Download citation
Download citation
link to html
The crystal structures of (2,6-dioxo-1,4,7,11,14-penta­aza­cyclo­heptadecanato)copper(II) tetrahydrate, [Cu(C12H23N5O2)]·4H2O, (I), (3,16-dioxo-1-oxa-4,8,11,15-tetra­aza­cyclo­heptadecanato)copper(II) pentahydrate, [Cu(C12H22N4O3)]·5H2O, (II), and (3,16-dioxo-1-thia-4,8,11,15-tetra­aza­cyclo­heptadecanato)copper(II) trihydrate, [Cu(C12H22N4O2S)]·3H2O, (III), are reported. The coordination geometry in each case is approximately square pyramidal with two amine groups and two deprotonated amide groups in the basal plane. The apical position is occupied by an amine group, an ether O atom or a thio S atom. Trigonal distortion increases in the sequence S < O < N as apical donor. The relation between the distortion in the basal plane of the complexes and the maxima in their electronic spectra is discussed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102023247/na1585sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102023247/na1585Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102023247/na1585IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102023247/na1585IIIsup4.hkl
Contains datablock III

CCDC references: 217134; 217135; 217136

Comment top

The coordination chemistries in aqueous solutions of 2,6-dioxo-1,4,7,11,14-pentaazacycloheptadecane (L1), of 1-oxa-3,16-dioxo-4,8,11,15-tetraazacycloheptadecane (L2) and of 1-thia-3,16-dioxo-4,8,11,15-tetraazacycloheptadecane (L3) with Cu2+ ions have been published recently (Steenland et al., 1997, 1999). The main complexes formed with the three ligands were found to be a CuLH-2 complex, (I) with L1, (II) with L2 and (III) with L3. LH-2 in the three complexes indicates the twice deprotonated ligand. The electronic spectra of these CuLH-2 complexes exhibited two well defined maxima of about the same intensity, resulting in twin peaks. They were found at 14 490 cm−1 (ε = 133 M−1 cm−1) and 18 520 cm−1 (ε = 125 M−1 cm−1) for (I), at 16 050 cm−1 (ε = 157 M−1 cm−1) and 19 420 cm−1 (ε = 115 M−1 cm−1) with for (II), and at 15 400 cm−1 (ε = 154 M−1 cm−1) and 19 610 cm−1 (ε = 150 M−1 cm−1) for (III).

The band at the highest energy may be attributed for each complex to an electron transition from the dxy, dxz, dyz group of orbitals to dx2-y2; the band at lower energy to an electron transition from dz2 to dx2-y2 (Hathaway & Billing, 1970; Lever, 1984). The observation that the peak at the highest energy, thus reflecting the in-plane ligand field strength, had the lowest value (18 520 cm−1) for the strongest CuLH-2 complex, viz. (I) and the largest value (19 610 cm−1) for the weakest CuLH-2 complex, viz. (III), was puzzling and not readily understood from the thermodynamic stabilities of the complexes. Moreover, the νd-d bands of the copper(II) complex of the fully saturated 1,4,7,11,14-pentaazacycloheptadecane, (IV) were found at even lower wavenumbers, viz. 17 180 cm−1 (ε = 180 M−1 cm−1) and a shoulder at 11 900 cm−1 (ε = 65 M−1 cm−1) (Hay et al., 1984). A five-coordinate square-pyramidal structure was proposed for this latter CuL complex, which was later confirmed by X-ray crystallography (Boeyens et al., 1990) to be a conformer in which the nitrogen (indicated in Scheme by an asterisk) in the apical position is linked to its two neighbour N atoms in the basal plane by an ethylene and a propylene chain, respectively. The four N atoms in the basal plane form consecutive 5–6-5-membered linked chelate rings with the copper ion.

To get a better understanding of these observations, the CuLH-2 complexes of the three title ligands were prepared and obtained in the solid state. The structures of the three complexes consist of discrete neutral CuLH-2 entities solvated by a number of water molecules [see Figs. 1, 2 and 3 for (I), (II) and (III), respectively]. The coordination geometry in each of the three complexes is square-pyramidal overall, with two amine groups and the two deprotonated amide groups making up the basal plane. A fifth amine group in (I), the ether O atom in (II) and the thio S atom in (III) occupy the axial position. Each of the CuLH-2 entities forms hydrogen bonds with the water molecules through the amide O atoms and through the secondary amine groups (see Tables 2, 4 and 6 for details). In (I), the amine N—H group is also involved. Water O atoms act as both donors and acceptors with other water molecules. All hydrogen bonds combine to form an extensive three-dimensional framework. It is remarkable that only in compound (II) is there a direct hydrogen bond contact between complex units, via an N71—H71···O21 hydrogen bond.

The three CuLH-2 complex entities occur in the same conformation with consecutive 6–5-6-linked chelate rings in the basal plane. The angular structural parameter τ as an index for trigonality in these five-coordinate structures (Addison et al., 1984) is 0.30 in (I), 0.16 in (II), and 0.03 in (III). The distortion from a regular square-pyramidal geometry is thus the largest with the nitrogen donor and the lowest with the sulfur in tthe axial position. The two six-membered chelate rings in the three complexes are chairs, distorted towards a boat, and with a high puckering amplitude. Q values (Cremer & Pople, 1975) are on average 0.654 (5) in (I), 0.701 (5) in (II) and 0.676 (11) in (III). The conformations of the five-membered chelate rings (Duax et al., 1976) are envelope with a local pseudo-mirror along C82 and the mid-point of Cu···N71 for (I) and (II), and a half-chair with a local pseudo-twofold axis along Cu and the mid-point of C8A—C8B for (III). The weighted average Cu—N bond distance in the basal plane is 2.01 (2) Å in (I), 2.01 (2) Å in (II) and 2.00 (3) Å in (III). These bond lengths are appreciably shorter than in CuL complex (IV) [2.07 (6) Å; Hay et al., 1984]. This is certainly due to the presence of the two negatively charged amide N atoms in the basal plane and offers an obvious explanation for the much stronger in-plane ligand field in these CuLH-2 complexes compared with the in-plane ligand field in the CuL complex (IV). Also, the difference in the sequence of the linked chelate rings is a consequence of the presence in the basal plane of the two deprotonated N atoms, being stronger σ-donors than the amine N atoms (Miyoshi et al., 1983). The observed sequence of the in-plane ligand-field strength for the three CuLH-2 complexes, being (III) > (II) > (I), can now be understood from the distortion of the basal plane formed by the four independent N atoms (N31, N32, N71 and N72) in compounds (I) and (II). In (III),there is no distortion at all due to mirror symmetry in the basal plane formed by atoms N3 and N7. In fact, the largest displacement from the mean plane through atoms N31, N32, N71 and N72 is observed for N72, viz. 0.099 (4) Å in (II) and the largest value 0.298 (3) Å in (I). The displacement of the Cu from the mean plane does not follow the same trend for the three complexes, but again the largest displacement is observed in (I) [0.203 (1) Å] compared with 0.134 (1) Å in (II) or 0.182 (1) Å in (III).

In the axial position, the nitrogen donor, which is the strongest of the three donors, produces the strongest deviation in the basal plane, resulting in the weakest in-plane ligand field. The sulfur donor with the longest Cu—S axial bond distance causes less distortion in the basal plane, resulting in the strongest in-plane ligand field. The position of the peak with the lowest energy (dz2 dx2-y2 transition) is then determined by two aspects: first, the stronger the intrinsic axial donor strength (N > S > O) the lower the energy for this transition to occur; second, the stronger the in-plane ligand field (N < O < S) the higher the energy for this transition. These two aspects combine and result in the lowest position of the second peak for (I) with the N atom in the axial position. Deviation of the axial donor from a position more or less perpendicular above the mid-point in the basal plane may explain the much higher molar absorptivity of this transition and the appearance of the twin peak feature in the electronic spectra of these CuLH-2 complexes.

Experimental top

The title complexes were obtained by mixing in water at room temperature equimolar amounts of Cu(ClO4)2·6H2O (444.6 mg, 1.20 mmol) and the ligands L1 (478.4 mg, 1.20 mmol), L2 (345.9 mg, 1.20 mmol) or L3 (455.8 mg, 1.20 mmol) in their hydrated hydrochloride form, and by adding a calculated amount of a concentrated aqueous 1.0 M KOH solution to bring the pH to 7. The solvent was then evaporated on a rotary evaporator and the solid residue taken up in ethanol. Diethyl ether was then added to the ethanol solution to precipitate most of the inorganic salts. The ethanol solution was then evaporated and the remaining solid dissolved in water. The aqueous solution was allowed to concentrate slowly. After about two weeks, crystals of the three complexes were obtained [yields: 203.6 mg (42%) for (I); 345.9 mg (68%) for (II); 300.6 mg (62%) for (III)]. Suitable crystals were selected for X-ray structure determination. Analysis found (calculated for C12H23CuN5O2·4H2O, %): C 35.3 (35.6), Cu 15.5 (15.7), N 16.9 (17.3); found (calculated for C12H22CuN4O3·5H2O, %): C 33.8 (34.0), Cu 14.8 (15.0), N 13.1 (13.2); found (calculated for C12H22CuN4O2S·3H2O, %): C 35.5 (35.6), Cu 15.7 (15.7), N 13.8 (13.9). The number of solvate water molecules in each complex was also determined from titrations of known amounts of complex in water with standardized hydrochloric acid, and is the nearest whole number value determined from the equivalence point in the titrations. IR spectra (KBr pellets): ν (cm−1) 3400–3200 (br), 1599 (s), 1585 (s), 1305 (s), 1100 (s) for (I); 3415 (br), 3168 (s), 3087 (s), 1599 (s), 1321 (s), 1112 (s) for (II); 3392 (br), 3226 (br), 1592 (s), 1565 (s), 1385 (s), 1041 (s) for (III). EPR (powders at room temperature) 34.00 GHz (Q-band): gparallel and gperpendicular, respectively, 2.2170 and 2.0442 for (I), 2.2098 and 2.0469 for (II), and 2.2034 and 2.0415 for (III).

Refinement top

The coordinates of the water H atoms in the three compounds were calculated by the program HYDROGEN (Nardelli, 1999) and introduced in the refinements keeping the O—H distances and the H—O—H angles constrained. All other H atoms were treated as riding, with C—H distances of 0.97Åand N—H distances in the range 0.85–0/90 Å. The structure of (III) has pseudosymmetry, with a mirror plane through atoms Cu, S and O3 for all atoms except C8A and C8B. The pseudo-symmetry resulted in high correlation factors and poor convergence on refinement in space group P21. Therefore, the structure was refined in the centrosymmetric space group P21/m with a disorder model for C8A/C8B. The structure of (III) was refined with three solvate water molecules in accord with the chemical analysis, although the occupancy of water atom O3 refined from the initial value of 0.5 to 0.385. The occupancy of the other O atom (O1) did not change from the initial value of 1 when it was refined, so it was fixed at 1.

Computing details top

Data collection: XSCANS (Siemens, 1996) for (I), (III); DIF4 (Stoe & Cie, 1992) for (II). Cell refinement: XSCANS for (I), (III); DIF4 for (II). Data reduction: REDUCE in XSCANS for (I), (III); REDU4 (Stoe & Cie, 1992) for (II). For all compounds, program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Bergerhoff, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I) with 50% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of the molecule of (II) with 50% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. A view of the molecule of (III) with 50% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.
(I) (2,6-dioxo-1,4,7,11,14-pentaazacycloheptadecanato)copper(II) tetrahydrate top
Crystal data top
[Cu(C12H23N5O2)]·4H2OF(000) = 860
Mr = 404.96Dx = 1.44 Mg m3
Orthorhombic, Pna21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2c -2nCell parameters from 41 reflections
a = 13.3375 (5) Åθ = 10.9–27.7°
b = 8.9992 (3) ŵ = 1.98 mm1
c = 15.5637 (4) ÅT = 293 K
V = 1868.06 (11) Å3Tablet, dark blue
Z = 40.48 × 0.4 × 0.11 mm
Data collection top
Siemens P4 four-circle
diffractometer
Rint = 0.033
ω/2θ scansθmax = 69.1°
Absorption correction: ψ scan
(XEMP; Siemens, 1989)
h = 116
Tmin = 0.400, Tmax = 0.804k = 110
2267 measured reflectionsl = 161
1856 independent reflections3 standard reflections every 100 reflections
1824 reflections with I > 2σ(I) intensity decay: 3%
Refinement top
Refinement on F2 w = 1/[σ2(Fo2) + (0.0764P)2 + 0.2709P]
where P = (Fo2 + 2Fc2)/3
Least-squares matrix: full(Δ/σ)max < 0.001
R[F2 > 2σ(F2)] = 0.040Δρmax = 0.67 e Å3
wR(F2) = 0.104Δρmin = 0.54 e Å3
S = 1.11Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1856 reflectionsExtinction coefficient: 0.0062 (5)
218 parametersAbsolute structure: Flack (1983), 138 Friedel pairs
H-atom parameters constrainedAbsolute structure parameter: 0.03 (4)
Crystal data top
[Cu(C12H23N5O2)]·4H2OV = 1868.06 (11) Å3
Mr = 404.96Z = 4
Orthorhombic, Pna21Cu Kα radiation
a = 13.3375 (5) ŵ = 1.98 mm1
b = 8.9992 (3) ÅT = 293 K
c = 15.5637 (4) Å0.48 × 0.4 × 0.11 mm
Data collection top
Siemens P4 four-circle
diffractometer
1824 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XEMP; Siemens, 1989)
Rint = 0.033
Tmin = 0.400, Tmax = 0.8043 standard reflections every 100 reflections
2267 measured reflections intensity decay: 3%
1856 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.104Δρmax = 0.67 e Å3
S = 1.11Δρmin = 0.54 e Å3
1856 reflectionsAbsolute structure: Flack (1983), 138 Friedel pairs
218 parametersAbsolute structure parameter: 0.03 (4)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.22964 (3)0.09467 (5)0.14705 (5)0.0348 (2)
N0.2048 (2)0.0652 (4)0.2588 (2)0.0408 (7)
H0.26040.10350.28290.053*
C110.1463 (3)0.1861 (4)0.2221 (3)0.0468 (9)
H11A0.19140.26450.20370.061*
H11B0.10260.22670.2660.061*
C210.0829 (2)0.1358 (4)0.1455 (3)0.0410 (7)
O210.0119 (2)0.2256 (3)0.1236 (2)0.0559 (9)
N310.1088 (2)0.0142 (3)0.1083 (2)0.0392 (6)
C410.0631 (3)0.0270 (5)0.0262 (3)0.0455 (9)
H41A0.0020.02980.01830.059*
H41B0.04510.13150.02780.059*
C510.1319 (4)0.0001 (6)0.0493 (4)0.0585 (12)
H51A0.14680.10550.05250.076*
H51B0.09720.02740.10170.076*
C610.2300 (3)0.0857 (6)0.0444 (4)0.0547 (14)
H61A0.21490.1910.04190.071*
H61B0.26770.06780.09670.071*
N710.2934 (2)0.0462 (4)0.0302 (2)0.0433 (7)
H710.29580.04930.03060.056*
C810.3943 (3)0.1133 (5)0.0261 (3)0.0502 (10)
H81A0.4370.05590.01190.065*
H81B0.390.21390.0040.065*
C120.1506 (4)0.0215 (6)0.3244 (3)0.0604 (13)
H12A0.0830.01750.3290.079*
H12B0.18320.0060.37940.079*
C220.1441 (3)0.1845 (5)0.3084 (3)0.0459 (9)
O220.1164 (3)0.2661 (4)0.3714 (2)0.0609 (8)
N320.1691 (2)0.2332 (3)0.2326 (2)0.0402 (7)
C420.1870 (4)0.3922 (4)0.2214 (4)0.0483 (10)
H42A0.16560.42270.16450.063*
H42B0.14850.44780.26340.063*
C520.2974 (4)0.4245 (5)0.2327 (4)0.0568 (12)
H52A0.31720.39320.28990.074*
H52B0.30730.53110.22930.074*
C620.3659 (3)0.3509 (5)0.1684 (3)0.0528 (11)
H62A0.43380.38630.17750.069*
H62B0.34570.38010.1110.069*
N720.3653 (2)0.1860 (4)0.1741 (2)0.0410 (7)
H720.38290.15720.22520.053*
C820.4380 (3)0.1147 (5)0.1158 (3)0.0482 (10)
H82A0.50060.16940.11620.063*
H82B0.45130.01390.13460.063*
O10.4064 (3)0.7935 (4)0.2825 (3)0.0717 (10)
H1A0.43230.86980.30680.093*
H1B0.43640.78120.23510.093*
O20.1407 (3)0.5830 (4)0.0157 (3)0.0700 (10)
H2A0.09980.63070.04690.091*
H2B0.19980.60470.03210.091*
O30.4414 (3)0.0813 (4)0.3484 (3)0.0644 (9)
H3A0.40970.09260.39520.084*
H3B0.49780.1240.35340.084*
O40.3324 (2)0.7155 (4)0.0343 (2)0.0571 (8)
H4A0.38470.7290.0640.074*
H4B0.34780.72680.01830.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0331 (3)0.0395 (3)0.0317 (4)0.00230 (15)0.0027 (2)0.0025 (2)
N0.0366 (13)0.0457 (15)0.040 (2)0.0019 (13)0.0033 (15)0.0007 (15)
C110.0479 (18)0.0421 (17)0.050 (3)0.0057 (15)0.0090 (19)0.0082 (18)
C210.0381 (13)0.0446 (15)0.040 (2)0.0031 (13)0.0053 (18)0.005 (2)
O210.0518 (14)0.0561 (14)0.060 (2)0.0189 (12)0.0104 (14)0.0032 (14)
N310.0380 (14)0.0438 (15)0.0357 (16)0.0013 (11)0.0003 (13)0.0012 (13)
C410.0402 (16)0.058 (2)0.038 (2)0.0000 (15)0.0048 (16)0.0022 (17)
C510.061 (2)0.064 (3)0.050 (3)0.002 (2)0.003 (2)0.008 (2)
C610.054 (3)0.079 (4)0.032 (3)0.0070 (19)0.0056 (18)0.000 (2)
N710.0410 (14)0.0497 (16)0.039 (2)0.0001 (14)0.0040 (14)0.0050 (15)
C810.0429 (19)0.063 (2)0.045 (3)0.0017 (16)0.0108 (19)0.0039 (18)
C120.081 (3)0.062 (3)0.038 (3)0.006 (2)0.017 (2)0.001 (2)
C220.0409 (17)0.062 (2)0.035 (2)0.0047 (16)0.0018 (16)0.0072 (18)
O220.073 (2)0.0697 (19)0.0403 (19)0.0183 (15)0.0076 (15)0.0083 (15)
N320.0441 (14)0.0411 (15)0.0354 (19)0.0023 (12)0.0028 (13)0.0023 (13)
C420.055 (2)0.043 (2)0.047 (3)0.0042 (14)0.004 (2)0.0047 (17)
C520.064 (3)0.045 (2)0.062 (3)0.0079 (19)0.004 (3)0.009 (2)
C620.0507 (18)0.0475 (19)0.060 (3)0.0114 (16)0.0058 (19)0.0029 (18)
N720.0371 (12)0.0475 (15)0.038 (2)0.0047 (11)0.0004 (12)0.0005 (12)
C820.0351 (16)0.0542 (19)0.055 (3)0.0018 (14)0.0073 (17)0.0010 (17)
O10.0587 (18)0.076 (2)0.081 (3)0.0044 (16)0.0066 (19)0.005 (2)
O20.069 (2)0.083 (2)0.058 (3)0.0073 (16)0.0065 (19)0.0093 (18)
O30.0587 (18)0.086 (2)0.048 (2)0.0074 (16)0.0013 (17)0.0025 (17)
O40.0480 (15)0.079 (2)0.0445 (19)0.0051 (14)0.0038 (14)0.0018 (15)
Geometric parameters (Å, º) top
Cu—N311.980 (3)C12—C221.491 (8)
Cu—N321.995 (3)C12—H12A0.97
Cu—N722.032 (3)C12—H12B0.97
Cu—N712.055 (4)C22—O221.279 (5)
Cu—N2.281 (4)C22—N321.301 (6)
N—C111.456 (5)N32—C421.461 (5)
N—C121.475 (6)C42—C521.511 (7)
N—H0.9C42—H42A0.97
C11—C211.530 (6)C42—H42B0.97
C11—H11A0.97C52—C621.509 (7)
C11—H11B0.97C52—H52A0.97
C21—N311.285 (5)C52—H52B0.97
C21—O211.291 (4)C62—N721.487 (5)
N31—C411.463 (5)C62—H62A0.97
C41—C511.511 (7)C62—H62B0.97
C41—H41A0.97N72—C821.474 (5)
C41—H41B0.97N72—H720.8684
C51—C611.521 (7)C82—H82A0.97
C51—H51A0.97C82—H82B0.97
C51—H51B0.97O1—H1A0.8559
C61—N711.480 (7)O1—H1B0.8469
C61—H61A0.97O2—H2A0.8468
C61—H61B0.97O2—H2B0.8509
N71—C811.477 (5)O3—H3A0.8485
N71—H710.8602O3—H3B0.8491
C81—C821.513 (7)O4—H4A0.8463
C81—H81A0.97O4—H4B0.8498
C81—H81B0.97
N31—Cu—N32100.6 (1)N71—C81—C82108.3 (4)
N31—Cu—N72171.2 (1)N71—C81—H81A110
N32—Cu—N7288.2 (1)C82—C81—H81A110
N31—Cu—N7187.8 (1)N71—C81—H81B110
N32—Cu—N71153.0 (1)C82—C81—H81B110
N72—Cu—N7184.3 (1)H81A—C81—H81B108.4
N31—Cu—N78.6 (1)N—C12—C22115.7 (4)
N32—Cu—N80.0 (1)N—C12—H12A108.4
N72—Cu—N103.1 (1)C22—C12—H12A108.4
N71—Cu—N126.9 (1)N—C12—H12B108.4
C11—N—C12113.8 (4)C22—C12—H12B108.4
C11—N—Cu104.5 (3)H12A—C12—H12B107.4
C12—N—Cu105.4 (3)O22—C22—N32125.2 (4)
C11—N—H108.6O22—C22—C12116.9 (4)
C12—N—H108.5N32—C22—C12117.9 (4)
Cu—N—H116.1C22—N32—C42118.6 (4)
N—C11—C21112.4 (3)C22—N32—Cu119.9 (3)
N—C11—H11A109.1C42—N32—Cu117.8 (3)
C21—C11—H11A109.1N32—C42—C52109.5 (4)
N—C11—H11B109.1N32—C42—H42A109.8
C21—C11—H11B109.1C52—C42—H42A109.8
H11A—C11—H11B107.9N32—C42—H42B109.8
N31—C21—O21127.7 (4)C52—C42—H42B109.8
N31—C21—C11117.1 (3)H42A—C42—H42B108.2
O21—C21—C11115.2 (3)C62—C52—C42115.4 (4)
C21—N31—C41119.8 (3)C62—C52—H52A108.4
C21—N31—Cu120.1 (3)C42—C52—H52A108.4
C41—N31—Cu118.6 (3)C62—C52—H52B108.4
N31—C41—C51112.7 (3)C42—C52—H52B108.4
N31—C41—H41A109.1H52A—C52—H52B107.5
C51—C41—H41A109.1N72—C62—C52113.3 (4)
N31—C41—H41B109.1N72—C62—H62A108.9
C51—C41—H41B109.1C52—C62—H62A108.9
H41A—C41—H41B107.8N72—C62—H62B108.9
C41—C51—C61113.7 (4)C52—C62—H62B108.9
C41—C51—H51A108.8H62A—C62—H62B107.7
C61—C51—H51A108.8C82—N72—C62113.2 (3)
C41—C51—H51B108.8C82—N72—Cu106.4 (2)
C61—C51—H51B108.8C62—N72—Cu113.3 (2)
H51A—C51—H51B107.7C82—N72—H72104.9
N71—C61—C51114.1 (4)C62—N72—H72110.5
N71—C61—H61A108.7Cu—N72—H72108
C51—C61—H61A108.7N72—C82—C81108.6 (3)
N71—C61—H61B108.7N72—C82—H82A110
C51—C61—H61B108.7C81—C82—H82A110
H61A—C61—H61B107.6N72—C82—H82B110
C81—N71—C61112.9 (4)C81—C82—H82B110
C81—N71—Cu109.2 (3)H82A—C82—H82B108.3
C61—N71—Cu114.0 (3)H1A—O1—H1B107.4
C81—N71—H71112H2A—O2—H2B107.9
C61—N71—H71105.5H3A—O3—H3B107.9
Cu—N71—H71102.7H4A—O4—H4B108.1
N31—Cu—N—C1122.6 (3)N—Cu—N71—C61125.3 (3)
N32—Cu—N—C11125.7 (3)C61—N71—C81—C82159.6 (4)
N72—Cu—N—C11148.5 (3)Cu—N71—C81—C8231.7 (4)
N71—Cu—N—C1155.8 (3)C11—N—C12—C22124.3 (4)
N31—Cu—N—C1297.7 (3)Cu—N—C12—C2210.3 (5)
N32—Cu—N—C125.4 (3)N—C12—C22—O22166.1 (4)
N72—Cu—N—C1291.2 (3)N—C12—C22—N3212.4 (6)
N71—Cu—N—C12176.1 (3)O22—C22—N32—C4213.1 (6)
C12—N—C11—C2187.2 (5)C12—C22—N32—C42165.3 (4)
Cu—N—C11—C2127.3 (4)O22—C22—N32—Cu171.1 (3)
N—C11—C21—N3119.4 (5)C12—C22—N32—Cu7.3 (5)
N—C11—C21—O21163.6 (4)N31—Cu—N32—C2277.1 (3)
O21—C21—N31—C417.2 (6)N72—Cu—N32—C22102.8 (3)
C11—C21—N31—C41169.3 (3)N71—Cu—N32—C22176.6 (3)
O21—C21—N31—Cu173.7 (3)N—Cu—N32—C220.8 (3)
C11—C21—N31—Cu2.8 (5)N31—Cu—N32—C42124.7 (3)
N32—Cu—N31—C2192.1 (3)N72—Cu—N32—C4255.4 (3)
N71—Cu—N31—C21113.7 (3)N71—Cu—N32—C4218.4 (5)
N—Cu—N31—C2114.7 (3)N—Cu—N32—C42159.0 (3)
N32—Cu—N31—C41101.3 (3)C22—N32—C42—C5293.4 (5)
N71—Cu—N31—C4152.9 (3)Cu—N32—C42—C5265.1 (5)
N—Cu—N31—C41178.7 (3)N32—C42—C52—C6262.4 (6)
C21—N31—C41—C51103.3 (4)C42—C52—C62—N7264.3 (6)
Cu—N31—C41—C5163.4 (4)C52—C62—N72—C82175.6 (4)
N31—C41—C51—C6159.6 (5)C52—C62—N72—Cu63.1 (5)
C41—C51—C61—N7162.3 (6)N32—Cu—N72—C82176.7 (3)
C51—C61—N71—C81171.0 (4)N71—Cu—N72—C8222.6 (3)
C51—C61—N71—Cu63.6 (5)N—Cu—N72—C82104.0 (3)
N31—Cu—N71—C81178.7 (3)N32—Cu—N72—C6251.7 (3)
N32—Cu—N71—C8169.4 (4)N71—Cu—N72—C62102.4 (3)
N72—Cu—N71—C815.3 (3)N—Cu—N72—C62131.0 (3)
N—Cu—N71—C81107.4 (3)C62—N72—C82—C8178.7 (4)
N31—Cu—N71—C6151.3 (3)Cu—N72—C82—C8146.4 (4)
N32—Cu—N71—C6157.9 (4)N71—C81—C82—N7252.5 (4)
N72—Cu—N71—C61132.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H···O1i0.902.162.997 (6)155
O1—H1A···O3ii0.852.012.825 (5)157
O1—H1B···O21iii0.852.072.910 (5)173
O2—H2A···O21ii0.852.122.955 (5)172
O2—H2B···O40.852.032.835 (5)158
O3—H3A···O2iv0.851.992.825 (6)166
O3—H3B···O22iii0.851.892.732 (6)174
O4—H4A···O21iii0.851.932.770 (4)170
O4—H4B···O22v0.851.822.665 (4)176
N71—H71···O4i0.862.173.023 (5)169
N72—H72···O30.872.183.045 (5)174
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x+1/2, y1/2, z; (iv) x+1/2, y+1/2, z+1/2; (v) x+1/2, y1/2, z1/2.
(II) (3,16-dioxo-1-oxa-4,8,11,15-tetraazacycloheptadecanato)copper(II) pentahydrate top
Crystal data top
[Cu(C12H22N4O3)]·5H2OF(000) = 900
Mr = 423.96Dx = 1.448 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 25 reflections
a = 12.098 (9) Åθ = 20–25°
b = 20.337 (14) ŵ = 1.17 mm1
c = 8.134 (5) ÅT = 293 K
β = 103.68 (5)°Prism, blue
V = 1944 (2) Å30.43 × 0.29 × 0.29 mm
Z = 4
Data collection top
Stoe Stadi-4 four-circle
diffractometer
Rint = 0.033
ω scansθmax = 27.5°
Absorption correction: ψ scan
(EMPIR; Stoe & Cie, 1989)
h = 1515
Tmin = 0.670, Tmax = 0.710k = 262
3348 measured reflectionsl = 210
3020 independent reflections3 standard reflections every 60 min
2510 reflections with I > 2σ(I) intensity decay: 3%
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0565P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.043(Δ/σ)max < 0.001
wR(F2) = 0.101Δρmax = 0.47 e Å3
S = 1.04Δρmin = 0.60 e Å3
3020 reflectionsAbsolute structure: Flack (1983), 773 Friedel pairs
226 parametersAbsolute structure parameter: 0.005 (18)
Crystal data top
[Cu(C12H22N4O3)]·5H2OV = 1944 (2) Å3
Mr = 423.96Z = 4
Monoclinic, CcMo Kα radiation
a = 12.098 (9) ŵ = 1.17 mm1
b = 20.337 (14) ÅT = 293 K
c = 8.134 (5) Å0.43 × 0.29 × 0.29 mm
β = 103.68 (5)°
Data collection top
Stoe Stadi-4 four-circle
diffractometer
2510 reflections with I > 2σ(I)
Absorption correction: ψ scan
(EMPIR; Stoe & Cie, 1989)
Rint = 0.033
Tmin = 0.670, Tmax = 0.7103 standard reflections every 60 min
3348 measured reflections intensity decay: 3%
3020 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101Δρmax = 0.47 e Å3
S = 1.04Δρmin = 0.60 e Å3
3020 reflectionsAbsolute structure: Flack (1983), 773 Friedel pairs
226 parametersAbsolute structure parameter: 0.005 (18)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.24173 (4)0.12333 (2)0.08756 (6)0.02720 (14)
O0.3412 (3)0.02130 (18)0.1808 (5)0.0320 (9)
O210.0866 (3)0.05303 (17)0.0726 (5)0.0430 (9)
O220.5514 (3)0.08538 (19)0.0261 (5)0.0435 (9)
N310.1432 (3)0.0556 (2)0.0433 (6)0.0326 (10)
N320.3700 (3)0.1218 (2)0.0263 (6)0.0308 (10)
N710.1095 (3)0.1525 (2)0.1895 (6)0.0322 (11)
H710.10610.11870.26030.042*
N720.3259 (3)0.1978 (2)0.2267 (6)0.0335 (10)
H720.39990.18950.27920.043*
C110.2673 (3)0.0297 (2)0.0998 (9)0.0357 (13)
H11A0.24990.0580.18630.046*
H11B0.30750.0560.03320.046*
C120.4473 (4)0.0255 (3)0.1337 (8)0.0404 (13)
H12A0.45990.01530.07910.053*
H12B0.50770.02990.23550.053*
C210.1570 (4)0.0066 (3)0.0138 (7)0.0333 (12)
C220.4557 (4)0.0819 (2)0.0165 (7)0.0320 (11)
C410.0316 (4)0.0780 (3)0.1452 (8)0.0425 (13)
H41A0.00470.04260.2180.055*
H41B0.04280.11450.21650.055*
C420.3817 (5)0.1828 (3)0.1186 (8)0.0447 (14)
H42A0.31070.19180.19990.058*
H42B0.44030.17690.18060.058*
C510.0440 (4)0.0995 (3)0.0321 (9)0.0447 (14)
H51A0.11980.10750.10120.058*
H51B0.04930.06390.04510.058*
C520.4123 (4)0.2410 (3)0.0001 (8)0.0443 (14)
H52A0.4880.23410.07070.058*
H52B0.41490.28010.06710.058*
C610.0029 (4)0.1605 (3)0.0696 (8)0.0426 (15)
H61A0.00180.19610.00760.055*
H61B0.05850.17280.13270.055*
C620.3320 (4)0.2536 (3)0.1134 (8)0.0411 (13)
H62A0.35690.29250.18110.053*
H62B0.25660.26230.04370.053*
C810.1419 (4)0.2129 (3)0.2908 (8)0.0398 (13)
H81A0.1020.21460.3810.052*
H81B0.12040.25130.21950.052*
C820.2671 (4)0.2136 (3)0.3644 (8)0.0430 (13)
H82A0.29070.25650.41170.056*
H82B0.28690.18120.45420.056*
O10.8552 (3)0.0677 (2)0.3716 (6)0.0563 (11)
H1A0.92620.06260.38140.073*
H1B0.83720.04660.45150.073*
O20.6466 (4)0.1167 (2)0.2930 (7)0.0608 (12)
H2A0.61730.10710.21090.079*
H2B0.69990.1420.25630.079*
O30.7114 (4)0.1691 (2)0.1932 (7)0.0639 (13)
H3A0.67990.14040.12160.083*
H3B0.77460.15350.2480.083*
O40.7347 (4)0.00322 (18)0.0895 (8)0.0519 (9)
H4A0.67820.02180.0510.067*
H4B0.71260.03320.14720.067*
O50.5540 (4)0.1749 (3)0.4042 (7)0.0805 (17)
H5A0.6060.17970.35090.105*
H5B0.57450.14410.47570.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.01878 (19)0.0313 (2)0.0324 (3)0.0002 (3)0.00789 (18)0.0005 (4)
O0.0256 (16)0.038 (2)0.033 (2)0.0002 (16)0.0079 (16)0.0032 (19)
O210.0336 (18)0.0419 (18)0.054 (3)0.0096 (15)0.0123 (19)0.017 (2)
O220.0217 (15)0.062 (2)0.050 (2)0.0011 (16)0.0153 (17)0.001 (2)
N310.0218 (18)0.040 (2)0.035 (3)0.0014 (17)0.0042 (19)0.001 (2)
N320.0242 (19)0.040 (2)0.029 (2)0.0014 (18)0.0082 (18)0.004 (2)
N710.025 (2)0.034 (2)0.041 (3)0.0031 (18)0.015 (2)0.006 (2)
N720.0217 (17)0.037 (2)0.041 (3)0.0008 (16)0.0077 (19)0.006 (2)
C110.025 (3)0.033 (2)0.050 (3)0.0013 (17)0.011 (3)0.002 (3)
C120.022 (2)0.047 (3)0.053 (4)0.003 (2)0.011 (2)0.007 (3)
C210.028 (2)0.041 (3)0.033 (3)0.005 (2)0.011 (2)0.007 (3)
C220.027 (2)0.040 (3)0.030 (3)0.004 (2)0.007 (2)0.008 (2)
C410.028 (2)0.047 (3)0.048 (4)0.000 (2)0.000 (3)0.004 (3)
C420.037 (3)0.061 (4)0.040 (3)0.007 (3)0.017 (3)0.015 (3)
C510.021 (2)0.052 (3)0.059 (4)0.001 (2)0.005 (3)0.005 (3)
C520.034 (3)0.045 (3)0.057 (4)0.003 (2)0.016 (3)0.018 (3)
C610.021 (2)0.044 (3)0.063 (4)0.0071 (19)0.011 (3)0.010 (3)
C620.031 (3)0.035 (3)0.057 (4)0.001 (2)0.010 (3)0.002 (3)
C810.035 (3)0.041 (3)0.051 (4)0.001 (2)0.024 (3)0.007 (3)
C820.037 (3)0.054 (3)0.041 (3)0.000 (2)0.014 (3)0.008 (3)
O10.0366 (19)0.075 (3)0.057 (3)0.008 (2)0.010 (2)0.015 (3)
O20.068 (3)0.057 (2)0.065 (3)0.001 (2)0.032 (3)0.011 (2)
O30.052 (2)0.065 (3)0.071 (3)0.004 (2)0.008 (2)0.008 (3)
O40.0431 (18)0.0522 (18)0.066 (2)0.001 (3)0.0237 (18)0.009 (3)
O50.041 (2)0.140 (5)0.056 (3)0.028 (3)0.003 (2)0.002 (3)
Geometric parameters (Å, º) top
Cu—N311.963 (4)C42—C521.517 (9)
Cu—N321.987 (4)C42—H42A0.97
Cu—N722.017 (4)C42—H42B0.97
Cu—N712.056 (4)C51—C611.509 (8)
Cu—O2.428 (4)C51—H51A0.97
O—C111.425 (6)C51—H51B0.97
O—C121.427 (6)C52—C621.510 (8)
O21—C211.286 (6)C52—H52A0.97
O22—C221.286 (6)C52—H52B0.97
N31—C211.291 (7)C61—H61A0.97
N31—C411.479 (6)C61—H61B0.97
N32—C221.298 (6)C62—H62A0.97
N32—C421.474 (7)C62—H62B0.97
N71—C811.480 (7)C81—C821.491 (7)
N71—C611.483 (7)C81—H81A0.97
N71—H710.90C81—H81B0.97
N72—C621.474 (7)C82—H82A0.97
N72—C821.496 (7)C82—H82B0.97
N72—H720.9123O1—H1A0.85
C11—C211.507 (7)O1—H1B0.85
C11—H11A0.97O2—H2A0.85
C11—H11B0.97O2—H2B0.82
C12—C221.510 (8)O3—H3A0.85
C12—H12A0.97O3—H3B0.85
C12—H12B0.97O4—H4A0.85
C41—C511.507 (8)O4—H4B0.85
C41—H41A0.97O5—H5A0.85
C41—H41B0.97O5—H5B0.85
N31—Cu—N32100.2 (2)C51—C41—H41A109.5
N31—Cu—N72173.2 (2)N31—C41—H41B109.5
N32—Cu—N7285.8 (2)C51—C41—H41B109.5
N31—Cu—N7189.4 (2)H41A—C41—H41B108.1
N32—Cu—N71163.9 (2)N32—C42—C52111.8 (5)
N72—Cu—N7184.0 (2)N32—C42—H42A109.3
N31—Cu—O76.2 (2)C52—C42—H42A109.3
N32—Cu—O75.4 (2)N32—C42—H42B109.3
N72—Cu—O108.6 (2)C52—C42—H42B109.3
N71—Cu—O119.7 (2)H42A—C42—H42B107.9
C11—O—C12115.2 (4)C61—C51—C41113.8 (4)
C11—O—Cu105.5 (3)C61—C51—H51A108.8
C12—O—Cu106.0 (3)C41—C51—H51A108.8
C21—N31—C41117.9 (4)C61—C51—H51B108.8
C21—N31—Cu123.5 (4)C41—C51—H51B108.8
C41—N31—Cu116.3 (3)H51A—C51—H51B107.7
C22—N32—C42119.8 (4)C62—C52—C42115.2 (4)
C22—N32—Cu123.2 (4)C62—C52—H52A108.5
C42—N32—Cu113.8 (3)C42—C52—H52A108.5
C81—N71—C61110.9 (4)C62—C52—H52B108.5
C81—N71—Cu109.5 (3)C42—C52—H52B108.5
C61—N71—Cu116.5 (4)H52A—C52—H52B107.5
C81—N71—H71108.8N71—C61—C51113.7 (4)
C61—N71—H71109.3N71—C61—H61A108.8
Cu—N71—H71101.3C51—C61—H61A108.8
C62—N72—C82114.0 (4)N71—C61—H61B108.8
C62—N72—Cu108.7 (4)C51—C61—H61B108.8
C82—N72—Cu108.3 (3)H61A—C61—H61B107.7
C62—N72—H72104.3N72—C62—C52112.7 (4)
C82—N72—H72106.1N72—C62—H62A109
Cu—N72—H72115.6C52—C62—H62A109
O—C11—C21115.1 (4)N72—C62—H62B109
O—C11—H11A108.5C52—C62—H62B109
C21—C11—H11A108.5H62A—C62—H62B107.8
O—C11—H11B108.5N71—C81—C82110.0 (4)
C21—C11—H11B108.5N71—C81—H81A109.7
H11A—C11—H11B107.5C82—C81—H81A109.7
O—C12—C22114.5 (4)N71—C81—H81B109.7
O—C12—H12A108.6C82—C81—H81B109.7
C22—C12—H12A108.6H81A—C81—H81B108.2
O—C12—H12B108.6N72—C82—C81108.4 (5)
C22—C12—H12B108.6N72—C82—H82A110
H12A—C12—H12B107.6C81—C82—H82A110
O21—C21—N31127.2 (5)N72—C82—H82B110
O21—C21—C11114.4 (4)C81—C82—H82B110
N31—C21—C11118.4 (5)H82A—C82—H82B108.4
O22—C22—N32127.3 (5)H1A—O1—H1B107.7
O22—C22—C12114.3 (4)H2A—O2—H2B107.2
N32—C22—C12118.4 (4)H3A—O3—H3B107.7
N31—C41—C51110.6 (5)H4A—O4—H4B107.6
N31—C41—H41A109.5H5A—O5—H5B107.7
N31—Cu—O—C115.1 (3)O—Cu—N72—C8298.7 (3)
N32—Cu—O—C11109.7 (4)C12—O—C11—C21115.9 (5)
N72—Cu—O—C11169.9 (3)Cu—O—C11—C210.6 (6)
N71—Cu—O—C1176.2 (4)C11—O—C12—C22105.0 (5)
N31—Cu—O—C12117.6 (4)Cu—O—C12—C2211.3 (5)
N32—Cu—O—C1212.9 (3)C41—N31—C21—O215.0 (9)
N72—Cu—O—C1267.5 (4)Cu—N31—C21—O21167.1 (4)
N71—Cu—O—C12161.2 (3)C41—N31—C21—C11175.8 (5)
N32—Cu—N31—C2182.5 (4)Cu—N31—C21—C1113.7 (7)
N71—Cu—N31—C21110.5 (4)O—C11—C21—O21173.4 (5)
O—Cu—N31—C2110.4 (4)O—C11—C21—N317.3 (8)
N32—Cu—N31—C41115.1 (4)C42—N32—C22—O227.2 (8)
N71—Cu—N31—C4151.9 (4)Cu—N32—C22—O22165.6 (4)
O—Cu—N31—C41172.8 (4)C42—N32—C22—C12170.7 (5)
N31—Cu—N32—C2286.7 (4)Cu—N32—C22—C1212.2 (7)
N72—Cu—N32—C2296.5 (4)O—C12—C22—O22179.8 (4)
N71—Cu—N32—C22147.2 (7)O—C12—C22—N322.1 (7)
O—Cu—N32—C2214.0 (4)C21—N31—C41—C5195.2 (6)
N31—Cu—N32—C42113.7 (4)Cu—N31—C41—C5168.2 (5)
N72—Cu—N32—C4263.1 (4)C22—N32—C42—C5295.3 (6)
N71—Cu—N32—C4212.4 (10)Cu—N32—C42—C5265.0 (5)
O—Cu—N32—C42173.6 (4)N31—C41—C51—C6167.1 (6)
N31—Cu—N71—C81173.0 (4)N32—C42—C52—C6255.2 (6)
N32—Cu—N71—C8145.6 (10)C81—N71—C61—C51177.2 (5)
N72—Cu—N71—C815.2 (4)Cu—N71—C61—C5156.6 (6)
O—Cu—N71—C81113.3 (3)C41—C51—C61—N7162.5 (7)
N31—Cu—N71—C6146.1 (4)C82—N72—C62—C52167.8 (4)
N32—Cu—N71—C6181.2 (9)Cu—N72—C62—C5271.2 (5)
N72—Cu—N71—C61132.1 (4)C42—C52—C62—N7260.8 (6)
O—Cu—N71—C61119.9 (4)C61—N71—C81—C82160.5 (5)
N32—Cu—N72—C6263.8 (3)Cu—N71—C81—C8230.5 (6)
N71—Cu—N72—C62103.7 (3)C62—N72—C82—C8178.3 (6)
O—Cu—N72—C62136.9 (3)Cu—N72—C82—C8142.8 (5)
N32—Cu—N72—C82171.8 (4)N71—C81—C82—N7248.5 (6)
N71—Cu—N72—C8220.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O21i0.851.92.744 (6)174
O1—H1B···O4ii0.852.062.865 (7)159
O2—H2A···O220.851.912.762 (7)180
O3—H3A···O220.852.062.863 (7)158
O3—H3B···O10.852.132.862 (7)144
O4—H4A···O220.851.992.839 (6)176
O4—H4B···O2ii0.851.992.803 (7)161
O5—H5A···O30.852.022.852 (8)165
O5—H5B···O2iii0.851.962.723 (8)149
N71—H71···O21ii0.901.962.858 (6)173
N72—H72···O50.911.922.834 (7)176
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y, z+1/2; (iii) x, y, z+1.
(III) (3,16-dioxo-1-thia-4,8,11,15-tetraazacycloheptadecanato)copper(II) trihydrate top
Crystal data top
[Cu(C12H22N4O2S)]·3H2OF(000) = 426
Mr = 403.98Dx = 1.526 Mg m3
Monoclinic, P21/mCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybCell parameters from 38 reflections
a = 7.4905 (6) Åθ = 22.0–56.0°
b = 16.1160 (9) ŵ = 3.13 mm1
c = 7.6404 (4) ÅT = 293 K
β = 107.553 (5)°Prism, dark blue
V = 879.38 (10) Å30.32 × 0.26 × 0.14 mm
Z = 2
Data collection top
Siemens P4 four-circle
diffractometer
Rint = 0.050
ω/2θ scansθmax = 68.9°
Absorption correction: ψ scan
(XEMP; Siemens, 1989)
h = 19
Tmin = 0.43, Tmax = 0.645k = 191
2013 measured reflectionsl = 77
1536 independent reflections3 standard reflections every 100 reflections
1415 reflections with I > 2σ(I) intensity decay: 3%
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0756P)2 + 0.7615P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.047(Δ/σ)max < 0.001
wR(F2) = 0.133Δρmax = 0.41 e Å3
S = 1.07Δρmin = 0.61 e Å3
1536 reflectionsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
119 parametersExtinction coefficient: 0.0022 (8)
Crystal data top
[Cu(C12H22N4O2S)]·3H2OV = 879.38 (10) Å3
Mr = 403.98Z = 2
Monoclinic, P21/mCu Kα radiation
a = 7.4905 (6) ŵ = 3.13 mm1
b = 16.1160 (9) ÅT = 293 K
c = 7.6404 (4) Å0.32 × 0.26 × 0.14 mm
β = 107.553 (5)°
Data collection top
Siemens P4 four-circle
diffractometer
1415 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XEMP; Siemens, 1989)
Rint = 0.050
Tmin = 0.43, Tmax = 0.6453 standard reflections every 100 reflections
2013 measured reflections intensity decay: 3%
1536 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047119 parameters
wR(F2) = 0.133H-atom parameters constrained
S = 1.07Δρmax = 0.41 e Å3
1536 reflectionsΔρmin = 0.61 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu0.14839 (7)0.250.16805 (8)0.0363 (3)
S0.03643 (16)0.250.18876 (17)0.0490 (4)
O20.2583 (4)0.06648 (19)0.0234 (5)0.0818 (10)
N30.0243 (4)0.15770 (16)0.1648 (4)0.0438 (6)
C10.1777 (6)0.1644 (3)0.1638 (6)0.0727 (13)
H1A0.30750.18170.21170.094*
H1B0.15910.12040.2430.094*
C20.1523 (5)0.1273 (2)0.0224 (6)0.0530 (9)
C40.0219 (6)0.1112 (2)0.3363 (6)0.0603 (10)
H4A0.08170.07520.33660.078*
H4B0.04280.14930.43880.078*
C50.1944 (8)0.0603 (3)0.3571 (8)0.0863 (15)
H5A0.21320.02480.46360.112*
H5B0.17260.02460.25050.112*
C60.3690 (7)0.1077 (4)0.3778 (8)0.0891 (16)
H6A0.39830.13920.4910.116*
H6B0.47060.06880.38860.116*
N70.3603 (4)0.1650 (2)0.2257 (5)0.0658 (9)
H70.36360.13740.12280.086*0.5
H710.32960.13170.12480.086*0.5
C8A0.5410 (10)0.2070 (6)0.3201 (14)0.067 (3)0.5
H8A10.58190.18840.44670.087*0.5
H8A20.63350.18840.26320.087*0.5
C8B0.5273 (10)0.2156 (5)0.2030 (14)0.066 (2)0.5
H8B10.63740.19820.30020.086*0.5
H8B20.5460.19820.08830.086*0.5
O10.3529 (4)0.0847 (2)0.8635 (5)0.0850 (10)
H1C0.30470.03870.87940.11*
H1D0.46210.06580.87640.11*
O30.3671 (8)0.250.7079 (9)0.1079 (18)
H30.32670.2020.72210.14*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0272 (4)0.0348 (4)0.0432 (5)00.0053 (3)0
S0.0473 (6)0.0522 (7)0.0458 (8)00.0116 (5)0
O20.0739 (19)0.0593 (16)0.102 (2)0.0358 (14)0.0103 (17)0.0017 (17)
N30.0420 (13)0.0386 (13)0.0483 (17)0.0018 (11)0.0100 (11)0.0018 (12)
C10.084 (3)0.054 (2)0.059 (3)0.026 (2)0.011 (2)0.0017 (18)
C20.0445 (17)0.0396 (16)0.069 (2)0.0090 (13)0.0084 (16)0.0004 (16)
C40.073 (2)0.0509 (19)0.057 (2)0.0066 (18)0.0208 (18)0.0064 (17)
C50.118 (4)0.062 (2)0.075 (3)0.028 (3)0.023 (3)0.026 (2)
C60.072 (3)0.097 (4)0.084 (3)0.042 (3)0.003 (2)0.011 (3)
N70.0384 (14)0.0604 (18)0.093 (3)0.0106 (13)0.0119 (15)0.0107 (18)
C8A0.028 (3)0.099 (6)0.069 (6)0.012 (3)0.005 (4)0.015 (5)
C8B0.033 (3)0.086 (6)0.078 (6)0.014 (3)0.015 (4)0.006 (5)
O10.081 (2)0.0687 (19)0.098 (3)0.0170 (15)0.0158 (18)0.0154 (18)
O30.095 (4)0.110 (4)0.131 (5)00.053 (4)0
Geometric parameters (Å, º) top
Cu—N31.967 (3)C5—H5B0.97
Cu—N3i1.967 (3)C6—N71.470 (7)
Cu—N7i2.042 (3)C6—H6A0.97
Cu—N72.042 (3)C6—H6B0.97
Cu—S2.6594 (13)N7—C8A1.490 (8)
S—C11.783 (4)N7—C8B1.547 (9)
S—C1i1.783 (4)N7—H70.91
O2—C21.264 (4)N7—H710.91
N3—C21.309 (4)C8A—C8Ai1.385 (19)
N3—C41.458 (5)C8A—H8A10.97
C1—C21.501 (6)C8A—H8A20.97
C1—H1A0.97C8B—C8Bi1.108 (17)
C1—H1B0.97C8B—H8B10.97
C4—C51.498 (6)C8B—H8B20.97
C4—H4A0.97O1—H1C0.85
C4—H4B0.97O1—H1D0.85
C5—C61.482 (7)O3—H30.85
C5—H5A0.97
N3—Cu—N3i98.29 (15)C4—C5—H5B108.3
N3—Cu—N7i167.40 (13)H5A—C5—H5B107.4
N3i—Cu—N7i87.76 (12)N7—C6—C5114.4 (4)
N3—Cu—N787.76 (12)N7—C6—H6A108.7
N3i—Cu—N7167.40 (13)C5—C6—H6A108.7
N7i—Cu—N784.28 (19)N7—C6—H6B108.7
N3—Cu—S81.37 (9)C5—C6—H6B108.7
N3i—Cu—S81.37 (9)H6A—C6—H6B107.6
N7i—Cu—S110.58 (11)C6—N7—C8A94.9 (5)
N7—Cu—S110.58 (11)C6—N7—C8B125.1 (5)
C1—S—C1i101.3 (3)C6—N7—Cu116.0 (3)
C1—S—Cu91.87 (14)C8A—N7—Cu109.4 (4)
C1i—S—Cu91.87 (13)C8B—N7—Cu103.0 (4)
C2—N3—C4118.1 (3)C6—N7—H7111.7
C2—N3—Cu127.4 (2)C8A—N7—H7112.5
C4—N3—Cu113.6 (2)C8B—N7—H785.8
C2—C1—S120.0 (3)Cu—N7—H7111.3
C2—C1—H1A107.3C6—N7—H71103.8
S—C1—H1A107.3C8A—N7—H71129.7
C2—C1—H1B107.3C8B—N7—H71102.8
S—C1—H1B107.3Cu—N7—H71103.4
H1A—C1—H1B106.9C8Ai—C8A—N7117.1 (4)
O2—C2—N3126.1 (4)C8Ai—C8A—H8A1108
O2—C2—C1114.5 (3)N7—C8A—H8A1108
N3—C2—C1119.4 (3)C8Ai—C8A—H8A2108
N3—C4—C5109.9 (3)N7—C8A—H8A2108
N3—C4—H4A109.7H8A1—C8A—H8A2107.3
C5—C4—H4A109.7C8Bi—C8B—N7121.9 (3)
N3—C4—H4B109.7C8Bi—C8B—H8B1106.9
C5—C4—H4B109.7N7—C8B—H8B1106.9
H4A—C4—H4B108.2C8Bi—C8B—H8B2106.9
C6—C5—C4115.7 (4)N7—C8B—H8B2106.9
C6—C5—H5A108.3H8B1—C8B—H8B2106.7
C4—C5—H5A108.3H1C—O1—H1D96.1
C6—C5—H5B108.3
N3—Cu—S—C10.78 (19)Cu—N3—C4—C572.0 (4)
N3i—Cu—S—C1100.6 (2)N3—C4—C5—C665.3 (6)
N7i—Cu—S—C1175.1 (2)C4—C5—C6—N757.7 (6)
N7—Cu—S—C183.5 (2)C5—C6—N7—C8A170.1 (6)
N3—Cu—S—C1i100.6 (2)C5—C6—N7—C8B173.9 (5)
N3i—Cu—S—C1i0.78 (19)C5—C6—N7—Cu55.7 (5)
N7i—Cu—S—C1i83.5 (2)N3—Cu—N7—C650.1 (3)
N7—Cu—S—C1i175.1 (2)N3i—Cu—N7—C669.0 (7)
N3i—Cu—N3—C280.6 (3)N7i—Cu—N7—C6120.1 (3)
N7i—Cu—N3—C2161.4 (6)S—Cu—N7—C6130.1 (3)
N7—Cu—N3—C2110.5 (3)N3—Cu—N7—C8A156.0 (5)
S—Cu—N3—C20.7 (3)N3i—Cu—N7—C8A36.9 (8)
N3i—Cu—N3—C4110.6 (2)N7i—Cu—N7—C8A14.2 (5)
N7i—Cu—N3—C47.4 (7)S—Cu—N7—C8A124.1 (5)
N7—Cu—N3—C458.3 (3)N3—Cu—N7—C8B169.6 (4)
S—Cu—N3—C4169.5 (2)N3i—Cu—N7—C8B71.3 (8)
C1i—S—C1—C291.3 (4)N7i—Cu—N7—C8B20.2 (5)
Cu—S—C1—C21.0 (4)S—Cu—N7—C8B89.7 (4)
C4—N3—C2—O29.7 (6)C6—N7—C8A—C8Ai131.6 (3)
Cu—N3—C2—O2178.0 (3)C8B—N7—C8A—C8Ai72.4 (9)
C4—N3—C2—C1168.5 (3)Cu—N7—C8A—C8Ai11.8 (4)
Cu—N3—C2—C10.2 (5)C6—N7—C8B—C8Bi117.8 (4)
S—C1—C2—O2179.2 (3)C8A—N7—C8B—C8Bi88.1 (10)
S—C1—C2—N30.8 (6)Cu—N7—C8B—C8Bi17.5 (4)
C2—N3—C4—C597.9 (4)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1C···O2ii0.851.932.749 (5)163
O1—H1D···O2iii0.852.052.813 (5)148
O3—H3···O10.852.152.932 (4)152
N7—H7···O1iv0.912.143.040 (5)173
N7—H71···O1iv0.912.23.040 (5)155
Symmetry codes: (ii) x, y, z+1; (iii) x+1, y, z+1; (iv) x, y, z1.

Experimental details

(I)(II)(III)
Crystal data
Chemical formula[Cu(C12H23N5O2)]·4H2O[Cu(C12H22N4O3)]·5H2O[Cu(C12H22N4O2S)]·3H2O
Mr404.96423.96403.98
Crystal system, space groupOrthorhombic, Pna21Monoclinic, CcMonoclinic, P21/m
Temperature (K)293293293
a, b, c (Å)13.3375 (5), 8.9992 (3), 15.5637 (4)12.098 (9), 20.337 (14), 8.134 (5)7.4905 (6), 16.1160 (9), 7.6404 (4)
α, β, γ (°)90, 90, 9090, 103.68 (5), 9090, 107.553 (5), 90
V3)1868.06 (11)1944 (2)879.38 (10)
Z442
Radiation typeCu KαMo KαCu Kα
µ (mm1)1.981.173.13
Crystal size (mm)0.48 × 0.4 × 0.110.43 × 0.29 × 0.290.32 × 0.26 × 0.14
Data collection
DiffractometerSiemens P4 four-circle
diffractometer
Stoe Stadi-4 four-circle
diffractometer
Siemens P4 four-circle
diffractometer
Absorption correctionψ scan
(XEMP; Siemens, 1989)
ψ scan
(EMPIR; Stoe & Cie, 1989)
ψ scan
(XEMP; Siemens, 1989)
Tmin, Tmax0.400, 0.8040.670, 0.7100.43, 0.645
No. of measured, independent and
observed [I > 2σ(I)] reflections
2267, 1856, 1824 3348, 3020, 2510 2013, 1536, 1415
Rint0.0330.0330.050
(sin θ/λ)max1)0.6060.6500.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.104, 1.11 0.043, 0.101, 1.04 0.047, 0.133, 1.07
No. of reflections185630201536
No. of parameters218226119
No. of restraints???
H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.540.47, 0.600.41, 0.61
Absolute structureFlack (1983), 138 Friedel pairsFlack (1983), 773 Friedel pairs?
Absolute structure parameter0.03 (4)0.005 (18)?

Computer programs: XSCANS (Siemens, 1996), DIF4 (Stoe & Cie, 1992), DIF4, REDUCE in XSCANS, REDU4 (Stoe & Cie, 1992), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), DIAMOND (Bergerhoff, 1996), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) for (I) top
Cu—N311.980 (3)Cu—N712.055 (4)
Cu—N321.995 (3)Cu—N2.281 (4)
Cu—N722.032 (3)
N31—Cu—N32100.6 (1)N72—Cu—N7184.3 (1)
N31—Cu—N72171.2 (1)N31—Cu—N78.6 (1)
N32—Cu—N7288.2 (1)N32—Cu—N80.0 (1)
N31—Cu—N7187.8 (1)N72—Cu—N103.1 (1)
N32—Cu—N71153.0 (1)N71—Cu—N126.9 (1)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N—H···O1i0.902.162.997 (6)155
O1—H1A···O3ii0.852.012.825 (5)157
O1—H1B···O21iii0.852.072.910 (5)173
O2—H2A···O21ii0.852.122.955 (5)172
O2—H2B···O40.852.032.835 (5)158
O3—H3A···O2iv0.851.992.825 (6)166
O3—H3B···O22iii0.851.892.732 (6)174
O4—H4A···O21iii0.851.932.770 (4)170
O4—H4B···O22v0.851.822.665 (4)176
N71—H71···O4i0.862.173.023 (5)169
N72—H72···O30.872.183.045 (5)174
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x+1/2, y1/2, z; (iv) x+1/2, y+1/2, z+1/2; (v) x+1/2, y1/2, z1/2.
Selected geometric parameters (Å, º) for (II) top
Cu—N311.963 (4)Cu—N712.056 (4)
Cu—N321.987 (4)Cu—O2.428 (4)
Cu—N722.017 (4)
N31—Cu—N32100.2 (2)N72—Cu—N7184.0 (2)
N31—Cu—N72173.2 (2)N31—Cu—O76.2 (2)
N32—Cu—N7285.8 (2)N32—Cu—O75.4 (2)
N31—Cu—N7189.4 (2)N72—Cu—O108.6 (2)
N32—Cu—N71163.9 (2)N71—Cu—O119.7 (2)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O21i0.851.92.744 (6)174
O1—H1B···O4ii0.852.062.865 (7)159
O2—H2A···O220.851.912.762 (7)180
O3—H3A···O220.852.062.863 (7)158
O3—H3B···O10.852.132.862 (7)144
O4—H4A···O220.851.992.839 (6)176
O4—H4B···O2ii0.851.992.803 (7)161
O5—H5A···O30.852.022.852 (8)165
O5—H5B···O2iii0.851.962.723 (8)149
N71—H71···O21ii0.901.962.858 (6)173
N72—H72···O50.911.922.834 (7)176
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y, z+1/2; (iii) x, y, z+1.
Selected geometric parameters (Å, º) for (III) top
Cu—N31.967 (3)Cu—N72.042 (3)
Cu—N3i1.967 (3)Cu—S2.6594 (13)
Cu—N7i2.042 (3)
N3—Cu—N3i98.29 (15)N7i—Cu—N784.28 (19)
N3—Cu—N7i167.40 (13)N3—Cu—S81.37 (9)
N3i—Cu—N7i87.76 (12)N3i—Cu—S81.37 (9)
N3—Cu—N787.76 (12)N7i—Cu—S110.58 (11)
N3i—Cu—N7167.40 (13)N7—Cu—S110.58 (11)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
O1—H1C···O2ii0.851.932.749 (5)163
O1—H1D···O2iii0.852.052.813 (5)148
O3—H3···O10.852.152.932 (4)152
N7—H7···O1iv0.912.143.040 (5)173
N7—H71···O1iv0.912.23.040 (5)155
Symmetry codes: (ii) x, y, z+1; (iii) x+1, y, z+1; (iv) x, y, z1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds