Download citation
Download citation
link to html
In the title compounds, C21H18N2O4 and C25H18N2O4, respectively, the five-membered ring of the indole system is almost planar. The oxetane and oxazole rings are individually planar. The orientations of the indole, oxetane, oxazole and phenyl moieties are conditioned by the sp3 nature of the spiro-C atoms. In both compounds, the relative orientation of the indole and oxazole rings is opposite.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103008680/na1612sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103008680/na1612Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103008680/na1612IIsup3.hkl
Contains datablock II

CCDC references: 214396; 214397

Comment top

Recently, we have studied the photocycloaddition reactions of some α-dicarbonyl compounds with oxazole derivatives (Zhang et al., 2003). For the photoinduced reactions of 1-acetylisatin with oxazole derivatives, some of the separable products are the corresponding [indole-3,2'-oxeto[5,4-b]oxazol]-2(1H)-one derivatives. We have structurally analysed two of these derivatives, viz. (I) and (II), and the results are presented here.

The bond lengths and angles in compounds (I) and (II) (Figs. 1 and 2, respectively) are within normal ranges (Allen et al., 1987). The corresponding values agree with each other. Those within the indole moieties (C1–C6/N1/C7/C8) are comparable to the corresponding values in the related structure spiro[1H-indole-3,2'-oxetan]-2(3H)-one, hereafter (III) (Usman et al., 2002).

An elongation of the Csp3–Csp3 bond C8—C11 of the spiroxetane ring (C8/C9/C11/O1) is observed, especially in compound (I), due to the bulky substituents attached at C11. This elongation is also found in compound (III).

The spiroxetane is nearly planar with the dihedral angle between the O1/C8/C11 and O1/C9/C11 planes being 178.6 (2)° in compound (I) and 176.6 (3)° in compound (II). This is in contrast to the corresponding dihedral angle of 163.0 (3)° in (III) (Usman et al., 2002).

The planes through the oxetane and its fused oxazole ring (C9/C11/N2/C10/O2) make a dihedral angle of 66.5 (1)° in compound (I) and 67.0 (2)° in molecule (II). This is conditioned by the eclipsed configuration of the sp3 state of the shared atoms C9 and C11. The angles around these two atoms are listed in Tables 1 and 3 for (I) and (II), repectively.

The oxetane ring and the indole system are nearly orthogonal, with dihedral angles of 89.8 (1) and 83.6 (1)° between their planes in (I) and (II), respectively, and the C12–C17 phenyl ring makes dihedral angles with the oxetane ring of 56.9 (1) and 61.1 (2)° in (I) and (II), respectively. The relative orientation of the oxazole ring and indole moiety in (I) is opposite compared with that in (II). This is determined by the C1—C8—C11—N2 and C7—C8—C11—N2 torsion angles which are −134.9 (1) and −12.2 (2)°, respectively, for compound (I), and 19.9 (3) and 141.0 (2)° for compound (II).

In (I) and (II), the orientations and the relative distribution of the indole moiety and C12–C17 phenyl ring are conditioned by the eclipsed configuration of the atom pairs C8—C11 and C9—C11. These are supported by the torsion angles involving C8—C11 and C9—C11 (see Tables 1 and 3).

The indole moiety almost planar, with its five-membered ring adopting a conformation intermediate between envelope and half-chair for (I) and a half-chair conformation for (II). The Q2 puckering amplitude is 0.129 (2) Å for (I) and 0.150 (3) Å for (I). The dihedral angle between the five-membered ring and the fused benzene ring is 4.2 (1)° in (I) and 4.6 (2)° in (II). Ketone atom O4 attached at C7 deviates from the mean plane of the five-membered ring by 0.280 (1) Å in (I) and 0.308 (2)° in (II).

In (I) and (II), the acetyl group (O3/C18/C19) attached at N1 is twisted by angles of 8.9 (1) and 11.6 (1)°, respectively, from the mean plane of the indole moiety. This indicates that the acetyl group tends to be coplanar with the indole moiety, as is usually observed for 1-acetylindole derivatives due to the interactions of the π-conjugation of the acetyl group. In (I) and (II), the intramolecular interaction which forms a O3—C18—N1—C6—C5—H5 S(6) graph ring (Etter et al., 1990) also participates in the π-conjugation.

In (I), the ethyl group (C20/C21) attached to C10 shows a positional disorder, so that the major and minor component (C21A and C21B) are displaced in opposite directions, by 0.421 (8) and 0.993 (4) Å, from the oxazole plane. In (II), the C20–C25 phenyl ring attached to C10 is twisted by an angle of 21.1 (2)° with respect to the oxazole plane.

For (I) and (II), the asymmetric units (Figs. 1 and 2) have atom C8 as an S chiral center. However, while atoms C9 and C11 of (I) are S chiral centers, these atoms are R chiral centers in (II) in Fig. 2. Moreover, since both compounds crystallized in centrosymmetric space groups, the samples used in this study are racemic crystals.

Experimental top

Compounds (I) and (II) were prepared by the photoinduced reactions of 1-acetylisatin with an excess amount of 2-ethyl-4-phenyloxazole and 2,5-diphenyloxazole, respectively, in benzene, and were separated by silica-gel column chromatography with petroleum ether–ethyl acetate as eluant. Single crystals of (I) and (II) were obtained from slow evaporation of petroleum ether–acetone solutions.

Refinement top

The H atoms of (I) were fixed geometrically and treated as riding on their parent C atoms, with C—H distances in the range 0.93–0.98 Å and Uiso(H) = 1.2–1.5Ueq(C). For (II), the H atoms were located from difference maps and were refined isotropically [C—H = 0.91 (3)–1.02 (4) Å], except for those attached to the methyl C atoms, which were fixed geometrically fixed and treated as riding. Rotating group refinement was used for the methyl groups of (I) and (II).

Computing details top

For both compounds, data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. The major and minor components of the disorder are shown for atom C21.
[Figure 2] Fig. 2. The structure of (II), showing 50% probability displacement ellipsoids and the atom-numbering scheme.
(I) 1-Acetyl-2a'-phenyl-4'-ethylspiro[indole-3,2'-[2a'H,5a'H]oxeto[5,4-b]oxazol]- 2(1H)-one top
Crystal data top
C21H18N2O4Dx = 1.387 Mg m3
Mr = 362.37Melting point: 392(1) K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.8569 (6) ÅCell parameters from 6010 reflections
b = 12.4129 (6) Åθ = 2.3–28.3°
c = 12.9849 (6) ŵ = 0.10 mm1
β = 97.386 (1)°T = 213 K
V = 1735.4 (2) Å3Block, colorless
Z = 40.48 × 0.44 × 0.42 mm
F(000) = 760
Data collection top
Siemens SMART CCD area-detector
diffractometer
4238 independent reflections
Radiation source: fine-focus sealed tube3439 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Detector resolution: 8.33 pixels mm-1θmax = 28.3°, θmin = 2.3°
ω scansh = 146
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
k = 1616
Tmin = 0.899, Tmax = 0.960l = 1717
10582 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0644P)2 + 0.7497P]
where P = (Fo2 + 2Fc2)/3
4238 reflections(Δ/σ)max < 0.001
257 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C21H18N2O4V = 1735.4 (2) Å3
Mr = 362.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.8569 (6) ŵ = 0.10 mm1
b = 12.4129 (6) ÅT = 213 K
c = 12.9849 (6) Å0.48 × 0.44 × 0.42 mm
β = 97.386 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
4238 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
3439 reflections with I > 2σ(I)
Tmin = 0.899, Tmax = 0.960Rint = 0.015
10582 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.07Δρmax = 0.34 e Å3
4238 reflectionsΔρmin = 0.43 e Å3
257 parameters
Special details top

Experimental. The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different ϕ angle (0, 88 and 180°) for the crystal and each exposure of 10 s covered 0.3° in ω. The crystal-to-detector distance was 4 cm and the detector swing angle was −35°. Crystal decay was monitored by repeating fifty initial frames at the end of data collection and analysing the intensity of duplicate reflections, and was found to be negligible.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.33060 (10)0.43585 (10)0.20936 (8)0.0392 (3)
O20.15416 (12)0.41369 (11)0.29910 (9)0.0475 (3)
O30.2776 (2)0.68099 (15)0.17305 (12)0.0822 (6)
O40.20403 (12)0.62977 (9)0.13021 (9)0.0416 (3)
N10.26945 (12)0.58189 (10)0.02832 (10)0.0335 (3)
N20.04952 (12)0.42914 (11)0.13637 (10)0.0367 (3)
C10.34922 (14)0.41368 (13)0.01835 (12)0.0344 (3)
C20.41497 (15)0.31978 (14)0.00799 (16)0.0457 (4)
H20.42460.26860.06070.055*
C30.46650 (17)0.30404 (18)0.08403 (19)0.0567 (6)
H30.51170.24180.09270.068*
C40.45093 (17)0.38003 (19)0.16219 (16)0.0562 (5)
H40.48490.36730.22320.067*
C50.38621 (17)0.47455 (18)0.15234 (14)0.0493 (4)
H50.37670.52560.20520.059*
C60.33586 (14)0.49036 (13)0.06022 (12)0.0355 (3)
C70.24238 (14)0.56448 (12)0.07382 (11)0.0313 (3)
C80.27546 (14)0.44720 (12)0.10211 (11)0.0305 (3)
C90.23545 (15)0.36518 (13)0.23500 (11)0.0353 (3)
H90.26440.29300.25700.042*
C100.05268 (17)0.44954 (17)0.23200 (13)0.0473 (4)
C110.16401 (13)0.37062 (12)0.12461 (11)0.0296 (3)
C120.14160 (13)0.27252 (12)0.05758 (11)0.0306 (3)
C130.16555 (16)0.16968 (13)0.09640 (13)0.0380 (4)
H130.19600.16000.16600.046*
C140.1441 (2)0.08116 (14)0.03138 (15)0.0499 (4)
H140.15970.01210.05770.060*
C150.0997 (2)0.09501 (16)0.07210 (15)0.0514 (5)
H150.08560.03530.11530.062*
C160.07611 (18)0.19712 (16)0.11167 (13)0.0459 (4)
H160.04690.20630.18160.055*
C170.09600 (15)0.28597 (14)0.04718 (12)0.0373 (3)
H170.07890.35470.07370.045*
C180.24998 (17)0.67809 (15)0.08627 (14)0.0444 (4)
C190.19732 (18)0.77318 (15)0.03783 (16)0.0490 (4)
H19A0.18390.83030.08790.073*
H19B0.25430.79690.02040.073*
H19C0.11980.75380.01480.073*
C200.0427 (3)0.5096 (3)0.28200 (18)0.0933 (11)
H20A0.12060.49690.23960.112*0.40
H20B0.02430.58470.27500.112*0.40
H20C0.08350.45990.32300.112*0.60
H20D0.10410.53560.22780.112*0.60
C21A0.0616 (8)0.4970 (6)0.3825 (5)0.087 (2)0.40
H21A0.11260.55480.40210.130*0.40
H21B0.01680.49790.42600.130*0.40
H21C0.10250.42950.39050.130*0.40
C21B0.0045 (4)0.5913 (3)0.3410 (3)0.0682 (10)0.60
H21D0.07400.62380.36770.102*0.60
H21E0.03430.64330.30090.102*0.60
H21F0.05440.56670.39760.102*0.60
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0378 (6)0.0446 (6)0.0327 (6)0.0054 (5)0.0044 (4)0.0012 (5)
O20.0489 (7)0.0664 (8)0.0276 (5)0.0105 (6)0.0063 (5)0.0013 (5)
O30.1238 (16)0.0799 (12)0.0495 (9)0.0178 (11)0.0366 (10)0.0237 (8)
O40.0546 (7)0.0354 (6)0.0363 (6)0.0023 (5)0.0119 (5)0.0054 (5)
N10.0343 (6)0.0374 (7)0.0295 (6)0.0043 (5)0.0066 (5)0.0014 (5)
N20.0315 (6)0.0460 (8)0.0335 (7)0.0033 (5)0.0082 (5)0.0039 (5)
C10.0262 (7)0.0369 (8)0.0408 (8)0.0061 (6)0.0069 (6)0.0092 (6)
C20.0311 (8)0.0405 (9)0.0665 (12)0.0018 (7)0.0097 (7)0.0097 (8)
C30.0325 (8)0.0572 (11)0.0823 (15)0.0028 (8)0.0150 (9)0.0345 (11)
C40.0425 (10)0.0767 (14)0.0525 (11)0.0087 (9)0.0187 (8)0.0277 (11)
C50.0431 (9)0.0687 (12)0.0384 (9)0.0084 (9)0.0145 (7)0.0118 (8)
C60.0284 (7)0.0446 (8)0.0342 (7)0.0080 (6)0.0069 (6)0.0091 (6)
C70.0321 (7)0.0331 (7)0.0288 (7)0.0049 (6)0.0046 (5)0.0023 (6)
C80.0298 (7)0.0323 (7)0.0290 (7)0.0023 (6)0.0026 (5)0.0018 (6)
C90.0382 (8)0.0387 (8)0.0286 (7)0.0014 (6)0.0024 (6)0.0013 (6)
C100.0418 (9)0.0664 (12)0.0345 (8)0.0116 (8)0.0077 (7)0.0027 (8)
C110.0290 (7)0.0337 (7)0.0262 (6)0.0008 (6)0.0044 (5)0.0040 (5)
C120.0263 (7)0.0366 (7)0.0291 (7)0.0048 (6)0.0047 (5)0.0015 (6)
C130.0423 (8)0.0380 (8)0.0333 (7)0.0034 (7)0.0030 (6)0.0043 (6)
C140.0656 (12)0.0352 (8)0.0484 (10)0.0029 (8)0.0056 (9)0.0022 (7)
C150.0677 (12)0.0445 (9)0.0421 (9)0.0076 (9)0.0077 (9)0.0097 (8)
C160.0518 (10)0.0551 (10)0.0302 (8)0.0082 (8)0.0035 (7)0.0025 (7)
C170.0381 (8)0.0415 (8)0.0317 (7)0.0062 (7)0.0030 (6)0.0049 (6)
C180.0446 (9)0.0502 (10)0.0389 (8)0.0047 (8)0.0070 (7)0.0100 (7)
C190.0457 (10)0.0418 (9)0.0595 (11)0.0002 (8)0.0075 (8)0.0134 (8)
C200.0726 (16)0.164 (3)0.0447 (11)0.0585 (19)0.0121 (11)0.0109 (15)
C21A0.119 (6)0.095 (5)0.059 (3)0.061 (4)0.062 (4)0.027 (3)
C21B0.065 (2)0.068 (2)0.071 (2)0.0104 (19)0.0068 (19)0.025 (2)
Geometric parameters (Å, º) top
O1—C91.427 (2)C12—C171.396 (2)
O1—C81.450 (2)C13—C141.387 (2)
O2—C101.387 (2)C13—H130.9300
O2—C91.422 (2)C14—C151.379 (3)
O3—C181.203 (2)C14—H140.9300
O4—C71.202 (2)C15—C161.379 (3)
N1—C71.412 (2)C15—H150.9300
N1—C181.413 (2)C16—C171.385 (2)
N1—C61.435 (2)C16—H160.9300
N2—C101.263 (2)C17—H170.9300
N2—C111.465 (2)C18—C191.486 (3)
C1—C21.382 (2)C19—H19A0.9600
C1—C61.389 (2)C19—H19B0.9600
C1—C81.490 (2)C19—H19C0.9600
C2—C31.397 (3)C20—C21B1.306 (5)
C2—H20.9300C20—C21A1.355 (5)
C3—C41.380 (3)C20—H20A0.9602
C3—H30.9300C20—H20B0.9601
C4—C51.382 (3)C20—H20C0.9600
C4—H40.9300C20—H20D0.9602
C5—C61.391 (2)C21A—H20C0.9045
C5—H50.9300C21A—H21A0.9600
C7—C81.533 (2)C21A—H21B0.9600
C8—C111.595 (2)C21A—H21C0.9600
C9—C111.541 (2)C21B—H20B0.8602
C9—H90.9800C21B—H21D0.9600
C10—C201.491 (3)C21B—H21E0.9600
C11—C121.498 (2)C21B—H21F0.9600
C12—C131.385 (2)
C9—O1—C893.6 (1)C15—C14—H14119.8
C10—O2—C9105.7 (1)C13—C14—H14119.8
C7—N1—C18126.5 (1)C14—C15—C16120.2 (2)
C7—N1—C6108.8 (1)C14—C15—H15119.9
C18—N1—C6124.2 (1)C16—C15—H15119.9
C10—N2—C11106.6 (1)C15—C16—C17120.0 (2)
C2—C1—C6120.8 (2)C15—C16—H16120.0
C2—C1—C8129.7 (2)C17—C16—H16120.0
C6—C1—C8109.2 (1)C16—C17—C12120.1 (2)
C1—C2—C3118.0 (2)C16—C17—H17119.9
C1—C2—H2121.0C12—C17—H17119.9
C3—C2—H2121.0O3—C18—N1119.1 (2)
C4—C3—C2120.6 (2)O3—C18—C19121.9 (2)
C4—C3—H3119.7N1—C18—C19119.0 (2)
C2—C3—H3119.7C18—C19—H19A109.5
C3—C4—C5121.9 (2)C18—C19—H19B109.5
C3—C4—H4119.1H19A—C19—H19B109.5
C5—C4—H4119.1C18—C19—H19C109.5
C4—C5—C6117.4 (2)H19A—C19—H19C109.5
C4—C5—H5121.3H19B—C19—H19C109.5
C6—C5—H5121.3C21B—C20—C21A66.5 (4)
C1—C6—C5121.3 (2)C21B—C20—C10117.2 (3)
C1—C6—N1109.8 (1)C21A—C20—C10124.1 (3)
C5—C6—N1128.9 (2)C21B—C20—H20A130.8
O4—C7—N1126.8 (1)C21A—C20—H20A107.6
O4—C7—C8125.7 (1)C10—C20—H20A106.2
N1—C7—C8107.5 (1)C21B—C20—H20B41.2
O1—C8—C1118.7 (1)C21A—C20—H20B105.2
O1—C8—C7112.2 (1)C10—C20—H20B106.2
C1—C8—C7102.8 (1)H20A—C20—H20B106.5
O1—C8—C1189.7 (1)C21B—C20—H20C108.0
C1—C8—C11117.3 (1)C21A—C20—H20C41.8
C7—C8—C11116.7 (1)C10—C20—H20C108.4
O2—C9—O1113.5 (1)H20A—C20—H20C77.2
O2—C9—C11104.5 (1)H20B—C20—H20C142.5
O1—C9—C1192.8 (1)C21B—C20—H20D107.9
O2—C9—H9114.6C21A—C20—H20D124.6
O1—C9—H9114.6C10—C20—H20D107.7
C11—C9—H9114.6H20A—C20—H20D32.8
N2—C10—O2118.2 (2)H20B—C20—H20D74.8
N2—C10—C20126.6 (2)H20C—C20—H20D107.3
O2—C10—C20115.3 (2)C20—C21A—H20C45.0
N2—C11—C12112.8 (1)C20—C21A—H21A109.5
N2—C11—C9104.9 (1)H20C—C21A—H21A120.7
C12—C11—C9122.0 (1)C20—C21A—H21B109.5
N2—C11—C8113.4 (1)H20C—C21A—H21B128.6
C12—C11—C8116.6 (1)C20—C21A—H21C109.5
C9—C11—C883.9 (1)H20C—C21A—H21C64.7
C13—C12—C17119.4 (1)C20—C21B—H20B47.3
C13—C12—C11121.9 (1)C20—C21B—H21D109.5
C17—C12—C11118.7 (1)C20—C21B—H21E109.5
C12—C13—C14120.0 (1)H21D—C21B—H21E109.5
C12—C13—H13120.0C20—C21B—H21F109.5
C14—C13—H13120.0H21D—C21B—H21F109.5
C15—C14—C13120.3 (2)H21E—C21B—H21F109.5
C6—C1—C2—C30.5 (2)C9—O2—C10—C20176.6 (2)
C8—C1—C2—C3173.8 (2)C10—N2—C11—C12133.2 (2)
C1—C2—C3—C40.5 (3)C10—N2—C11—C91.7 (2)
C2—C3—C4—C51.0 (3)C10—N2—C11—C891.4 (2)
C3—C4—C5—C60.5 (3)O2—C9—C11—N23.5 (2)
C2—C1—C6—C51.1 (2)O1—C9—C11—N2111.7 (1)
C8—C1—C6—C5174.3 (1)O2—C9—C11—C12126.2 (1)
C2—C1—C6—N1177.2 (1)O1—C9—C11—C12118.7 (1)
C8—C1—C6—N17.5 (2)O2—C9—C11—C8116.1 (1)
C4—C5—C6—C10.6 (2)O1—C9—C11—C81.0 (1)
C4—C5—C6—N1177.3 (2)O1—C8—C11—N2102.7 (1)
C7—N1—C6—C11.4 (2)C1—C8—C11—N2134.9 (1)
C18—N1—C6—C1174.0 (1)C7—C8—C11—N212.2 (2)
C7—N1—C6—C5176.6 (2)O1—C8—C11—C12123.8 (1)
C18—N1—C6—C54.0 (3)C1—C8—C11—C121.3 (2)
C18—N1—C7—O43.9 (3)C7—C8—C11—C12121.4 (1)
C6—N1—C7—O4168.5 (2)O1—C8—C11—C91.0 (1)
C18—N1—C7—C8178.2 (1)C1—C8—C11—C9121.5 (1)
C6—N1—C7—C89.4 (2)C7—C8—C11—C9115.8 (1)
C9—O1—C8—C1120.3 (1)N2—C11—C12—C13115.5 (2)
C9—O1—C8—C7120.0 (1)C9—C11—C12—C1310.7 (2)
C9—O1—C8—C111.0 (1)C8—C11—C12—C13110.7 (2)
C2—C1—C8—O148.3 (2)N2—C11—C12—C1765.0 (2)
C6—C1—C8—O1136.9 (1)C9—C11—C12—C17168.8 (1)
C2—C1—C8—C7172.7 (2)C8—C11—C12—C1768.9 (2)
C6—C1—C8—C712.5 (2)C17—C12—C13—C140.1 (2)
C2—C1—C8—C1157.8 (2)C11—C12—C13—C14179.6 (2)
C6—C1—C8—C11117.1 (1)C12—C13—C14—C150.4 (3)
O4—C7—C8—O136.2 (2)C13—C14—C15—C160.1 (3)
N1—C7—C8—O1141.8 (1)C14—C15—C16—C170.6 (3)
O4—C7—C8—C1164.8 (2)C15—C16—C17—C120.9 (3)
N1—C7—C8—C113.2 (2)C13—C12—C17—C160.6 (2)
O4—C7—C8—C1165.4 (2)C11—C12—C17—C16179.0 (2)
N1—C7—C8—C11116.7 (1)C7—N1—C18—O3179.9 (2)
C10—O2—C9—O195.8 (2)C6—N1—C18—O38.8 (3)
C10—O2—C9—C113.9 (2)C7—N1—C18—C190.8 (3)
C8—O1—C9—O2108.2 (1)C6—N1—C18—C19170.5 (2)
C8—O1—C9—C111.1 (1)N2—C10—C20—C21B126.6 (3)
C11—N2—C10—O20.9 (2)O2—C10—C20—C21B53.2 (4)
C11—N2—C10—C20178.9 (3)N2—C10—C20—C21A154.6 (6)
C9—O2—C10—N23.3 (2)O2—C10—C20—C21A25.6 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O30.932.272.819 (3)117
(II) 1-Acetyl-4',5a'-diphenylspiro[indole-3,2'-(2'H,5'H)oxeto[5,4-b]oxazol]-2(1H)- one top
Crystal data top
C25H18N2O4Dx = 1.367 Mg m3
Mr = 410.41Melting point: 426(1) K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.7908 (10) ÅCell parameters from 3856 reflections
b = 8.7717 (7) Åθ = 2.8–28.3°
c = 17.8346 (13) ŵ = 0.09 mm1
β = 94.515 (2)°T = 293 K
V = 1994.8 (3) Å3Needle, colorless
Z = 40.50 × 0.34 × 0.16 mm
F(000) = 856
Data collection top
Siemens SMART CCD area-detector
diffractometer
2826 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 25.0°, θmin = 2.8°
Detector resolution: 8.33 pixels mm-1h = 1415
ω scansk = 1010
9586 measured reflectionsl = 2118
3505 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.19 w = 1/[σ2(Fo2) + (0.0375P)2 + 1.5031P]
where P = (Fo2 + 2Fc2)/3
3505 reflections(Δ/σ)max < 0.001
341 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C25H18N2O4V = 1994.8 (3) Å3
Mr = 410.41Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.7908 (10) ŵ = 0.09 mm1
b = 8.7717 (7) ÅT = 293 K
c = 17.8346 (13) Å0.50 × 0.34 × 0.16 mm
β = 94.515 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2826 reflections with I > 2σ(I)
9586 measured reflectionsRint = 0.026
3505 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.19Δρmax = 0.19 e Å3
3505 reflectionsΔρmin = 0.20 e Å3
341 parameters
Special details top

Experimental. The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different ϕ angle (0, 88 and 180°) for the crystal and each exposure of 10 s covered 0.3° in ω. The crystal-to-detector distance was 5 cm and the detector swing angle was −35°. Crystal decay was monitored by repeating fifty initial frames at the end of data collection and analysing the intensity of duplicate reflections, and was found to be negligible.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.12370 (13)0.4653 (2)0.22582 (10)0.0381 (5)
O20.16984 (13)0.6713 (2)0.30749 (9)0.0368 (5)
O30.23260 (19)0.0523 (3)0.23692 (13)0.0735 (8)
O40.07084 (17)0.3987 (3)0.13512 (11)0.0568 (6)
N10.10004 (17)0.2197 (3)0.22777 (12)0.0389 (6)
N20.02444 (16)0.5968 (2)0.36336 (12)0.0351 (5)
C10.0423 (2)0.2785 (3)0.31117 (15)0.0368 (6)
C20.1148 (2)0.2561 (4)0.37144 (17)0.0478 (8)
H20.171 (2)0.325 (3)0.3827 (15)0.041 (8)*
C30.1053 (3)0.1290 (4)0.41632 (19)0.0562 (9)
H30.155 (2)0.115 (3)0.4593 (17)0.055 (9)*
C40.0249 (3)0.0272 (4)0.40014 (19)0.0557 (9)
H40.017 (3)0.059 (4)0.4307 (18)0.066 (10)*
C50.0481 (3)0.0468 (4)0.33960 (18)0.0489 (8)
H50.101 (2)0.025 (4)0.3275 (15)0.048 (8)*
C60.0380 (2)0.1741 (3)0.29502 (15)0.0384 (6)
C70.0516 (2)0.3460 (3)0.19673 (15)0.0390 (7)
C80.03037 (19)0.4066 (3)0.25677 (14)0.0341 (6)
C90.10082 (19)0.6201 (3)0.24561 (14)0.0339 (6)
C100.1173 (2)0.6494 (3)0.37100 (14)0.0327 (6)
C110.0025 (2)0.5702 (3)0.28350 (14)0.0319 (6)
H110.0671 (19)0.603 (3)0.2622 (13)0.027 (6)*
C120.10247 (19)0.7299 (3)0.18164 (14)0.0340 (6)
C130.0917 (2)0.6806 (4)0.10793 (16)0.0455 (7)
H130.086 (2)0.575 (3)0.0991 (14)0.040 (8)*
C140.0914 (3)0.7843 (5)0.04992 (18)0.0597 (10)
H140.084 (2)0.752 (4)0.0003 (17)0.053 (9)*
C150.1009 (3)0.9379 (4)0.06495 (19)0.0587 (10)
H150.102 (2)1.008 (4)0.0240 (18)0.066 (10)*
C160.1104 (3)0.9886 (4)0.13825 (19)0.0535 (8)
H160.118 (3)1.102 (4)0.1515 (19)0.075 (11)*
C170.1120 (2)0.8846 (4)0.19644 (17)0.0452 (7)
H170.116 (2)0.917 (4)0.2473 (17)0.057 (9)*
C180.1962 (2)0.1537 (4)0.20135 (16)0.0461 (7)
C190.2502 (2)0.2163 (4)0.13127 (18)0.0589 (9)
H19A0.32060.17760.12530.088*
H19B0.21310.18620.08900.088*
H19C0.25200.32550.13430.088*
C200.1759 (2)0.6936 (3)0.44198 (14)0.0346 (6)
C210.1467 (2)0.6347 (4)0.50954 (16)0.0438 (7)
H210.090 (2)0.567 (3)0.5099 (15)0.042 (8)*
C220.2020 (3)0.6752 (4)0.57602 (18)0.0540 (9)
H220.183 (2)0.634 (3)0.6196 (18)0.054 (9)*
C230.2848 (3)0.7740 (4)0.57593 (19)0.0583 (9)
H230.322 (2)0.804 (4)0.6191 (18)0.061 (9)*
C240.3135 (3)0.8347 (4)0.50964 (18)0.0528 (8)
H240.369 (2)0.908 (4)0.5076 (16)0.053 (9)*
C250.2597 (2)0.7939 (3)0.44229 (17)0.0426 (7)
H250.281 (2)0.832 (3)0.3960 (16)0.048 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0340 (10)0.0387 (11)0.0419 (11)0.0007 (8)0.0056 (8)0.0006 (9)
O20.0331 (10)0.0451 (11)0.0316 (10)0.0069 (8)0.0019 (8)0.0024 (8)
O30.0657 (16)0.0875 (19)0.0665 (16)0.0394 (14)0.0002 (12)0.0084 (14)
O40.0679 (14)0.0599 (14)0.0399 (12)0.0202 (11)0.0125 (10)0.0082 (11)
N10.0398 (13)0.0366 (13)0.0399 (13)0.0064 (10)0.0009 (10)0.0009 (11)
N20.0324 (12)0.0384 (13)0.0345 (12)0.0012 (10)0.0015 (9)0.0013 (10)
C10.0396 (15)0.0326 (15)0.0383 (15)0.0028 (12)0.0046 (12)0.0005 (12)
C20.0477 (18)0.0448 (18)0.0492 (18)0.0052 (15)0.0068 (15)0.0039 (15)
C30.063 (2)0.053 (2)0.052 (2)0.0176 (17)0.0023 (17)0.0108 (17)
C40.072 (2)0.0439 (19)0.053 (2)0.0128 (17)0.0139 (18)0.0154 (17)
C50.056 (2)0.0372 (18)0.0548 (19)0.0022 (15)0.0117 (16)0.0040 (15)
C60.0444 (16)0.0321 (15)0.0394 (15)0.0029 (12)0.0084 (12)0.0016 (12)
C70.0418 (16)0.0376 (16)0.0369 (16)0.0032 (12)0.0001 (12)0.0007 (13)
C80.0323 (14)0.0322 (15)0.0373 (15)0.0014 (11)0.0003 (11)0.0021 (12)
C90.0305 (13)0.0350 (15)0.0356 (14)0.0006 (11)0.0016 (11)0.0025 (12)
C100.0357 (15)0.0272 (14)0.0351 (14)0.0034 (11)0.0018 (11)0.0040 (11)
C110.0288 (13)0.0322 (14)0.0338 (14)0.0002 (11)0.0030 (11)0.0013 (12)
C120.0286 (13)0.0408 (16)0.0326 (14)0.0031 (12)0.0024 (11)0.0025 (12)
C130.0512 (18)0.051 (2)0.0343 (16)0.0140 (15)0.0004 (13)0.0006 (14)
C140.063 (2)0.083 (3)0.0319 (17)0.0227 (19)0.0034 (15)0.0087 (18)
C150.052 (2)0.068 (3)0.055 (2)0.0101 (17)0.0043 (16)0.0333 (19)
C160.055 (2)0.046 (2)0.060 (2)0.0010 (15)0.0102 (16)0.0175 (17)
C170.0526 (18)0.0439 (18)0.0399 (17)0.0007 (14)0.0078 (14)0.0042 (14)
C180.0448 (17)0.0487 (19)0.0451 (17)0.0091 (15)0.0063 (14)0.0117 (15)
C190.0445 (18)0.071 (2)0.060 (2)0.0133 (16)0.0049 (15)0.0059 (18)
C200.0382 (15)0.0292 (14)0.0358 (15)0.0055 (12)0.0009 (11)0.0007 (12)
C210.0473 (18)0.0459 (18)0.0382 (17)0.0003 (15)0.0041 (14)0.0012 (14)
C220.073 (2)0.057 (2)0.0330 (17)0.0093 (18)0.0051 (16)0.0009 (16)
C230.072 (2)0.058 (2)0.042 (2)0.0024 (18)0.0161 (17)0.0130 (17)
C240.060 (2)0.0459 (19)0.050 (2)0.0069 (16)0.0115 (16)0.0092 (16)
C250.0479 (17)0.0389 (17)0.0403 (17)0.0002 (13)0.0016 (14)0.0002 (14)
Geometric parameters (Å, º) top
O1—C91.439 (3)C11—H110.98 (2)
O1—C81.449 (3)C12—C131.380 (4)
O2—C101.375 (3)C12—C171.386 (4)
O2—C91.430 (3)C13—C141.377 (4)
O3—C181.207 (4)C13—H130.94 (3)
O4—C71.200 (3)C14—C151.377 (5)
N1—C71.404 (3)C14—H140.93 (3)
N1—C181.406 (3)C15—C161.377 (5)
N1—C61.442 (3)C15—H150.95 (3)
N2—C101.271 (3)C16—C171.380 (4)
N2—C111.449 (3)C16—H161.02 (4)
C1—C21.377 (4)C17—H170.95 (3)
C1—C61.389 (4)C18—C191.485 (4)
C1—C81.484 (4)C19—H19A0.9600
C2—C31.383 (4)C19—H19B0.9600
C2—H20.95 (3)C19—H19C0.9600
C3—C41.375 (5)C20—C251.387 (4)
C3—H30.97 (3)C20—C211.389 (4)
C4—C51.382 (5)C21—C221.378 (4)
C4—H40.95 (3)C21—H210.94 (3)
C5—C61.382 (4)C22—C231.368 (5)
C5—H50.94 (3)C22—H220.91 (3)
C7—C81.534 (4)C23—C241.373 (5)
C8—C111.563 (4)C23—H230.91 (3)
C9—C121.494 (4)C24—C251.383 (4)
C9—C111.537 (4)C24—H240.97 (3)
C10—C201.472 (4)C25—H250.95 (3)
C9—O1—C893.0 (2)C8—C11—H11111.9 (15)
C10—O2—C9106.2 (2)C13—C12—C17119.2 (3)
C7—N1—C18126.4 (2)C13—C12—C9121.3 (3)
C7—N1—C6108.4 (2)C17—C12—C9119.5 (2)
C18—N1—C6125.1 (2)C14—C13—C12120.2 (3)
C10—N2—C11105.7 (2)C14—C13—H13122 (2)
C2—C1—C6120.6 (3)C12—C13—H13118 (2)
C2—C1—C8130.3 (3)C13—C14—C15120.3 (3)
C6—C1—C8109.1 (2)C13—C14—H14121 (2)
C1—C2—C3118.9 (3)C15—C14—H14119 (2)
C1—C2—H2122 (2)C16—C15—C14120.0 (3)
C3—C2—H2119 (2)C16—C15—H15121 (2)
C4—C3—C2120.0 (3)C14—C15—H15119 (2)
C4—C3—H3121 (2)C15—C16—C17119.7 (3)
C2—C3—H3119 (2)C15—C16—H16122.1 (19)
C3—C4—C5122.1 (3)C17—C16—H16118.2 (19)
C3—C4—H4121 (2)C16—C17—C12120.5 (3)
C5—C4—H4117 (2)C16—C17—H17121 (2)
C4—C5—C6117.5 (3)C12—C17—H17118 (2)
C4—C5—H5122 (2)O3—C18—N1119.4 (3)
C6—C5—H5121 (2)O3—C18—C19122.8 (3)
C5—C6—C1121.0 (3)N1—C18—C19117.8 (3)
C5—C6—N1129.2 (3)C18—C19—H19A109.5
C1—C6—N1109.8 (2)C18—C19—H19B109.5
O4—C7—N1126.9 (2)H19A—C19—H19B109.5
O4—C7—C8125.8 (2)C18—C19—H19C109.5
N1—C7—C8107.3 (2)H19A—C19—H19C109.5
O1—C8—C1118.2 (2)H19B—C19—H19C109.5
O1—C8—C7113.3 (2)C25—C20—C21119.5 (3)
C1—C8—C7102.9 (2)C25—C20—C10120.8 (2)
O1—C8—C1190.3 (2)C21—C20—C10119.7 (2)
C1—C8—C11120.7 (2)C22—C21—C20119.7 (3)
C7—C8—C11111.8 (2)C22—C21—H21120 (2)
O2—C9—O1111.1 (2)C20—C21—H21120 (2)
O2—C9—C12110.0 (2)C23—C22—C21120.5 (3)
O1—C9—C12113.9 (2)C23—C22—H22121 (2)
O2—C9—C11103.1 (2)C21—C22—H22119 (2)
O1—C9—C1191.6 (2)C22—C23—C24120.4 (3)
C12—C9—C11125.5 (2)C22—C23—H23122 (2)
N2—C10—O2118.4 (2)C24—C23—H23117 (2)
N2—C10—C20126.6 (2)C23—C24—C25119.9 (3)
O2—C10—C20115.0 (2)C23—C24—H24123 (2)
N2—C11—C9106.5 (2)C25—C24—H24117 (2)
N2—C11—C8114.6 (2)C24—C25—C20119.9 (3)
C9—C11—C885.0 (2)C24—C25—H25120 (2)
N2—C11—H11116 (1)C20—C25—H25120 (2)
C9—C11—H11120 (1)
C6—C1—C2—C31.0 (4)C10—N2—C11—C90.8 (3)
C8—C1—C2—C3176.6 (3)C10—N2—C11—C891.3 (3)
C1—C2—C3—C40.4 (5)O2—C9—C11—N20.3 (3)
C2—C3—C4—C50.1 (5)O1—C9—C11—N2111.9 (2)
C3—C4—C5—C60.1 (5)C12—C9—C11—N2126.9 (3)
C4—C5—C6—C10.5 (4)O2—C9—C11—C8114.5 (2)
C4—C5—C6—N1177.7 (3)O1—C9—C11—C82.3 (2)
C2—C1—C6—C51.1 (4)C12—C9—C11—C8118.9 (3)
C8—C1—C6—C5177.0 (2)O1—C8—C11—N2103.6 (2)
C2—C1—C6—N1177.4 (2)C1—C8—C11—N219.9 (3)
C8—C1—C6—N14.5 (3)C7—C8—C11—N2141.0 (2)
C7—N1—C6—C5172.2 (3)O1—C8—C11—C92.3 (2)
C18—N1—C6—C511.6 (4)C1—C8—C11—C9125.8 (2)
C7—N1—C6—C16.2 (3)C7—C8—C11—C9113.1 (2)
C18—N1—C6—C1170.0 (3)O2—C9—C12—C13145.9 (2)
C18—N1—C7—O417.0 (5)O1—C9—C12—C1320.3 (3)
C6—N1—C7—O4166.9 (3)C11—C9—C12—C1390.4 (3)
C18—N1—C7—C8162.3 (2)O2—C9—C12—C1736.0 (3)
C6—N1—C7—C813.8 (3)O1—C9—C12—C17161.5 (2)
C9—O1—C8—C1128.0 (2)C11—C9—C12—C1787.8 (3)
C9—O1—C8—C7111.5 (2)C17—C12—C13—C140.5 (4)
C9—O1—C8—C112.5 (2)C9—C12—C13—C14178.7 (3)
C2—C1—C8—O144.2 (4)C12—C13—C14—C150.5 (5)
C6—C1—C8—O1138.0 (2)C13—C14—C15—C160.3 (5)
C2—C1—C8—C7169.9 (3)C14—C15—C16—C171.1 (5)
C6—C1—C8—C712.2 (3)C15—C16—C17—C121.1 (5)
C2—C1—C8—C1164.7 (4)C13—C12—C17—C160.3 (4)
C6—C1—C8—C11113.1 (3)C9—C12—C17—C16177.9 (3)
O4—C7—C8—O136.0 (4)C7—N1—C18—O3174.4 (3)
N1—C7—C8—O1144.7 (2)C6—N1—C18—O31.1 (4)
O4—C7—C8—C1164.9 (3)C7—N1—C18—C193.8 (4)
N1—C7—C8—C115.9 (3)C6—N1—C18—C19179.3 (3)
O4—C7—C8—C1164.2 (4)N2—C10—C20—C25158.4 (3)
N1—C7—C8—C11115.1 (2)O2—C10—C20—C2520.3 (4)
C10—O2—C9—O195.9 (2)N2—C10—C20—C2121.4 (4)
C10—O2—C9—C12137.0 (2)O2—C10—C20—C21159.9 (2)
C10—O2—C9—C111.1 (2)C25—C20—C21—C220.6 (4)
C8—O1—C9—O2107.2 (2)C10—C20—C21—C22179.6 (3)
C8—O1—C9—C12127.9 (2)C20—C21—C22—C230.5 (5)
C8—O1—C9—C112.49 (18)C21—C22—C23—C240.4 (5)
C11—N2—C10—O21.7 (3)C22—C23—C24—C251.1 (5)
C11—N2—C10—C20179.6 (2)C23—C24—C25—C201.0 (5)
C9—O2—C10—N21.9 (3)C21—C20—C25—C240.1 (4)
C9—O2—C10—C20179.3 (2)C10—C20—C25—C24179.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O30.92 (3)2.36 (3)2.872 (4)115 (3)

Experimental details

(I)(II)
Crystal data
Chemical formulaC21H18N2O4C25H18N2O4
Mr362.37410.41
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/n
Temperature (K)213293
a, b, c (Å)10.8569 (6), 12.4129 (6), 12.9849 (6)12.7908 (10), 8.7717 (7), 17.8346 (13)
α, β, γ (°)90, 97.386 (1), 9090, 94.515 (2), 90
V3)1735.4 (2)1994.8 (3)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.100.09
Crystal size (mm)0.48 × 0.44 × 0.420.50 × 0.34 × 0.16
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Siemens SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.899, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
10582, 4238, 3439 9586, 3505, 2826
Rint0.0150.026
(sin θ/λ)max1)0.6670.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.142, 1.07 0.066, 0.134, 1.19
No. of reflections42383505
No. of parameters257341
H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.430.19, 0.20

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXTL (Sheldrick, 1997), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) for (I) top
O1—C91.427 (2)C9—C111.541 (2)
O2—C91.422 (2)C10—C201.491 (3)
N2—C101.263 (2)C11—C121.498 (2)
N2—C111.465 (2)C20—C21B1.306 (5)
C8—C111.595 (2)C20—C21A1.355 (5)
O2—C9—O1113.5 (1)N2—C11—C8113.4 (1)
N2—C11—C12112.8 (1)C12—C11—C8116.6 (1)
O2—C9—C11—N23.5 (2)C1—C8—C11—C121.3 (2)
O1—C9—C11—C81.0 (1)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O30.932.272.819 (3)117
Selected geometric parameters (Å, º) for (II) top
O1—C91.439 (3)C8—C111.563 (4)
O2—C91.430 (3)C9—C121.494 (4)
N2—C111.449 (3)C9—C111.537 (4)
O2—C9—O1111.1 (2)O1—C9—C12113.9 (2)
O2—C9—C12110.0 (2)N2—C11—C8114.6 (2)
O2—C9—C11—N20.3 (3)C1—C8—C11—N219.9 (3)
O1—C9—C11—C82.3 (2)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O30.92 (3)2.36 (3)2.872 (4)115 (3)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds