Download citation
Download citation
link to html
In the title compound, [CuCl2(C9H8N2)4], there are two independent mol­ecules in the asymmetric unit. The Cu2+ ions lie on inversion centres and are octahedrally coordinated by two Cl atoms and four pyrazole N atoms. All pyrazole N—H groups form intramolecular hydrogen bonds, giving rise to five-membered hydrogen-bonded rings incorporating the Cu atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103003391/na1596sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103003391/na1596Isup2.hkl
Contains datablock I

CCDC reference: 211723

Comment top

This paper is a continuation of our X-ray crystal structure studies on copper(II) chloride complexes incorporating phenylpyrazoles (Małecka et al., 1998, 2001). This group of complexes is considered because of their expected biological activities as fungicides and herbicides (Nasiadek, 1985). Previous studies on copper(II) complexes with different substituted pyrazoles were undertaken with regard to their protolitic properties and the influence of the nature and position of substituents on metal complexation (Kostka & Strawiak, 1982; Goslar et al., 1987, 1988). On the other hand, we are investigating nitrogen-containing heterocyclic ligands and their complexes because of the expected pharmacological activity, by analogy to cis-platinum complexes (Hollis, 1989; Reedijk, 1996).

The X-ray structure analysis of the title complex, (I), was carried out in order to elucidate the geometry around the Cu2+ ion and the packing arrangement in the crystal, which is often related to the coordination ability towards transition metal ions (Ochocki et al., 1998)

The compound crystallizes with two crystallographically independent centrosymmetric molecules, A and B, in the asymmetric unit, with the two Cu2+ ions located on the centres of symmetry at (0, 0, 0) and (1/2, 0, 1/2), respectively.

The metal coordination polyhedron is an elongated octahedral bipyramid with two Cl ions in trans-apical positions and four pyrazole N atoms in the equatorial plane. The Cl—Cu—Cl lines deviates by 2.19 (6) and 2.58 (7)° from being orthogonal to these equatorial planes for molecules A and B, respectively.

In the two independent molecules, some differences are observed with regard to the rotation of the phenyl and pyrazole rings about the Cn5—Cn51 bond joining them, as shown by the Nn1—Cn5—Cn51—Cn52 (n = 1–4) torsion angles (see Table 1).

The orientation of the pyrazole ligands around the metal ions is not the same in the two independent molecules, as indicated by the Cl—Cu—N—N torsion angles. The different distortions of the ligands in molecules A and B can be explained by the different packing interactions in each molecule. These interactions are of the C—H···Cl and C—H···Cg types (Cg are the centroids of pyrazole rings Nn1/Nn2/Cn3/Cn4/Cn5, where n = 2, 3). The geometry for these weak interactions is given in Table 2.

Two intramolecular hydrogen bonds are observed in each molecule, producing four five-membered hydrogen-bonded rings incorporating the Cu atoms (see Fig. 1) which adopt the following conformations: H11-envelope in ring I, twisted in rings II and IV, and N31-half-chair in ring III. The puckering parameters (Cremer & Pople, 1975) corresponding to the Cu—Nn2—Nn1—Hn1—Cl (n = 1–4) atom sequences are q2 = 0.11 (1) Å and ϕ2 = 65 (2)°, q2 = 0.18 (1) Å and ϕ2 = −142 (1)°, q2 = 0.28 (1) Å and ϕ2 = 19 (1)°, and q2 = 0.19 (1) Å and ϕ2 = −144 (1)° for rings I, II, III and IV, respectively.

The bond distances and angles in both molecules are in a good agreement with expected values (Allen et al., 1987).

Experimental top

The title compound was obtained by mixing hot ethanol solutions of CuCl2·2H2O and 5-phenylpyrazole in a 1:4 molar ratio. On cooling to room temperature, a crystalline material began to separate. This material was filtered off and washed three times with cold solvent and dried in vacuo over phosphorus pentaoxide, giving single-crystal of the title compound suitable for X-ray analysis.

Refinement top

All H atoms were positioned geometrically (N—H = 0.86 Å and C—H = 0.93 Å) and refined with a riding model. For the H atoms of the phenyl and pyrazole rings (except for the H atoms of the N—H groups), Uiso values were constrained to be 1.2Ueq of the carrier atom. The H atoms of the N—H groups were placed in calculated positions and their Uiso values were refined.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1989); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1989); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1998); software used to prepare material for publication: PARST97 (Nardelli, 1996).

Figures top
[Figure 1] Fig. 1. Views of molecules A (top) and B (bottom), with the atom-numbering schemes and the intramolecular hydrogen bonds (dashed lines) which give rise to five-membered hydrogen-bonded rings I, II, III and IV. All H atoms, except for H11, H21, H31 and H41 (shown as spheres), have been omitted for clarity. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
Dichlorotetrakis(3-phenylpyrazole-κN2)copper(II) top
Crystal data top
[CuCl2(C9H8N2)4]Z = 2
Mr = 711.14F(000) = 734
Triclinic, P1Dx = 1.359 Mg m3
Dm = 1.356 Mg m3
Dm measured by flotation in tetralin and iodomethane
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 11.587 (4) ÅCell parameters from 22 reflections
b = 12.676 (3) Åθ = 23.0–31.9°
c = 13.352 (3) ŵ = 2.60 mm1
α = 81.54 (2)°T = 293 K
β = 72.71 (2)°Prism, blue
γ = 68.29 (2)°0.6 × 0.5 × 0.25 mm
V = 1738.1 (9) Å3
Data collection top
Rigaku AFC-5S
diffractometer
4962 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 67.5°, θmin = 3.5°
ω scansh = 1313
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
k = 1511
Tmin = 0.296, Tmax = 0.569l = 1515
6374 measured reflections3 standard reflections every 150 reflections
6079 independent reflections intensity decay: <2%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.0958P)2 + 0.0725P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.152(Δ/σ)max < 0.001
S = 1.14Δρmax = 0.41 e Å3
6079 reflectionsΔρmin = 0.65 e Å3
432 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0275 (12)
Primary atom site location: structure-invariant direct methods
Crystal data top
[CuCl2(C9H8N2)4]γ = 68.29 (2)°
Mr = 711.14V = 1738.1 (9) Å3
Triclinic, P1Z = 2
a = 11.587 (4) ÅCu Kα radiation
b = 12.676 (3) ŵ = 2.60 mm1
c = 13.352 (3) ÅT = 293 K
α = 81.54 (2)°0.6 × 0.5 × 0.25 mm
β = 72.71 (2)°
Data collection top
Rigaku AFC-5S
diffractometer
4962 reflections with I > 2σ(I)
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
Rint = 0.028
Tmin = 0.296, Tmax = 0.5693 standard reflections every 150 reflections
6374 measured reflections intensity decay: <2%
6079 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.14Δρmax = 0.41 e Å3
6079 reflectionsΔρmin = 0.65 e Å3
432 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.00000.00000.0569 (2)
Cl10.12897 (7)0.15564 (6)0.08589 (6)0.0643 (2)
N110.0889 (2)0.20318 (18)0.11819 (19)0.0552 (5)
H110.02420.21980.07790.088 (12)*
N120.1076 (2)0.10393 (18)0.11776 (18)0.0553 (6)
C130.2162 (3)0.1107 (2)0.1906 (2)0.0563 (7)
H130.25300.05420.20770.068*
C140.2672 (3)0.2151 (2)0.2380 (2)0.0552 (6)
H140.34240.24080.29160.066*
C150.1843 (3)0.2723 (2)0.1897 (2)0.0512 (6)
C1510.1851 (3)0.3846 (2)0.2075 (2)0.0564 (7)
C1520.0879 (4)0.4248 (3)0.1528 (3)0.0702 (8)
H1520.01880.38030.10280.084*
C1530.0917 (4)0.5306 (3)0.1713 (3)0.0863 (11)
H1530.02590.55730.13310.104*
C1540.1932 (5)0.5968 (3)0.2464 (3)0.0894 (12)
H1540.19590.66800.25930.107*
C1550.2875 (5)0.5575 (3)0.3005 (3)0.0895 (12)
H1550.35540.60190.35150.107*
C1560.2864 (4)0.4515 (3)0.2822 (3)0.0745 (9)
H1560.35340.42610.32000.089*
N220.1327 (2)0.08868 (19)0.07984 (19)0.0574 (6)
N210.1145 (2)0.17437 (19)0.14692 (18)0.0573 (6)
H210.04470.19000.16410.070 (10)*
C230.2490 (3)0.0912 (3)0.0754 (3)0.0760 (9)
H230.28790.04090.03520.091*
C240.3057 (3)0.1814 (3)0.1406 (3)0.0823 (10)
H240.38690.20150.15140.099*
C250.2172 (3)0.2333 (2)0.1845 (2)0.0615 (7)
C2510.2181 (3)0.3309 (3)0.2590 (3)0.0680 (8)
C2520.1243 (4)0.3780 (3)0.2821 (3)0.0856 (11)
H2520.05740.34750.24970.103*
C2530.1259 (5)0.4698 (3)0.3523 (4)0.1040 (14)
H2530.06060.50000.36650.125*
C2540.2218 (5)0.5159 (4)0.4006 (4)0.1125 (16)
H2540.22260.57790.44770.135*
C2550.3166 (5)0.4715 (4)0.3799 (4)0.1172 (17)
H2550.38270.50340.41300.141*
C2560.3164 (4)0.3772 (4)0.3085 (3)0.0981 (13)
H2560.38150.34670.29510.118*
Cu20.50000.00000.50000.0555 (2)
Cl20.46849 (7)0.23252 (5)0.49205 (6)0.0597 (2)
N320.5021 (2)0.0188 (2)0.34623 (18)0.0557 (5)
N310.4599 (2)0.1238 (2)0.30059 (17)0.0534 (5)
H310.43670.18610.33150.066 (10)*
C330.5283 (3)0.0536 (3)0.2727 (2)0.0655 (8)
H330.55960.13240.28140.079*
C340.5023 (3)0.0053 (3)0.1820 (2)0.0679 (8)
H340.51250.02590.11970.081*
C350.4588 (3)0.1183 (3)0.2009 (2)0.0556 (7)
C3510.4166 (3)0.2198 (3)0.1343 (2)0.0615 (7)
C3520.3572 (3)0.2166 (3)0.0588 (3)0.0791 (10)
H3520.34470.15010.05150.095*
C3530.3170 (5)0.3102 (5)0.0048 (3)0.1081 (15)
H3530.27850.30670.05560.130*
C3540.3334 (5)0.4088 (5)0.0065 (4)0.1149 (16)
H3540.30640.47210.03700.138*
C3550.3896 (5)0.4150 (4)0.0816 (4)0.1044 (14)
H3550.39910.48270.08970.125*
C3560.4322 (4)0.3201 (3)0.1456 (3)0.0810 (10)
H3560.47110.32400.19590.097*
N420.6902 (2)0.03688 (19)0.46034 (18)0.0535 (5)
N410.7378 (2)0.04696 (19)0.45446 (17)0.0518 (5)
H410.69130.11540.47260.097 (13)*
C430.7908 (3)0.1288 (2)0.4277 (2)0.0583 (7)
H430.78690.20000.42390.070*
C440.9040 (3)0.1031 (2)0.3998 (2)0.0589 (7)
H440.98760.15290.37480.071*
C450.8670 (2)0.0107 (2)0.4168 (2)0.0500 (6)
C4510.9410 (3)0.0860 (2)0.3962 (2)0.0549 (6)
C4520.8884 (3)0.1964 (3)0.4325 (3)0.0688 (8)
H4520.80430.22240.47450.083*
C4530.9603 (4)0.2670 (3)0.4064 (3)0.0826 (10)
H4530.92450.34060.43010.099*
C4541.0853 (4)0.2279 (4)0.3451 (3)0.0877 (11)
H4541.13380.27550.32720.105*
C4551.1386 (4)0.1197 (4)0.3103 (3)0.0870 (11)
H4551.22350.09370.26970.104*
C4561.0678 (3)0.0499 (3)0.3350 (3)0.0700 (8)
H4561.10500.02340.31050.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0662 (4)0.0404 (3)0.0560 (4)0.0078 (3)0.0171 (3)0.0041 (2)
Cl10.0614 (4)0.0592 (4)0.0724 (5)0.0277 (3)0.0089 (3)0.0029 (3)
N110.0567 (13)0.0444 (11)0.0620 (13)0.0187 (10)0.0091 (11)0.0053 (10)
N120.0592 (14)0.0450 (11)0.0594 (13)0.0185 (10)0.0102 (11)0.0050 (10)
C130.0589 (16)0.0527 (15)0.0601 (16)0.0229 (13)0.0161 (14)0.0003 (12)
C140.0528 (15)0.0527 (15)0.0554 (15)0.0145 (12)0.0103 (12)0.0060 (12)
C150.0554 (15)0.0415 (13)0.0528 (14)0.0089 (11)0.0168 (12)0.0055 (11)
C1510.0680 (17)0.0428 (13)0.0584 (16)0.0133 (12)0.0254 (14)0.0002 (12)
C1520.085 (2)0.0537 (16)0.075 (2)0.0251 (16)0.0231 (17)0.0044 (15)
C1530.118 (3)0.063 (2)0.098 (3)0.046 (2)0.042 (2)0.0046 (19)
C1540.132 (4)0.0485 (18)0.102 (3)0.026 (2)0.056 (3)0.0042 (18)
C1550.110 (3)0.0516 (18)0.095 (3)0.0044 (19)0.030 (2)0.0229 (18)
C1560.079 (2)0.0552 (17)0.078 (2)0.0103 (16)0.0143 (18)0.0172 (15)
N220.0616 (14)0.0477 (12)0.0610 (14)0.0174 (11)0.0169 (11)0.0010 (10)
N210.0549 (14)0.0502 (12)0.0646 (14)0.0160 (11)0.0184 (11)0.0034 (11)
C230.068 (2)0.074 (2)0.088 (2)0.0327 (17)0.0187 (18)0.0078 (18)
C240.064 (2)0.078 (2)0.106 (3)0.0229 (17)0.0333 (19)0.012 (2)
C250.0563 (16)0.0525 (15)0.0684 (18)0.0056 (13)0.0218 (14)0.0045 (13)
C2510.0645 (18)0.0511 (16)0.074 (2)0.0015 (14)0.0214 (16)0.0010 (14)
C2520.105 (3)0.0572 (19)0.100 (3)0.0242 (19)0.045 (2)0.0115 (18)
C2530.125 (4)0.059 (2)0.123 (4)0.028 (2)0.040 (3)0.020 (2)
C2540.118 (4)0.072 (3)0.110 (3)0.003 (3)0.028 (3)0.026 (2)
C2550.097 (3)0.109 (4)0.113 (4)0.003 (3)0.047 (3)0.031 (3)
C2560.075 (2)0.096 (3)0.105 (3)0.009 (2)0.035 (2)0.018 (2)
Cu20.0436 (3)0.0676 (4)0.0534 (3)0.0190 (3)0.0153 (2)0.0079 (3)
Cl20.0575 (4)0.0448 (3)0.0690 (4)0.0081 (3)0.0160 (3)0.0062 (3)
N320.0526 (13)0.0544 (13)0.0563 (13)0.0147 (10)0.0158 (11)0.0024 (10)
N310.0541 (13)0.0545 (13)0.0507 (12)0.0175 (10)0.0161 (10)0.0016 (10)
C330.0671 (19)0.0562 (16)0.0672 (18)0.0165 (14)0.0143 (15)0.0045 (14)
C340.072 (2)0.072 (2)0.0582 (17)0.0201 (16)0.0171 (15)0.0115 (15)
C350.0483 (14)0.0686 (17)0.0495 (15)0.0204 (13)0.0138 (12)0.0015 (13)
C3510.0549 (16)0.0710 (19)0.0571 (16)0.0202 (14)0.0186 (13)0.0058 (14)
C3520.082 (2)0.097 (3)0.066 (2)0.035 (2)0.0309 (18)0.0104 (18)
C3530.107 (3)0.142 (4)0.085 (3)0.043 (3)0.055 (3)0.029 (3)
C3540.115 (4)0.117 (4)0.101 (3)0.025 (3)0.056 (3)0.047 (3)
C3550.119 (3)0.076 (3)0.112 (3)0.029 (2)0.041 (3)0.022 (2)
C3560.082 (2)0.084 (2)0.081 (2)0.0271 (19)0.038 (2)0.0158 (19)
N420.0484 (12)0.0546 (12)0.0565 (13)0.0183 (10)0.0141 (10)0.0022 (10)
N410.0428 (11)0.0502 (12)0.0582 (13)0.0122 (10)0.0125 (10)0.0012 (10)
C430.0512 (15)0.0495 (14)0.0710 (18)0.0134 (12)0.0161 (14)0.0032 (13)
C440.0452 (14)0.0563 (15)0.0678 (17)0.0091 (12)0.0131 (13)0.0067 (13)
C450.0420 (13)0.0541 (14)0.0519 (14)0.0135 (11)0.0154 (11)0.0015 (11)
C4510.0483 (14)0.0598 (16)0.0597 (16)0.0188 (12)0.0222 (13)0.0052 (13)
C4520.0554 (17)0.0635 (18)0.087 (2)0.0145 (14)0.0258 (16)0.0048 (16)
C4530.095 (3)0.0615 (19)0.111 (3)0.0320 (19)0.053 (2)0.0073 (19)
C4540.087 (3)0.096 (3)0.103 (3)0.055 (2)0.038 (2)0.019 (2)
C4550.070 (2)0.103 (3)0.096 (3)0.049 (2)0.010 (2)0.002 (2)
C4560.0585 (18)0.078 (2)0.075 (2)0.0278 (16)0.0119 (15)0.0069 (17)
Geometric parameters (Å, º) top
Cu1—N121.998 (2)Cu2—N421.993 (2)
Cu1—N12i1.998 (2)Cu2—N42ii1.993 (2)
Cu1—N222.027 (2)Cu2—N32ii2.026 (2)
Cu1—N22i2.027 (2)Cu2—N322.026 (2)
Cu1—Cl12.8174 (10)Cu2—Cl22.8226 (10)
N11—C151.343 (3)N32—C331.335 (4)
N11—N121.355 (3)N32—N311.356 (3)
N11—H110.8600N31—C351.347 (3)
N12—C131.324 (4)N31—H310.8600
C13—C141.396 (4)C33—C341.379 (4)
C13—H130.9300C33—H330.9300
C14—C151.369 (4)C34—C351.365 (4)
C14—H140.9300C34—H340.9300
C15—C1511.474 (4)C35—C3511.464 (4)
C151—C1521.374 (4)C351—C3561.383 (5)
C151—C1561.381 (4)C351—C3521.391 (4)
C152—C1531.381 (4)C352—C3531.370 (5)
C152—H1520.9300C352—H3520.9300
C153—C1541.382 (6)C353—C3541.367 (7)
C153—H1530.9300C353—H3530.9300
C154—C1551.339 (6)C354—C3551.372 (7)
C154—H1540.9300C354—H3540.9300
C155—C1561.395 (5)C355—C3561.389 (5)
C155—H1550.9300C355—H3550.9300
C156—H1560.9300C356—H3560.9300
N22—C231.320 (4)N42—C431.322 (4)
N22—N211.341 (3)N42—N411.350 (3)
N21—C251.347 (4)N41—C451.347 (3)
N21—H210.8600N41—H410.8600
C23—C241.410 (5)C43—C441.398 (4)
C23—H230.9300C43—H430.9300
C24—C251.361 (5)C44—C451.377 (4)
C24—H240.9300C44—H440.9300
C25—C2511.468 (4)C45—C4511.453 (4)
C251—C2521.364 (5)C451—C4561.391 (4)
C251—C2561.385 (5)C451—C4521.399 (4)
C252—C2531.381 (5)C452—C4531.379 (5)
C252—H2520.9300C452—H4520.9300
C253—C2541.351 (6)C453—C4541.378 (6)
C253—H2530.9300C453—H4530.9300
C254—C2551.354 (7)C454—C4551.367 (6)
C254—H2540.9300C454—H4540.9300
C255—C2561.414 (6)C455—C4561.362 (5)
C255—H2550.9300C455—H4550.9300
C256—H2560.9300C456—H4560.9300
N12—Cu1—N12i180.0 (2)N42—Cu2—N42ii180.00 (13)
N12—Cu1—N2287.39 (10)N42—Cu2—N32ii89.90 (9)
N12i—Cu1—N2292.61 (10)N42ii—Cu2—N32ii90.10 (9)
N12—Cu1—N22i92.61 (10)N42—Cu2—N3290.10 (9)
N12i—Cu1—N22i87.39 (10)N42ii—Cu2—N3289.90 (9)
N22—Cu1—N22i180.00 (13)N32ii—Cu2—N32180.000 (1)
N12—Cu1—Cl188.90 (7)N42—Cu2—Cl288.92 (7)
N12i—Cu1—Cl191.10 (7)N42ii—Cu2—Cl291.08 (7)
N22—Cu1—Cl188.1 (2)N32ii—Cu2—Cl292.35 (7)
N22i—Cu1—Cl191.94 (7)N32—Cu2—Cl287.65 (7)
C15—N11—N12111.3 (2)C33—N32—N31105.3 (2)
C15—N11—H11124.4C33—N32—Cu2133.9 (2)
N12—N11—H11124.4N31—N32—Cu2120.57 (18)
C13—N12—N11106.1 (2)C35—N31—N32111.6 (2)
C13—N12—Cu1133.42 (19)C35—N31—H31124.2
N11—N12—Cu1119.00 (18)N32—N31—H31124.2
N12—C13—C14109.8 (2)N32—C33—C34110.1 (3)
N12—C13—H13125.1N32—C33—H33124.9
C14—C13—H13125.1C34—C33—H33124.9
C15—C14—C13106.2 (3)C35—C34—C33106.9 (3)
C15—C14—H14126.9C35—C34—H34126.5
C13—C14—H14126.9C33—C34—H34126.5
N11—C15—C14106.6 (2)N31—C35—C34106.0 (3)
N11—C15—C151122.0 (3)N31—C35—C351122.5 (3)
C14—C15—C151131.3 (3)C34—C35—C351131.4 (3)
C152—C151—C156118.8 (3)C356—C351—C352118.8 (3)
C152—C151—C15122.2 (3)C356—C351—C35121.7 (3)
C156—C151—C15119.0 (3)C352—C351—C35119.5 (3)
C151—C152—C153120.8 (4)C353—C352—C351120.8 (4)
C151—C152—H152119.6C353—C352—H352119.6
C153—C152—H152119.6C351—C352—H352119.6
C152—C153—C154120.1 (4)C354—C353—C352119.9 (4)
C152—C153—H153120.0C354—C353—H353120.0
C154—C153—H153120.0C352—C353—H353120.0
C155—C154—C153119.3 (3)C353—C354—C355120.5 (4)
C155—C154—H154120.3C353—C354—H354119.7
C153—C154—H154120.3C355—C354—H354119.7
C154—C155—C156121.6 (4)C354—C355—C356120.0 (5)
C154—C155—H155119.2C354—C355—H355120.0
C156—C155—H155119.2C356—C355—H355120.0
C151—C156—C155119.5 (4)C351—C356—C355120.0 (4)
C151—C156—H156120.3C351—C356—H356120.0
C155—C156—H156120.3C355—C356—H356120.0
C23—N22—N21105.6 (3)C43—N42—N41106.0 (2)
C23—N22—Cu1134.4 (2)C43—N42—Cu2134.4 (2)
N21—N22—Cu1119.66 (18)N41—N42—Cu2119.28 (17)
N22—N21—C25112.6 (3)C45—N41—N42112.0 (2)
N22—N21—H21123.7C45—N41—H41124.0
C25—N21—H21123.7N42—N41—H41124.0
N22—C23—C24109.9 (3)N42—C43—C44110.0 (3)
N22—C23—H23125.0N42—C43—H43125.0
C24—C23—H23125.0C44—C43—H43125.0
C25—C24—C23106.0 (3)C45—C44—C43106.2 (2)
C25—C24—H24127.0C45—C44—H44126.9
C23—C24—H24127.0C43—C44—H44126.9
N21—C25—C24105.8 (3)N41—C45—C44105.8 (2)
N21—C25—C251121.7 (3)N41—C45—C451122.9 (2)
C24—C25—C251132.4 (3)C44—C45—C451131.3 (3)
C252—C251—C256118.2 (3)C456—C451—C452117.9 (3)
C252—C251—C25122.2 (3)C456—C451—C45119.5 (3)
C256—C251—C25119.6 (4)C452—C451—C45122.6 (3)
C251—C252—C253121.7 (4)C453—C452—C451120.6 (3)
C251—C252—H252119.1C453—C452—H452119.7
C253—C252—H252119.1C451—C452—H452119.7
C254—C253—C252120.5 (5)C454—C453—C452119.6 (4)
C254—C253—H253119.8C454—C453—H453120.2
C252—C253—H253119.8C452—C453—H453120.2
C253—C254—C255119.6 (4)C455—C454—C453120.5 (3)
C253—C254—H254120.2C455—C454—H454119.8
C255—C254—H254120.2C453—C454—H454119.8
C254—C255—C256120.8 (4)C456—C455—C454120.2 (4)
C254—C255—H255119.6C456—C455—H455119.9
C256—C255—H255119.6C454—C455—H455119.9
C251—C256—C255119.2 (5)C455—C456—C451121.3 (3)
C251—C256—H256120.4C455—C456—H456119.4
C255—C256—H256120.4C451—C456—H456119.4
C15—N11—N12—C130.4 (3)N42—Cu2—N32—C3381.9 (3)
C15—N11—N12—Cu1167.67 (18)N42ii—Cu2—N32—C3398.1 (3)
N22—Cu1—N12—C1377.0 (3)Cl2—Cu2—N32—C33170.9 (3)
N22i—Cu1—N12—C13103.0 (3)N42—Cu2—N32—N31104.7 (2)
Cl1—Cu1—N12—C13165.1 (3)N42ii—Cu2—N32—N3175.3 (2)
N22—Cu1—N12—N1187.1 (2)Cl2—Cu2—N32—N3115.8 (2)
N22i—Cu1—N12—N1192.9 (2)C33—N32—N31—C350.2 (3)
Cl1—Cu1—N12—N111.0 (2)Cu2—N32—N31—C35174.82 (17)
N11—N12—C13—C140.0 (3)N31—N32—C33—C340.2 (3)
Cu1—N12—C13—C14165.6 (2)Cu2—N32—C33—C34173.9 (2)
N12—C13—C14—C150.4 (3)N32—C33—C34—C350.2 (4)
N12—N11—C15—C140.6 (3)N32—N31—C35—C340.1 (3)
N12—N11—C15—C151178.5 (2)N32—N31—C35—C351179.7 (2)
C13—C14—C15—N110.6 (3)C33—C34—C35—N310.0 (3)
C13—C14—C15—C151178.2 (3)C33—C34—C35—C351179.8 (3)
N11—C15—C151—C1520.6 (4)N31—C35—C351—C35630.6 (5)
C14—C15—C151—C152176.8 (3)C34—C35—C351—C356149.6 (4)
N11—C15—C151—C156179.9 (3)N31—C35—C351—C352148.2 (3)
C14—C15—C151—C1562.8 (5)C34—C35—C351—C35231.6 (5)
C156—C151—C152—C1530.6 (5)C356—C351—C352—C3531.3 (6)
C15—C151—C152—C153179.9 (3)C35—C351—C352—C353179.9 (4)
C151—C152—C153—C1540.8 (6)C351—C352—C353—C3540.9 (7)
C152—C153—C154—C1550.3 (6)C352—C353—C354—C3550.3 (8)
C153—C154—C155—C1560.5 (6)C353—C354—C355—C3561.1 (8)
C152—C151—C156—C1550.2 (5)C352—C351—C356—C3550.5 (6)
C15—C151—C156—C155179.4 (3)C35—C351—C356—C355179.3 (4)
C154—C155—C156—C1510.8 (6)C354—C355—C356—C3510.7 (7)
N12—Cu1—N22—C2376.9 (3)N32ii—Cu2—N42—C43100.9 (3)
N12i—Cu1—N22—C23103.1 (3)N32—Cu2—N42—C4379.1 (3)
Cl1—Cu1—N22—C23165.8 (3)Cl2—Cu2—N42—C43166.7 (3)
N12—Cu1—N22—N2194.7 (2)N32ii—Cu2—N42—N4185.86 (19)
N12i—Cu1—N22—N2185.3 (2)N32—Cu2—N42—N4194.14 (19)
Cl1—Cu1—N22—N215.7 (2)Cl2—Cu2—N42—N416.5 (2)
C23—N22—N21—C251.0 (3)C43—N42—N41—C451.1 (3)
Cu1—N22—N21—C25172.72 (19)Cu2—N42—N41—C45173.84 (17)
N21—N22—C23—C240.6 (4)N41—N42—C43—C440.5 (3)
Cu1—N22—C23—C24171.9 (2)Cu2—N42—C43—C44173.3 (2)
N22—C23—C24—C250.1 (5)N42—C43—C44—C450.3 (3)
N22—N21—C25—C241.1 (4)N42—N41—C45—C441.3 (3)
N22—N21—C25—C251179.9 (3)N42—N41—C45—C451175.8 (2)
C23—C24—C25—N210.7 (4)C43—C44—C45—N410.9 (3)
C23—C24—C25—C251179.6 (4)C43—C44—C45—C451175.8 (3)
N21—C25—C251—C25210.1 (5)N41—C45—C451—C456164.8 (3)
C24—C25—C251—C252171.1 (4)C44—C45—C451—C45611.4 (5)
N21—C25—C251—C256169.5 (3)N41—C45—C451—C45212.9 (4)
C24—C25—C251—C2569.3 (6)C44—C45—C451—C452170.9 (3)
C256—C251—C252—C2530.4 (6)C456—C451—C452—C4531.1 (5)
C25—C251—C252—C253180.0 (4)C45—C451—C452—C453176.6 (3)
C251—C252—C253—C2540.0 (7)C451—C452—C453—C4540.7 (5)
C252—C253—C254—C2550.1 (8)C452—C453—C454—C4550.3 (6)
C253—C254—C255—C2560.1 (8)C453—C454—C455—C4560.8 (6)
C252—C251—C256—C2550.6 (6)C454—C455—C456—C4510.4 (6)
C25—C251—C256—C255179.8 (4)C452—C451—C456—C4550.5 (5)
C254—C255—C256—C2510.5 (8)C45—C451—C456—C455177.3 (3)
Symmetry codes: (i) x, y, z; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···Cl10.862.403.071 (2)135
N21—H21···Cl10.862.413.081 (3)135
N31—H31···Cl20.862.473.120 (3)133
N41—H41···Cl20.862.413.084 (2)135
C14—H14···Cl2iii0.932.933.805 (3)158
C155—H155···Cl2iv0.932.853.707 (4)154
C13—H13···Cg3iii0.932.903.638 (5)137
C455—H455···Cg3v0.932.883.693 (6)146
C456—H456···Cg2vi0.932.873.670 (5)144
Symmetry codes: (iii) x1, y, z; (iv) x, y+1, z+1; (v) x+1, y, z; (vi) x+1, y, z.

Experimental details

Crystal data
Chemical formula[CuCl2(C9H8N2)4]
Mr711.14
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)11.587 (4), 12.676 (3), 13.352 (3)
α, β, γ (°)81.54 (2), 72.71 (2), 68.29 (2)
V3)1738.1 (9)
Z2
Radiation typeCu Kα
µ (mm1)2.60
Crystal size (mm)0.6 × 0.5 × 0.25
Data collection
DiffractometerRigaku AFC-5S
diffractometer
Absorption correctionAnalytical
(de Meulenaer & Tompa, 1965)
Tmin, Tmax0.296, 0.569
No. of measured, independent and
observed [I > 2σ(I)] reflections
6374, 6079, 4962
Rint0.028
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.152, 1.14
No. of reflections6079
No. of parameters432
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.65

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1989), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 1989), SHELXS86 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1998), PARST97 (Nardelli, 1996).

Selected geometric parameters (Å, º) top
Cu1—N121.998 (2)Cu2—N421.993 (2)
Cu1—N222.027 (2)Cu2—N322.026 (2)
Cu1—Cl12.8174 (10)Cu2—Cl22.8226 (10)
N12—Cu1—N2287.39 (10)N42—Cu2—N3290.10 (9)
N12—Cu1—Cl188.90 (7)N42—Cu2—Cl288.92 (7)
N22—Cu1—Cl188.1 (2)N32i—Cu2—Cl292.35 (7)
Cl1—Cu1—N12—N111.0 (2)Cl2—Cu2—N32—N3115.8 (2)
N11—C15—C151—C1520.6 (4)N31—C35—C351—C352148.2 (3)
Cl1—Cu1—N22—N215.7 (2)Cl2—Cu2—N42—N416.5 (2)
N21—C25—C251—C25210.1 (5)N41—C45—C451—C45212.9 (4)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···Cl10.862.403.071 (2)135
N21—H21···Cl10.862.413.081 (3)135
N31—H31···Cl20.862.473.120 (3)133
N41—H41···Cl20.862.413.084 (2)135
C14—H14···Cl2ii0.932.933.805 (3)158
C155—H155···Cl2iii0.932.853.707 (4)154
C13—H13···Cg3ii0.932.903.638 (5)137
C455—H455···Cg3iv0.932.883.693 (6)146
C456—H456···Cg2v0.932.873.670 (5)144
Symmetry codes: (ii) x1, y, z; (iii) x, y+1, z+1; (iv) x+1, y, z; (v) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds