ligand, 1,2-phenylenebis(methylenethio-2-aniline) (L). \sch

Complex (I) is a one-dimensional metallopolymer, and the geometry at the AgI ion can be best described as a slightly distorted tetrahedron comprising the two S donors of the ligand and two N donors from two amino groups of two adjacent complexes, with the NO3 counteranion not taking part in coordination (Fig. 1). Ag—N bond distances are 2.382 (5) and 2.428 (5) Å, and Ag—S bond distances are 2.537 (2) and 2.546 (2) Å, which are in the ranges expected for such coordination (Carlucci et al., 1998; Engelhardt et al., 1985; Gotsis & White, 1987).

The coordination of the two S donors of the ligand to the Ag atom forms a seven-membered chelate ring (Ag1/S1/C1/C2/C7/C8/S2), with an S···S distance of 4.088 (2) Å. Atoms C1, S1, Ag1, S2 and C8 are almost coplanar. The two terminal aniline groups of the ligand are oriented in opposite directions relative to the chelate plane and are almost perpendicular to this plane, with dihedral angles of 82.3 (3) and 83.6 (4)°. These two planes are almost parallel to each other, with a dihedral angle of 14.5 (2)°, and the angles between them and the central o-phenylene linker are 23.1 (3) and 9.4 (2)°.

The coordination of the Ag atom to donors from three different ligands results in the assembly of an intriguing extended polymeric structure, which consists of a complex system of interconnected rings, as shown in Fig. 2. In addition, a ten-membered centrosymmetric dinuclear ring is formed by two Ag atoms linking with two N—C—C—S bridges, with an Ag···Ag interatomic distance of 4.945 (4) Å.

Experimental top

The ligand was prepared by the literature method (McAuliffe et al., 1978; Pal et al., 1994), by the reaction of o-aminobenzenethiol and 1,2-dibromomethylbenzene (yield 58%; m.p. 371–373 K). Spectroscopic analysis: 1H NMR (CDCl3, δ, p.p.m.): 3.98 (SCH2–, 4H, s), 4.13 (NH2–, 4H, s), 6.62–6.72 (C—C6H4—C, 4H, m), 6.99–7.19 (N—C6H4—S, 8H, m). For the preparation of (I), a solution of AgNO3 (90 mg, 0.5 mmol) in methanol (10 ml) was carefully layered on a solution of L (140 mg, 0.5 mmol) in chloroform (10 ml), and the mixture was kept in darkness. Colourless single crystals of (I) suitable for X-ray analysis were obtained after about two weeks in 48% yield. Analysis calculated for (I): C 39.27, H 3.27, N 6.54%; found: C 38.95, H 3.32, N 6.33%. Spectroscopic analysis: IR (KBr pellet, ν, cm−1): 3447 (w), 3373 (m), 3270 (m), 3157 (w), 3064 (w), 2976 (w), 1606 (s), 1570 (m), 1479 (versus), 1447 (s), 1385 (versus), 1355 (versus), 1315 (s), 1233 (s), 1161 (m), 1044 (m), 1002 (m), 913 (m), 815 (m), 745 (versus), 692 (m).

Refinement top

H atoms were placed in geometric positions and refined using a riding model, with N—H distances of 0.90 Å and C—H distances in the range 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(C,N). Please check added text and correct as necessary.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the title complex, with 30% probability displacement ellipsoids. [Symmetry codes: (A) 1 − x, 1 − y, 2 − z; (B) 1 − x, 2 − y, 2 − z.]
[Figure 2] Fig. 2. A view of the chain of (I) with all H atoms omitted. [Symmetry codes: (A) 1 − x, −1 − y, 1 − z; (B) 1 − x, −y, 1 − z; (C) x, 1 + y, 1 + z; (D) 1 − x, 1 − y, 1 − z; (E) x, 2 + y, 1 + z.]
catena-Poly[[silver(I)-µ3-2,2'-[o-phenylenebis(methylenethio)]dianiline- κ4N:S,S':N'] nitrate chloroform solvate] top
Crystal data top
[Ag(C20H20N2S2)](NO3)·CHCl3Z = 2
Mr = 641.75F(000) = 644
Triclinic, P1Dx = 1.761 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.441 (6) ÅCell parameters from 865 reflections
b = 9.805 (6) Åθ = 2.3–24.6°
c = 13.936 (9) ŵ = 1.37 mm1
α = 102.385 (11)°T = 293 K
β = 98.580 (12)°Block, colourless
γ = 101.351 (11)°0.30 × 0.25 × 0.20 mm
V = 1210.4 (13) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4269 independent reflections
Radiation source: fine-focus sealed tube2561 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: empirical (using intensity measurements)
via multi-scan [SADABS (Sheldrick, 1996; Blessing, 1995)]
h = 711
Tmin = 0.685, Tmax = 0.772k = 1111
5074 measured reflectionsl = 1614
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.053 w = 1/[σ2(Fo2) + (0.0802P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.152(Δ/σ)max = 0.001
S = 0.96Δρmax = 1.20 e Å3
4269 reflectionsΔρmin = 0.65 e Å3
298 parameters
Crystal data top
[Ag(C20H20N2S2)](NO3)·CHCl3γ = 101.351 (11)°
Mr = 641.75V = 1210.4 (13) Å3
Triclinic, P1Z = 2
a = 9.441 (6) ÅMo Kα radiation
b = 9.805 (6) ŵ = 1.37 mm1
c = 13.936 (9) ÅT = 293 K
α = 102.385 (11)°0.30 × 0.25 × 0.20 mm
β = 98.580 (12)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4269 independent reflections
Absorption correction: empirical (using intensity measurements)
via multi-scan [SADABS (Sheldrick, 1996; Blessing, 1995)]
2561 reflections with I > 2σ(I)
Tmin = 0.685, Tmax = 0.772Rint = 0.033
5074 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 0.96Δρmax = 1.20 e Å3
4269 reflectionsΔρmin = 0.65 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.50351 (6)0.74897 (6)0.98894 (4)0.0400 (2)
S10.6038 (2)0.53961 (19)0.90899 (14)0.0325 (5)
S20.66958 (18)0.97716 (19)0.97168 (13)0.0306 (4)
N10.5194 (7)0.2206 (6)0.8363 (4)0.0386 (15)
H1C0.61550.25010.83510.046*
H1D0.49170.12600.80630.046*
N20.7575 (6)1.2978 (6)1.0613 (5)0.0348 (15)
H2A0.79631.28291.00590.042*
H2B0.79161.39121.09370.042*
C10.7513 (7)0.5961 (8)0.8443 (6)0.0353 (18)
H1A0.83860.65040.89400.042*
H1B0.77510.51120.80660.042*
C20.7141 (7)0.6850 (7)0.7750 (6)0.0333 (18)
C30.6581 (8)0.6177 (9)0.6744 (6)0.042 (2)
H3A0.64690.51900.65250.051*
C40.6194 (10)0.6917 (9)0.6078 (6)0.059 (3)
H4A0.57800.64340.54140.071*
C50.6407 (10)0.8371 (9)0.6375 (7)0.057 (2)
H5A0.61470.88850.59150.068*
C60.7005 (8)0.9068 (8)0.7353 (6)0.043 (2)
H6A0.71381.00600.75560.051*
C70.7410 (7)0.8342 (7)0.8036 (5)0.0295 (17)
C80.8091 (7)0.9186 (7)0.9087 (5)0.0330 (17)
H8A0.88401.00150.90800.040*
H8B0.85600.85950.94460.040*
C90.4635 (8)0.4397 (8)0.8059 (5)0.0336 (17)
C100.3802 (8)0.5079 (9)0.7502 (6)0.042 (2)
H10A0.39440.60730.76960.050*
C110.2772 (9)0.4300 (10)0.6669 (6)0.051 (2)
H11A0.22040.47560.62990.061*
C120.2587 (9)0.2847 (11)0.6388 (6)0.055 (2)
H12A0.19110.23190.58080.067*
C130.3370 (8)0.2152 (9)0.6936 (6)0.044 (2)
H13A0.32070.11560.67380.053*
C140.4400 (7)0.2914 (7)0.7782 (5)0.0304 (17)
C150.7762 (7)1.0669 (7)1.0934 (5)0.0293 (16)
C160.8256 (8)0.9879 (8)1.1560 (6)0.0388 (19)
H16A0.80310.88811.13470.047*
C170.9074 (9)1.0555 (10)1.2492 (6)0.049 (2)
H17A0.94171.00211.29130.059*
C180.9390 (9)1.2018 (10)1.2805 (6)0.052 (2)
H18A0.99401.24791.34450.063*
C190.8902 (8)1.2811 (8)1.2185 (6)0.0396 (19)
H19A0.91211.38071.24110.048*
C200.8092 (7)1.2156 (7)1.1231 (5)0.0312 (17)
C210.8248 (9)0.2444 (8)0.5954 (6)0.045 (2)
H21A0.88030.26760.66440.054*
Cl10.6404 (3)0.2104 (3)0.5995 (2)0.0704 (7)
Cl20.8785 (3)0.3900 (3)0.5468 (2)0.0810 (8)
Cl30.8698 (3)0.0933 (3)0.5284 (2)0.0779 (8)
N30.0262 (8)0.6789 (8)0.1288 (6)0.0490 (18)
O10.0375 (10)0.6207 (10)0.1811 (7)0.124 (4)
O20.0298 (12)0.6992 (13)0.0539 (7)0.155 (5)
O30.1554 (7)0.7287 (7)0.1542 (6)0.083 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0382 (4)0.0380 (4)0.0417 (4)0.0040 (2)0.0109 (3)0.0083 (3)
S10.0386 (11)0.0259 (10)0.0326 (11)0.0045 (8)0.0074 (8)0.0092 (8)
S20.0294 (10)0.0270 (10)0.0318 (11)0.0024 (7)0.0071 (8)0.0032 (8)
N10.048 (4)0.026 (3)0.040 (4)0.004 (3)0.011 (3)0.006 (3)
N20.032 (3)0.021 (3)0.049 (4)0.001 (3)0.013 (3)0.007 (3)
C10.028 (4)0.033 (4)0.048 (5)0.006 (3)0.014 (3)0.013 (4)
C20.028 (4)0.032 (4)0.040 (5)0.004 (3)0.015 (3)0.007 (4)
C30.046 (5)0.037 (5)0.039 (5)0.001 (4)0.015 (4)0.004 (4)
C40.084 (7)0.053 (6)0.031 (5)0.006 (5)0.012 (4)0.011 (4)
C50.076 (7)0.049 (6)0.050 (6)0.010 (5)0.010 (5)0.026 (5)
C60.060 (5)0.034 (5)0.031 (5)0.007 (4)0.008 (4)0.007 (4)
C70.023 (4)0.033 (4)0.029 (4)0.003 (3)0.007 (3)0.004 (3)
C80.035 (4)0.031 (4)0.029 (4)0.006 (3)0.007 (3)0.001 (3)
C90.039 (4)0.038 (5)0.024 (4)0.006 (3)0.009 (3)0.009 (3)
C100.041 (5)0.047 (5)0.042 (5)0.018 (4)0.011 (4)0.011 (4)
C110.042 (5)0.075 (7)0.036 (5)0.019 (5)0.003 (4)0.015 (5)
C120.043 (5)0.080 (7)0.031 (5)0.004 (5)0.001 (4)0.011 (5)
C130.036 (5)0.043 (5)0.042 (5)0.006 (4)0.010 (4)0.001 (4)
C140.036 (4)0.029 (4)0.029 (4)0.004 (3)0.013 (3)0.011 (3)
C150.026 (4)0.033 (4)0.028 (4)0.004 (3)0.010 (3)0.006 (3)
C160.035 (4)0.041 (5)0.045 (5)0.008 (3)0.013 (4)0.017 (4)
C170.045 (5)0.063 (6)0.048 (6)0.016 (4)0.010 (4)0.028 (5)
C180.042 (5)0.070 (7)0.035 (5)0.003 (4)0.006 (4)0.007 (5)
C190.036 (4)0.044 (5)0.034 (5)0.004 (4)0.010 (3)0.002 (4)
C200.021 (4)0.031 (4)0.040 (5)0.001 (3)0.009 (3)0.009 (4)
C210.049 (5)0.050 (5)0.039 (5)0.017 (4)0.015 (4)0.010 (4)
Cl10.0543 (15)0.0685 (16)0.099 (2)0.0174 (12)0.0291 (13)0.0303 (15)
Cl20.0844 (19)0.0671 (17)0.107 (2)0.0160 (14)0.0377 (16)0.0445 (16)
Cl30.0744 (18)0.0579 (15)0.098 (2)0.0210 (13)0.0300 (15)0.0011 (15)
N30.046 (5)0.061 (5)0.039 (5)0.010 (4)0.010 (4)0.011 (4)
O10.136 (8)0.115 (7)0.110 (7)0.033 (6)0.074 (6)0.028 (6)
O20.169 (10)0.259 (14)0.062 (6)0.107 (9)0.002 (6)0.055 (7)
O30.043 (4)0.065 (4)0.123 (6)0.001 (3)0.019 (4)0.005 (4)
Geometric parameters (Å, º) top
Ag1—N2i2.383 (6)C8—H8A0.9700
Ag1—N1ii2.436 (6)C8—H8B0.9700
Ag1—S12.540 (2)C9—C101.384 (10)
Ag1—S22.546 (2)C9—C141.386 (10)
S1—C91.759 (7)C10—C111.367 (11)
S1—C11.829 (7)C10—H10A0.9300
S2—C151.779 (7)C11—C121.363 (12)
S2—C81.806 (7)C11—H11A0.9300
N1—C141.402 (9)C12—C131.359 (12)
N1—Ag1ii2.436 (6)C12—H12A0.9300
N1—H1C0.9000C13—C141.374 (10)
N1—H1D0.9000C13—H13A0.9300
N2—C201.398 (9)C15—C161.375 (10)
N2—Ag1i2.383 (6)C15—C201.385 (9)
N2—H2A0.9000C16—C171.361 (11)
N2—H2B0.9000C16—H16A0.9300
C1—C21.482 (10)C17—C181.364 (12)
C1—H1A0.9700C17—H17A0.9300
C1—H1B0.9700C18—C191.369 (11)
C2—C31.387 (10)C18—H18A0.9300
C2—C71.391 (10)C19—C201.379 (10)
C3—C41.347 (11)C19—H19A0.9300
C3—H3A0.9300C21—Cl11.718 (8)
C4—C51.361 (12)C21—Cl21.728 (9)
C4—H4A0.9300C21—Cl31.738 (8)
C5—C61.364 (11)C21—H21A0.9800
C5—H5A0.9300N3—O21.172 (10)
C6—C71.360 (10)N3—O11.180 (9)
C6—H6A0.9300N3—O31.189 (8)
C7—C81.495 (9)
N2i—Ag1—N1ii90.3 (2)S2—C8—H8A109.7
N2i—Ag1—S1111.83 (14)C7—C8—H8B109.7
N1ii—Ag1—S1118.04 (15)S2—C8—H8B109.7
N2i—Ag1—S2120.79 (15)H8A—C8—H8B108.2
N1ii—Ag1—S2108.66 (15)C10—C9—C14119.8 (7)
S1—Ag1—S2107.09 (8)C10—C9—S1120.7 (6)
C9—S1—C1100.3 (3)C14—C9—S1119.5 (6)
C9—S1—Ag1104.5 (2)C11—C10—C9120.3 (8)
C1—S1—Ag1112.0 (2)C11—C10—H10A119.8
C15—S2—C8100.9 (3)C9—C10—H10A119.8
C15—S2—Ag1106.6 (2)C12—C11—C10119.2 (8)
C8—S2—Ag1105.6 (2)C12—C11—H11A120.4
C14—N1—Ag1ii117.9 (4)C10—C11—H11A120.4
C14—N1—H1C107.8C13—C12—C11121.4 (8)
Ag1ii—N1—H1C107.8C13—C12—H12A119.3
C14—N1—H1D107.8C11—C12—H12A119.3
Ag1ii—N1—H1D107.8C12—C13—C14120.3 (8)
H1C—N1—H1D107.2C12—C13—H13A119.9
C20—N2—Ag1i115.8 (4)C14—C13—H13A119.9
C20—N2—H2A108.3C13—C14—C9119.0 (7)
Ag1i—N2—H2A108.3C13—C14—N1120.8 (7)
C20—N2—H2B108.3C9—C14—N1120.3 (6)
Ag1i—N2—H2B108.3C16—C15—C20121.1 (7)
H2A—N2—H2B107.4C16—C15—S2119.6 (5)
C2—C1—S1114.0 (5)C20—C15—S2119.4 (6)
C2—C1—H1A108.8C17—C16—C15120.1 (7)
S1—C1—H1A108.8C17—C16—H16A120.0
C2—C1—H1B108.8C15—C16—H16A120.0
S1—C1—H1B108.8C16—C17—C18119.8 (8)
H1A—C1—H1B107.7C16—C17—H17A120.1
C3—C2—C7117.6 (7)C18—C17—H17A120.1
C3—C2—C1118.6 (7)C17—C18—C19120.5 (8)
C7—C2—C1123.7 (7)C17—C18—H18A119.8
C4—C3—C2121.7 (8)C19—C18—H18A119.8
C4—C3—H3A119.2C18—C19—C20121.0 (8)
C2—C3—H3A119.2C18—C19—H19A119.5
C3—C4—C5120.1 (8)C20—C19—H19A119.5
C3—C4—H4A119.9C19—C20—C15117.6 (7)
C5—C4—H4A119.9C19—C20—N2120.4 (7)
C4—C5—C6119.5 (8)C15—C20—N2121.9 (6)
C4—C5—H5A120.3Cl1—C21—Cl2112.2 (5)
C6—C5—H5A120.3Cl1—C21—Cl3111.1 (5)
C7—C6—C5121.4 (7)Cl2—C21—Cl3110.5 (4)
C7—C6—H6A119.3Cl1—C21—H21A107.6
C5—C6—H6A119.3Cl2—C21—H21A107.6
C6—C7—C2119.6 (7)Cl3—C21—H21A107.6
C6—C7—C8118.2 (6)O2—N3—O1124.7 (11)
C2—C7—C8122.2 (7)O2—N3—O3115.6 (10)
C7—C8—S2110.0 (5)O1—N3—O3119.6 (9)
C7—C8—H8A109.7
N2i—Ag1—S1—C919.0 (3)C1—S1—C9—C1498.1 (6)
N1ii—Ag1—S1—C9121.7 (3)Ag1—S1—C9—C14145.8 (5)
S2—Ag1—S1—C9115.4 (3)C14—C9—C10—C111.4 (11)
N2i—Ag1—S1—C1126.7 (3)S1—C9—C10—C11176.3 (6)
N1ii—Ag1—S1—C1130.6 (3)C9—C10—C11—C120.7 (12)
S2—Ag1—S1—C17.7 (3)C10—C11—C12—C132.2 (13)
N2i—Ag1—S2—C15123.1 (3)C11—C12—C13—C141.6 (13)
N1ii—Ag1—S2—C1521.2 (3)C12—C13—C14—C90.6 (11)
S1—Ag1—S2—C15107.4 (2)C12—C13—C14—N1178.8 (7)
N2i—Ag1—S2—C8130.1 (3)C10—C9—C14—C132.0 (11)
N1ii—Ag1—S2—C8127.9 (3)S1—C9—C14—C13175.7 (5)
S1—Ag1—S2—C80.6 (2)C10—C9—C14—N1177.4 (6)
C9—S1—C1—C260.7 (6)S1—C9—C14—N15.0 (9)
Ag1—S1—C1—C249.7 (6)Ag1ii—N1—C14—C13120.1 (6)
S1—C1—C2—C394.6 (7)Ag1ii—N1—C14—C959.3 (8)
S1—C1—C2—C789.6 (7)C8—S2—C15—C1672.7 (6)
C7—C2—C3—C45.3 (11)Ag1—S2—C15—C1637.3 (6)
C1—C2—C3—C4178.7 (7)C8—S2—C15—C20106.7 (6)
C2—C3—C4—C52.8 (13)Ag1—S2—C15—C20143.2 (5)
C3—C4—C5—C60.5 (14)C20—C15—C16—C170.5 (11)
C4—C5—C6—C70.8 (13)S2—C15—C16—C17179.9 (6)
C5—C6—C7—C23.4 (11)C15—C16—C17—C180.6 (12)
C5—C6—C7—C8178.5 (7)C16—C17—C18—C190.7 (12)
C3—C2—C7—C65.5 (10)C17—C18—C19—C200.4 (12)
C1—C2—C7—C6178.7 (7)C18—C19—C20—C151.4 (11)
C3—C2—C7—C8176.5 (6)C18—C19—C20—N2178.7 (7)
C1—C2—C7—C80.7 (10)C16—C15—C20—C191.5 (10)
C6—C7—C8—S274.4 (7)S2—C15—C20—C19179.1 (5)
C2—C7—C8—S2103.6 (7)C16—C15—C20—N2178.7 (6)
C15—S2—C8—C7178.0 (5)S2—C15—C20—N21.9 (9)
Ag1—S2—C8—C767.1 (5)Ag1i—N2—C20—C19118.3 (6)
C1—S1—C9—C1079.6 (6)Ag1i—N2—C20—C1558.8 (8)
Ag1—S1—C9—C1036.5 (6)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···S10.902.832.977 (6)90
N2—H2A···S20.902.913.018 (6)88
N1—H1C···O3iii0.902.112.990 (9)165
C21—H21A···O1iii0.982.333.287 (13)165
C21—H21A···O3iii0.982.593.416 (12)142
N2—H2A···O3iv0.902.333.203 (10)164
N2—H2A···O2iv0.902.463.227 (12)144
N2—H2B···O1v0.902.443.303 (10)161
C1—H1A···O2vi0.972.293.152 (12)148
Symmetry codes: (iii) x+1, y+1, z+1; (iv) x+1, y+2, z+1; (v) x+1, y+1, z+1; (vi) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Ag(C20H20N2S2)](NO3)·CHCl3
Mr641.75
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.441 (6), 9.805 (6), 13.936 (9)
α, β, γ (°)102.385 (11), 98.580 (12), 101.351 (11)
V3)1210.4 (13)
Z2
Radiation typeMo Kα
µ (mm1)1.37
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
via multi-scan [SADABS (Sheldrick, 1996; Blessing, 1995)]
Tmin, Tmax0.685, 0.772
No. of measured, independent and
observed [I > 2σ(I)] reflections
5074, 4269, 2561
Rint0.033
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.152, 0.96
No. of reflections4269
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.20, 0.65

Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···S10.902.832.977 (6)90
N2—H2A···S20.902.913.018 (6)88
N1—H1C···O3i0.902.112.990 (9)165
C21—H21A···O1i0.982.333.287 (13)165
C21—H21A···O3i0.982.593.416 (12)142
N2—H2A···O3ii0.902.333.203 (10)164
N2—H2A···O2ii0.902.463.227 (12)144
N2—H2B···O1iii0.902.443.303 (10)161
C1—H1A···O2iv0.972.293.152 (12)148
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds