Download citation
Download citation
link to html
The title compound, (C6H14N2)[Cr3O10], consists of a di­aza­bi­cyclo­[2.2.2]­octane-1,4-diium cation and a discrete trichromate anion linked by an N—H...O hydrogen bond. Three CrO4 tetrahedra are joined via shared O atoms to form the trichromate anion. Supramolecular rings, which can be described by the graph-set motif R_4^4(26), are built via N—H...O hydrogen bonds, and C—H...O interactions play lesser roles in forming the structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104004007/na1645sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104004007/na1645Isup2.hkl
Contains datablock I

CCDC reference: 226806

Comment top

Many cases of chromates and dichromates have been deposited, as well as a few cases of trichromates, and sporadic cases of tetrachromates and polychromates (Pressprich et al., 1988). It is almost impossible to predict the real form of these chromium compounds prior to experimental investigation. We report here the synthesis and structure determination of the title salt, (I), and compare its structure is compared with that of other trichromates.

Fig. 1 shows the asymmetric unit of (I), consisting of a diazabicyclo[2.2.2]octane-1,4-diium (DABCO-diium) cation and a discrete trichromate anion that are linked by an N1—H1···O10 hydrogen bond (Table 2). The trichromate anion is composed of three CrO4 tetrahedra, joined via shared O atoms. The Cr—Ot (terminal O atom) bond lengths are shorter than the Cr—Ob (bridging O atom) bonds, the mean lengths being 1.599 (5) and 1.77 (3) Å, respectively, with a strong dispersion around these mean values. The Cr—Ot distances range from 1.581 (2) to 1.618 (2) Å, and the Cr—Ob distances range from 1.702 (2) to 1.837 (2) Å (Table 1). The O—Cr—O angles range from 106.17 (13) to 111.71 (12)°, and thus deviate from the ideal value (109.5°). The Cr—O range of the inner tetrahedron of Cr2 is comparable to that of the terminal tetrahedra. Owing to the obvious difference between the magnitude of the Cr—Ob and Cr—Ot distances, as well the great disparity between the values of the O—Cr—O angles, the coordination geometries formed by the four O atoms round the Cr atom are distorted tetrahedra. These results are in good agreement with those for Rb2Cr3O10 (Blum, 1979a), (NH4)2Cr3O10 (Blum, 1979b; Blum & Guitel, 1980), K2Cr3O10 (Blum et al., 1979), dipyrazinium trichromate (Pressprich et al., 1988), tetramethylammonium trichromate (Fossε et al., 2001) and α-Cs2Cr3O10 (Kolitsch, 2003). The title compound exhibits a wide range of Cr—O—Cr angles [127.34 (12) and 132.80 (12)°, Table 1], which is different from guanidinium trichromates [132.7 (11); Stepień & Grabowski, 1977], α-Cs2Cr3O10 [136.58 (11) and 140.30 (12)°, Kolitsch, 2003], Rb2Cr3O10 [136.0 (4) and 140.0 (4)°; Löfgren, 1974] and dipyrazinium trichromate [137.3 (1) and 137.5 (2)°; Pressprich et al., 1988].

In (I), supramolecular rings, which can be described in graph-set notation as R44(26), are formed via N1—H1···O10 and N2—H2···O2i hydrogen bonds. In addition, the rings are stablized by a number of C—H···O interactions, thus establishing a network structure.

The DABCO-diium is distorted, as indicated by the N—C—C—N torsion angles, with a mean value of 13.3 (3) Å. DABCO has been observed to be disordered across the N—N axis in several cases, such as DABCO–biphenol (1:1) (Ferguson et al., 1998), DABCO–perchloride acid (1:1) (Katrusiak, 2000) and DABCO–maleic acid (1:2) (Sun & Jin, 2002). In (I), DABCO is ordered, owing to the confinement of the C—H···O interactions.

Experimental top

CrO3 (0.3 mol) and DABCO (0.1 mol) were dissolved separately in water (1.2 and 0.9 mol), and the two solutions were then mixed with cautious stirring. Crystals of the title salt were formed in the final solution by slow evaporation of water at 293 K for one week.

Refinement top

The H atoms of NH groups were located in difference Fourier maps and refined freely. All remaining H atoms were placed in calculated positions and allowed to ride on their parent atoms at distances of 0.97 Å, with Uiso values equal to 1.2Ueq of the parent atoms.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 40% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen bonds are indicated by dotted lines.
[Figure 2] Fig. 2. Supramolecular R44(26) rings of (I), formed via N—H···O hydrogen bonds, which are indicated by dotted lines.
Diazabicyclo[2.2.2]octane-1,4-diium Trichromate top
Crystal data top
C6H14N2·Cr3O10Z = 2
Mr = 430.19F(000) = 432.0
Triclinic, p1Dx = 2.073 Mg m3
Hall symbol: -P1Mo Kα radiation, λ = 0.71073 Å
a = 7.4895 (6) ÅCell parameters from 346 reflections
b = 9.7648 (8) Åθ = 2.4–23.0°
c = 10.1427 (8) ŵ = 2.37 mm1
α = 87.661 (1)°T = 273 K
β = 69.497 (1)°Block, colorless
γ = 82.771 (1)°0.59 × 0.58 × 0.52 mm
V = 689.26 (10) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2459 independent reflections
Radiation source: fine-focus sealed tube2336 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
ϕ and ω scansθmax = 25.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 88
Tmin = 0.023, Tmax = 0.026k = 1111
5021 measured reflectionsl = 1211
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0519P)2 + 0.4865P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2433 reflectionsΔρmax = 0.42 e Å3
199 parametersΔρmin = 0.52 e Å3
2 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.186 (6)
Crystal data top
C6H14N2·Cr3O10γ = 82.771 (1)°
Mr = 430.19V = 689.26 (10) Å3
Triclinic, p1Z = 2
a = 7.4895 (6) ÅMo Kα radiation
b = 9.7648 (8) ŵ = 2.37 mm1
c = 10.1427 (8) ÅT = 273 K
α = 87.661 (1)°0.59 × 0.58 × 0.52 mm
β = 69.497 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2459 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2336 reflections with I > 2σ(I)
Tmin = 0.023, Tmax = 0.026Rint = 0.013
5021 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0292 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.42 e Å3
2433 reflectionsΔρmin = 0.52 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr20.02080 (5)0.45643 (4)0.21561 (4)0.02838 (17)
Cr30.30300 (6)0.30658 (4)0.37196 (4)0.02964 (17)
Cr10.07210 (6)0.16487 (4)0.14729 (5)0.03309 (18)
O80.4507 (3)0.2710 (2)0.2171 (2)0.0409 (5)
O100.3985 (3)0.3938 (2)0.4566 (2)0.0465 (5)
O90.2345 (4)0.1677 (2)0.4531 (2)0.0532 (6)
O70.0963 (3)0.4152 (2)0.3556 (2)0.0441 (5)
O50.2028 (3)0.4531 (2)0.0762 (2)0.0482 (5)
O60.0865 (3)0.6099 (2)0.2405 (3)0.0506 (6)
O40.1324 (3)0.3461 (2)0.2050 (2)0.0460 (5)
O20.1546 (3)0.1210 (2)0.1131 (3)0.0479 (5)
O10.1305 (4)0.1478 (3)0.0133 (3)0.0659 (8)
O30.1940 (4)0.0766 (3)0.2766 (3)0.0676 (7)
N10.5373 (3)0.2812 (2)0.6585 (2)0.0344 (5)
N20.6741 (3)0.1367 (2)0.8140 (2)0.0327 (5)
C10.7511 (5)0.2565 (4)0.5888 (3)0.0498 (8)
H1A0.80640.34210.58390.060*
H1B0.78390.22240.49370.060*
C20.8298 (4)0.1506 (3)0.6751 (3)0.0429 (7)
H2A0.86910.06240.62650.052*
H2B0.94060.18080.68890.052*
C30.4566 (5)0.1482 (3)0.6822 (4)0.0530 (8)
H3A0.50340.09520.59540.064*
H3B0.31770.16450.71230.064*
C40.5166 (4)0.0682 (3)0.7948 (3)0.0433 (7)
H4A0.40840.06940.88240.052*
H4B0.56200.02710.76550.052*
C50.4894 (4)0.3539 (3)0.7944 (3)0.0396 (6)
H5A0.35210.36120.84500.047*
H5B0.52660.44650.77740.047*
C60.5944 (4)0.2746 (3)0.8806 (3)0.0407 (6)
H6A0.69740.32380.88410.049*
H6B0.50710.26390.97610.049*
H20.729 (5)0.084 (3)0.859 (4)0.059 (11)*
H10.488 (5)0.331 (3)0.605 (3)0.055 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr20.0280 (3)0.0257 (3)0.0330 (3)0.00169 (16)0.01383 (18)0.00392 (16)
Cr30.0341 (3)0.0318 (3)0.0264 (3)0.00484 (17)0.01470 (18)0.00289 (16)
Cr10.0396 (3)0.0279 (3)0.0419 (3)0.00318 (18)0.0270 (2)0.00128 (18)
O80.0382 (10)0.0496 (12)0.0319 (10)0.0023 (8)0.0110 (8)0.0011 (8)
O100.0633 (14)0.0465 (12)0.0461 (12)0.0121 (10)0.0381 (11)0.0048 (9)
O90.0691 (15)0.0414 (12)0.0462 (12)0.0177 (11)0.0135 (11)0.0101 (9)
O70.0379 (10)0.0627 (13)0.0324 (10)0.0092 (9)0.0172 (8)0.0093 (9)
O50.0476 (12)0.0506 (12)0.0381 (11)0.0018 (10)0.0061 (9)0.0027 (9)
O60.0487 (12)0.0316 (11)0.0732 (15)0.0076 (9)0.0264 (11)0.0098 (10)
O40.0385 (11)0.0357 (10)0.0696 (14)0.0026 (8)0.0253 (10)0.0136 (10)
O20.0427 (11)0.0385 (11)0.0698 (14)0.0019 (9)0.0304 (11)0.0031 (10)
O10.0914 (19)0.0553 (14)0.0744 (17)0.0237 (13)0.0663 (16)0.0234 (12)
O30.0698 (17)0.0544 (15)0.0797 (18)0.0210 (13)0.0249 (14)0.0210 (13)
N10.0446 (13)0.0348 (12)0.0302 (11)0.0027 (10)0.0236 (10)0.0025 (9)
N20.0304 (11)0.0351 (12)0.0337 (12)0.0006 (9)0.0150 (9)0.0106 (9)
C10.0532 (18)0.0574 (19)0.0279 (14)0.0007 (15)0.0032 (13)0.0055 (13)
C20.0280 (13)0.0492 (16)0.0436 (16)0.0005 (12)0.0047 (12)0.0037 (13)
C30.059 (2)0.0399 (16)0.081 (2)0.0100 (14)0.0497 (19)0.0023 (15)
C40.0385 (15)0.0292 (14)0.0624 (19)0.0104 (11)0.0164 (14)0.0085 (12)
C50.0524 (17)0.0315 (13)0.0360 (14)0.0056 (12)0.0197 (13)0.0068 (11)
C60.0510 (17)0.0446 (16)0.0307 (14)0.0011 (13)0.0204 (12)0.0055 (11)
Geometric parameters (Å, º) top
Cr2—O51.581 (2)N2—C41.500 (4)
Cr2—O61.594 (2)N2—H20.836 (19)
Cr2—O41.702 (2)C1—C21.523 (4)
Cr2—O71.7195 (19)C1—H1A0.9700
Cr3—O81.5947 (19)C1—H1B0.9700
Cr3—O91.602 (2)C2—H2A0.9700
Cr3—O101.618 (2)C2—H2B0.9700
Cr3—O71.817 (2)C3—C41.521 (4)
Cr1—O11.587 (2)C3—H3A0.9700
Cr1—O31.601 (3)C3—H3B0.9700
Cr1—O21.614 (2)C4—H4A0.9700
Cr1—O41.837 (2)C4—H4B0.9700
N1—C31.477 (4)C5—C61.502 (4)
N1—C51.484 (3)C5—H5A0.9700
N1—C11.499 (4)C5—H5B0.9700
N1—H10.862 (18)C6—H6A0.9700
N2—C61.488 (4)C6—H6B0.9700
N2—C21.495 (3)
O5—Cr2—O6108.74 (12)C2—C1—H1A110.1
O5—Cr2—O4111.28 (12)N1—C1—H1B110.1
O6—Cr2—O4109.73 (11)C2—C1—H1B110.1
O5—Cr2—O7108.80 (11)H1A—C1—H1B108.4
O6—Cr2—O7107.38 (11)N2—C2—C1107.8 (2)
O4—Cr2—O7110.80 (11)N2—C2—H2A110.1
O8—Cr3—O9110.10 (12)C1—C2—H2A110.1
O8—Cr3—O10110.28 (11)N2—C2—H2B110.1
O9—Cr3—O10111.71 (12)C1—C2—H2B110.1
O8—Cr3—O7107.76 (10)H2A—C2—H2B108.5
O9—Cr3—O7109.18 (12)N1—C3—C4109.0 (2)
O10—Cr3—O7107.69 (11)N1—C3—H3A109.9
O1—Cr1—O3110.76 (16)C4—C3—H3A109.9
O1—Cr1—O2111.56 (14)N1—C3—H3B109.9
O3—Cr1—O2110.19 (13)C4—C3—H3B109.9
O1—Cr1—O4109.14 (11)H3A—C3—H3B108.3
O3—Cr1—O4106.17 (13)N2—C4—C3107.3 (2)
O2—Cr1—O4108.85 (10)N2—C4—H4A110.2
Cr2—O7—Cr3132.80 (12)C3—C4—H4A110.2
Cr2—O4—Cr1127.34 (12)N2—C4—H4B110.2
C3—N1—C5110.2 (2)C3—C4—H4B110.2
C3—N1—C1109.8 (2)H4A—C4—H4B108.5
C5—N1—C1109.4 (2)N1—C5—C6109.1 (2)
C3—N1—H1108 (2)N1—C5—H5A109.9
C5—N1—H1110 (2)C6—C5—H5A109.9
C1—N1—H1110 (2)N1—C5—H5B109.9
C6—N2—C2110.5 (2)C6—C5—H5B109.9
C6—N2—C4109.5 (2)H5A—C5—H5B108.3
C2—N2—C4110.1 (2)N2—C6—C5108.3 (2)
C6—N2—H2114 (3)N2—C6—H6A110.0
C2—N2—H2103 (3)C5—C6—H6A110.0
C4—N2—H2109 (3)N2—C6—H6B110.0
N1—C1—C2108.2 (2)C5—C6—H6B110.0
N1—C1—H1A110.1H6A—C6—H6B108.4
O5—Cr2—O7—Cr330.2 (2)C6—N2—C2—C152.0 (3)
O6—Cr2—O7—Cr3147.73 (18)C4—N2—C2—C169.1 (3)
O4—Cr2—O7—Cr392.44 (19)N1—C1—C2—N213.7 (3)
O8—Cr3—O7—Cr212.7 (2)C5—N1—C3—C451.4 (3)
O9—Cr3—O7—Cr2106.89 (19)C1—N1—C3—C469.2 (3)
O10—Cr3—O7—Cr2131.63 (18)C6—N2—C4—C369.0 (3)
O5—Cr2—O4—Cr148.2 (2)C2—N2—C4—C352.8 (3)
O6—Cr2—O4—Cr1168.56 (16)N1—C3—C4—N213.9 (4)
O7—Cr2—O4—Cr173.03 (18)C3—N1—C5—C667.6 (3)
O1—Cr1—O4—Cr2119.43 (19)C1—N1—C5—C653.2 (3)
O3—Cr1—O4—Cr2121.14 (18)C2—N2—C6—C568.0 (3)
O2—Cr1—O4—Cr22.5 (2)C4—N2—C6—C553.5 (3)
C3—N1—C1—C252.4 (3)N1—C5—C6—N212.3 (3)
C5—N1—C1—C268.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O100.86 (4)1.90 (4)2.738 (4)164 (3)
N2—H2···O2i0.84 (4)2.13 (3)2.868 (3)147 (3)
N2—H2···O1ii0.84 (4)2.31 (4)2.893 (4)127 (3)
C6—H6A···O5iii0.972.483.339 (4)147
C6—H6B···O8iv0.972.333.199 (3)148
C4—H4B···O9i0.972.553.348 (3)140
C4—H4B···O8i0.972.393.294 (4)154
C4—H4A···O2iv0.972.473.419 (3)168
C5—H5A···O6v0.972.423.135 (4)131
C5—H5A···O5iv0.972.373.020 (3)124
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z+1; (iii) x+1, y+1, z+1; (iv) x, y, z+1; (v) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC6H14N2·Cr3O10
Mr430.19
Crystal system, space groupTriclinic, p1
Temperature (K)273
a, b, c (Å)7.4895 (6), 9.7648 (8), 10.1427 (8)
α, β, γ (°)87.661 (1), 69.497 (1), 82.771 (1)
V3)689.26 (10)
Z2
Radiation typeMo Kα
µ (mm1)2.37
Crystal size (mm)0.59 × 0.58 × 0.52
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.023, 0.026
No. of measured, independent and
observed [I > 2σ(I)] reflections
5021, 2459, 2336
Rint0.013
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.085, 1.07
No. of reflections2433
No. of parameters199
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.52

Computer programs: SMART (Bruker, 2000), SMART, SAINT (Bruker, 2000), SHELXTL (Bruker, 2000), SHELXTL.

Selected geometric parameters (Å, º) top
Cr2—O51.581 (2)Cr3—O101.618 (2)
Cr2—O61.594 (2)Cr3—O71.817 (2)
Cr2—O41.702 (2)Cr1—O11.587 (2)
Cr2—O71.7195 (19)Cr1—O31.601 (3)
Cr3—O81.5947 (19)Cr1—O21.614 (2)
Cr3—O91.602 (2)Cr1—O41.837 (2)
O5—Cr2—O6108.74 (12)O9—Cr3—O7109.18 (12)
O5—Cr2—O4111.28 (12)O10—Cr3—O7107.69 (11)
O6—Cr2—O4109.73 (11)O1—Cr1—O3110.76 (16)
O5—Cr2—O7108.80 (11)O1—Cr1—O2111.56 (14)
O6—Cr2—O7107.38 (11)O3—Cr1—O2110.19 (13)
O4—Cr2—O7110.80 (11)O1—Cr1—O4109.14 (11)
O8—Cr3—O9110.10 (12)O3—Cr1—O4106.17 (13)
O8—Cr3—O10110.28 (11)O2—Cr1—O4108.85 (10)
O9—Cr3—O10111.71 (12)Cr2—O7—Cr3132.80 (12)
O8—Cr3—O7107.76 (10)Cr2—O4—Cr1127.34 (12)
N1—C1—C2—N213.7 (3)N1—C5—C6—N212.3 (3)
N1—C3—C4—N213.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O100.86 (4)1.90 (4)2.738 (4)164 (3)
N2—H2···O2i0.84 (4)2.13 (3)2.868 (3)147 (3)
N2—H2···O1ii0.84 (4)2.31 (4)2.893 (4)127 (3)
C6—H6A···O5iii0.972.483.339 (4)147
C6—H6B···O8iv0.972.333.199 (3)148
C4—H4B···O9i0.972.553.348 (3)140
C4—H4B···O8i0.972.393.294 (4)154
C4—H4A···O2iv0.972.473.419 (3)168
C5—H5A···O6v0.972.423.135 (4)131
C5—H5A···O5iv0.972.373.020 (3)124
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z+1; (iii) x+1, y+1, z+1; (iv) x, y, z+1; (v) x, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds