Download citation
Download citation
link to html
In (E)-3-{[(di­phenoxy­phospho­ryl)­methyl­hydrazono]­methyl}-4H-1-benzo­pyran-4-one, C23H19N2O5P, the benzo­pyran–methyl­hydrazone moiety is planar and the two phenoxy phenyl rings are inclined at angles of 21.29 (6) and 89.33 (5)°. Weak C—H...O and C—H...N intramolecular interactions exert some influence on the planarity and orientation of that moiety.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102008508/na1572sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102008508/na1572Isup2.hkl
Contains datablock I

CCDC reference: 192981

Comment top

This paper is a part of our X-ray studies of a group of benzopyran derivatives substituted with phosphorohydrazide at position 3 (Rybarczyk et al., 1999; Rybarczyk-Pirek et al., 2002). These compounds, which are derivatives of biologically active chromones, are of interest because of their expected anticancer activity, by analogy with other chromones (Gabor, 1988; Valenti et al., 1996). The present X-ray investigation of the title benzopyran derivative, (I), was undertaken to obtain structural information regarding the details of the molecular conformation. We were also interested in the weak interactions in the crystal structure. \sch

The planarity of the pyranoid ring in (I) reveals its aromatic character; the maximum deviation from the least-squares plane (Nardelli, 1996) is 0.016 (2) Å for atom C69. On the other hand, the presence of heteroatom O61 in this cyclic system, as well as the oxo substituent at position 4, significantly modifies the geometric parameters within the ring. The C—C bond distances vary from 1.340 (3) to 1.465 (3) Å, in comparison with the typical aromatic bond length of 1.384 (13) Å (Allen et al., 1987). Moreover, the values of the bond angles within the heterocyclic ring vary from 114.5 (2) to 125.9 (2)° (Table 1).

Fused benzene and pyranoid rings form the benzopyran system, which can be described as planar, with a dihedral angle between the best planes of the rings of 1.21 (6)°.

The hydrazone group (atoms C5, N4 and N3) lies in almost the same plane as the benzopyran moiety. The dihedral angle between the hydrazone and benzopyran least-squares planes is 5.0 (1)°. This coplanar arrangement of the main part of the molecule provides π-conjugation along the C63—C5—N4—N3 bonds and induces planar geometry around atom N3. In addition, the P1—N3 bond length is much closer to the standard P—Nplanar distance of 1.65 (2) Å than to the P—Npyramidal distance of 1.683 (5) Å (Allen et al., 1987).

The Cmethyl and P atoms do not deviate much from the hydrazone best plane [0.030 (3) Å for atom C31 and 0.090 (1) Å for atom P1], and they are positioned on opposite sides of the plane. The normal to the hydrazone plane forms an angle of 81.4 (1)° with the P1—O2 bond. As a result, the central P1/N3(C31)/N4/C5/C63 chain of atoms can be regarded as planar.

The geometric parameters around the four-coordinate P atom indicate a slight deformation of the ideal tetrahedron towards a trigonal pyramid, caused by the different substituents and bond types. In particular, the P1O2 double bond is the shortest and this has an influence on the bond angles in the P environment, which are significantly different from the ideal value of 109.5°.

Even though the majority of the atoms of the molecule lie in nearly the same plane, the tetrahedral geometry of the central phosphonate system results in the overall non-planar molecular conformation. The two phenoxy groups attached to atom P1 are inclined towards the benzopyran-hydrazone moiety; he angles between these rings and the main plane are 21.29 (6)° for the C12—C17 ring and 89.33 (5)° for the C22—C27 ring.

The coplanar arrangement of the main part of the molecule of (I) is additionally stabilized by the availability of acceptors in weak intramolecular contacts, of the non-conventional hydrogen-bonding type, with C—H donors. Some H···O and H···N distances shorter than the sum of the van der Waals radii are observed. The geometry of these weak hydrogen bonds is given in Table 2.

Experimental top

The title compound was obtained by the reaction of equimolar amounts of 4-oxo-4H-benzopyran-3-carboxyaldehyde (0.87 g, 0.005 mol) and N1-diphenyloxyphosphonate-N1-methylhydrazide (1.38 g) in anhydrous methanol solution (see reaction Scheme). After 24 h, the product was precipitated from the reaction solution (m.p. 393–395 K). Crystals of (I) suitable for X-ray analysis were obtained by recrystallization from methanol.

Refinement top

H atoms in benzenoid rings were constrained to their parent C atoms by a rigid body model, using the AFIX 43 instruction in SHELXL97 (Sheldrick, 1997). The remaining H atoms were freely refined.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1989); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1989); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1998); software used to prepare material for publication: SHELXL97 and PARST97 (Nardelli, 1996).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I) showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 40% probability level and H atoms are shown as small spheres of arbitrary radii.
(E)-3-{[(diphenyloxyphosphoryl)methylhydrazono]methyl}-4H-1-benzopyran-4-one top
Crystal data top
C23H19N2O5PF(000) = 904
Mr = 434.37Dx = 1.385 Mg m3
Dm = 1.378 Mg m3
Dm measured by flotation in a solution of KI and KBr in water
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 8.312 (2) Åθ = 21.3–23.8°
b = 10.611 (1) ŵ = 0.17 mm1
c = 23.595 (2) ÅT = 293 K
β = 90.76 (1)°Prism, colourless
V = 2082.8 (5) Å30.6 × 0.5 × 0.4 mm
Z = 4
Data collection top
Rigaku AFC-5S
diffractometer
2746 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.015
Graphite monochromatorθmax = 25.0°, θmin = 3.5°
ω scansh = 99
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
k = 012
Tmin = 0.915, Tmax = 0.944l = 028
3738 measured reflections3 standard reflections every 150 reflections
3648 independent reflections intensity decay: <2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0798P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
3648 reflectionsΔρmax = 0.28 e Å3
301 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.018 (2)
Crystal data top
C23H19N2O5PV = 2082.8 (5) Å3
Mr = 434.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.312 (2) ŵ = 0.17 mm1
b = 10.611 (1) ÅT = 293 K
c = 23.595 (2) Å0.6 × 0.5 × 0.4 mm
β = 90.76 (1)°
Data collection top
Rigaku AFC-5S
diffractometer
2746 reflections with I > 2σ(I)
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
Rint = 0.015
Tmin = 0.915, Tmax = 0.9443 standard reflections every 150 reflections
3738 measured reflections intensity decay: <2%
3648 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.28 e Å3
3648 reflectionsΔρmin = 0.24 e Å3
301 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.22022 (6)0.36544 (5)0.18452 (2)0.0514 (2)
O20.25073 (18)0.42753 (14)0.23831 (6)0.0654 (4)
N30.33831 (19)0.24397 (15)0.17406 (7)0.0543 (4)
C310.4785 (3)0.2169 (3)0.20950 (11)0.0658 (6)
N40.29932 (18)0.16982 (15)0.12761 (7)0.0525 (4)
C50.3904 (2)0.07810 (18)0.11550 (8)0.0503 (5)
O610.17005 (17)0.06544 (14)0.00660 (6)0.0646 (4)
C620.2186 (2)0.0101 (2)0.03608 (9)0.0561 (5)
H620.145 (3)0.077 (2)0.0397 (9)0.072 (7)*
C630.3510 (2)0.00580 (17)0.06826 (8)0.0472 (4)
C640.4587 (2)0.11072 (18)0.05635 (9)0.0543 (5)
O6410.58513 (19)0.12694 (15)0.08232 (8)0.0838 (5)
C650.4924 (3)0.2997 (2)0.00597 (12)0.0748 (7)
H650.58810.31940.01280.090*
C660.4379 (4)0.3747 (2)0.04955 (12)0.0866 (8)
H660.49820.44390.06070.104*
C670.2949 (4)0.3482 (3)0.07680 (12)0.0878 (8)
H670.25830.40040.10590.105*
C680.2065 (3)0.2459 (2)0.06157 (10)0.0785 (7)
H680.10930.22840.07980.094*
C690.2629 (3)0.16894 (19)0.01875 (9)0.0565 (5)
C700.4040 (2)0.19352 (18)0.01031 (9)0.0548 (5)
O110.04154 (15)0.31704 (12)0.17435 (5)0.0530 (4)
C120.0294 (2)0.2327 (2)0.21271 (8)0.0544 (5)
C130.0638 (3)0.1127 (2)0.19307 (11)0.0744 (7)
H130.03120.08830.15720.089*
C140.1455 (3)0.0301 (3)0.22641 (15)0.0970 (9)
H140.17070.05000.21290.116*
C150.1903 (3)0.0649 (3)0.27954 (14)0.0972 (9)
H150.24710.00880.30200.117*
C160.1528 (3)0.1795 (4)0.29954 (11)0.0979 (10)
H160.18080.20090.33630.118*
C170.0707 (3)0.2690 (3)0.26554 (10)0.0747 (7)
H170.04650.34920.27910.090*
O210.24129 (17)0.44753 (12)0.12929 (6)0.0603 (4)
C220.1556 (2)0.56025 (17)0.12009 (8)0.0513 (5)
C230.1895 (3)0.66578 (19)0.15090 (9)0.0625 (5)
H230.26810.66380.17930.075*
C240.1064 (3)0.7754 (2)0.13971 (10)0.0710 (6)
H240.12960.84790.16040.085*
C250.0089 (3)0.7778 (3)0.09874 (12)0.0806 (7)
H250.06690.85140.09200.097*
C260.0401 (3)0.6730 (3)0.06736 (12)0.0868 (8)
H260.11760.67590.03860.104*
C270.0425 (3)0.5617 (2)0.07787 (10)0.0716 (6)
H270.02110.48970.05660.086*
H510.488 (3)0.0604 (19)0.1351 (9)0.063 (6)*
H3110.578 (3)0.227 (2)0.1883 (10)0.076 (7)*
H3120.482 (3)0.277 (3)0.2376 (12)0.090 (8)*
H3130.467 (3)0.136 (2)0.2267 (10)0.078 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0536 (3)0.0488 (3)0.0518 (3)0.0030 (2)0.0007 (2)0.0055 (2)
O20.0721 (9)0.0631 (9)0.0608 (9)0.0006 (7)0.0044 (7)0.0154 (7)
N30.0539 (9)0.0540 (9)0.0548 (9)0.0062 (7)0.0092 (7)0.0089 (8)
C310.0571 (13)0.0751 (16)0.0649 (14)0.0098 (12)0.0147 (11)0.0099 (13)
N40.0536 (9)0.0488 (9)0.0549 (9)0.0051 (7)0.0055 (7)0.0049 (8)
C50.0459 (10)0.0491 (11)0.0557 (11)0.0029 (9)0.0030 (9)0.0013 (9)
O610.0632 (8)0.0660 (9)0.0641 (9)0.0094 (7)0.0145 (7)0.0117 (7)
C620.0543 (11)0.0528 (11)0.0609 (12)0.0105 (9)0.0054 (9)0.0050 (10)
C630.0460 (10)0.0436 (10)0.0522 (11)0.0039 (8)0.0023 (8)0.0025 (8)
C640.0503 (11)0.0506 (11)0.0620 (12)0.0052 (9)0.0020 (9)0.0023 (9)
O6410.0642 (10)0.0849 (11)0.1015 (13)0.0287 (8)0.0251 (9)0.0147 (10)
C650.0747 (14)0.0566 (13)0.0934 (17)0.0078 (11)0.0187 (13)0.0068 (13)
C660.110 (2)0.0545 (14)0.096 (2)0.0043 (14)0.0463 (17)0.0201 (14)
C670.114 (2)0.0811 (18)0.0693 (16)0.0205 (16)0.0199 (15)0.0220 (14)
C680.0929 (17)0.0759 (16)0.0665 (15)0.0072 (14)0.0016 (13)0.0167 (13)
C690.0612 (12)0.0538 (11)0.0546 (12)0.0031 (9)0.0050 (9)0.0012 (9)
C700.0567 (11)0.0456 (11)0.0625 (12)0.0000 (9)0.0131 (9)0.0008 (9)
O110.0514 (7)0.0550 (8)0.0524 (8)0.0046 (6)0.0027 (6)0.0034 (6)
C120.0425 (10)0.0618 (12)0.0587 (12)0.0117 (9)0.0003 (8)0.0089 (10)
C130.0775 (15)0.0535 (13)0.0929 (17)0.0108 (11)0.0190 (13)0.0082 (12)
C140.092 (2)0.0692 (17)0.131 (3)0.0103 (14)0.0194 (18)0.0289 (18)
C150.0747 (17)0.115 (2)0.101 (2)0.0013 (17)0.0004 (16)0.046 (2)
C160.0648 (15)0.176 (3)0.0533 (14)0.0050 (19)0.0032 (11)0.0157 (18)
C170.0550 (12)0.1051 (18)0.0640 (14)0.0002 (12)0.0025 (10)0.0077 (14)
O210.0662 (9)0.0526 (8)0.0625 (9)0.0077 (7)0.0114 (7)0.0014 (7)
C220.0497 (10)0.0489 (11)0.0553 (11)0.0026 (8)0.0091 (9)0.0040 (9)
C230.0682 (13)0.0574 (12)0.0617 (13)0.0049 (10)0.0036 (10)0.0015 (10)
C240.0941 (17)0.0520 (12)0.0671 (15)0.0053 (12)0.0093 (13)0.0029 (11)
C250.0832 (17)0.0718 (16)0.0872 (18)0.0183 (13)0.0203 (14)0.0220 (15)
C260.0695 (15)0.106 (2)0.0840 (18)0.0013 (15)0.0188 (13)0.0220 (17)
C270.0764 (15)0.0703 (14)0.0678 (14)0.0122 (12)0.0118 (12)0.0022 (12)
Geometric parameters (Å, º) top
P1—O21.450 (1)C68—H680.9300
P1—O211.579 (1)C69—C701.376 (3)
P1—O111.588 (1)O11—C121.408 (2)
P1—N31.641 (2)C12—C171.354 (3)
N3—N41.384 (2)C12—C131.384 (3)
N3—C311.455 (3)C13—C141.365 (3)
C31—H3110.98 (2)C13—H130.9300
C31—H3120.92 (3)C14—C151.364 (4)
C31—H3130.95 (2)C14—H140.9300
N4—C51.269 (2)C15—C161.340 (4)
C5—C631.460 (3)C15—H150.9300
C5—H510.95 (2)C16—C171.424 (4)
O61—C621.345 (2)C16—H160.9300
O61—C691.375 (2)C17—H170.9300
C62—C631.340 (3)O21—C221.408 (2)
C62—H620.94 (2)C22—C271.361 (3)
C63—C641.459 (2)C22—C231.363 (3)
C64—O6411.222 (2)C23—C241.377 (3)
C64—C701.465 (3)C23—H230.9300
C65—C661.372 (4)C24—C251.353 (4)
C65—C701.402 (3)C24—H240.9300
C65—H650.9300C25—C261.360 (4)
C66—C671.374 (4)C25—H250.9300
C66—H660.9300C26—C271.387 (4)
C67—C681.361 (4)C26—H260.9300
C67—H670.9300C27—H270.9300
C68—C691.377 (3)
O2—P1—O21116.86 (8)C70—C69—C68122.2 (2)
O2—P1—O11115.59 (8)C69—C70—C65117.6 (2)
O21—P1—O1199.66 (7)C69—C70—C64120.7 (2)
O2—P1—N3112.98 (9)C65—C70—C64121.8 (2)
O21—P1—N3103.64 (8)C12—O11—P1120.54 (11)
O11—P1—N3106.52 (8)C17—C12—C13121.1 (2)
N4—N3—C31121.4 (2)C17—C12—O11121.6 (2)
N4—N3—P1115.5 (1)C13—C12—O11117.15 (19)
C31—N3—P1123.1 (2)C14—C13—C12120.0 (3)
N3—C31—H311111.2 (15)C14—C13—H13120.0
N3—C31—H312107.1 (17)C12—C13—H13120.0
H311—C31—H312106 (2)C15—C14—C13120.0 (3)
N3—C31—H313110.0 (14)C15—C14—H14120.0
H311—C31—H313114 (2)C13—C14—H14120.0
H312—C31—H313108 (2)C16—C15—C14120.3 (3)
C5—N4—N3118.7 (2)C16—C15—H15119.9
N4—C5—C63120.7 (2)C14—C15—H15119.9
N4—C5—H51123.6 (13)C15—C16—C17121.2 (3)
C63—C5—H51115.7 (13)C15—C16—H16119.4
C62—O61—C69117.9 (2)C17—C16—H16119.4
C63—C62—O61125.9 (2)C12—C17—C16117.3 (3)
C63—C62—H62125.2 (12)C12—C17—H17121.4
O61—C62—H62108.9 (13)C16—C17—H17121.4
C62—C63—C64119.3 (2)C22—O21—P1122.30 (12)
C62—C63—C5122.0 (2)C27—C22—C23121.2 (2)
C64—C63—C5118.7 (2)C27—C22—O21117.78 (18)
O641—C64—C63122.5 (2)C23—C22—O21121.00 (18)
O641—C64—C70122.9 (2)C22—C23—C24119.5 (2)
C63—C64—C70114.5 (2)C22—C23—H23120.3
C66—C65—C70120.1 (2)C24—C23—H23120.3
C66—C65—H65119.9C25—C24—C23120.2 (2)
C70—C65—H65119.9C25—C24—H24119.9
C65—C66—C67120.5 (2)C23—C24—H24119.9
C65—C66—H66119.8C24—C25—C26120.1 (2)
C67—C66—H66119.8C24—C25—H25119.9
C68—C67—C66120.5 (2)C26—C25—H25119.9
C68—C67—H67119.8C25—C26—C27120.6 (2)
C66—C67—H67119.8C25—C26—H26119.7
C67—C68—C69119.1 (3)C27—C26—H26119.7
C67—C68—H68120.5C22—C27—C26118.4 (2)
C69—C68—H68120.5C22—C27—H27120.8
O61—C69—C70121.7 (2)C26—C27—H27120.8
O61—C69—C68116.1 (2)
O2—P1—N3—N4170.7 (1)O641—C64—C70—C69178.0 (2)
O21—P1—N3—N461.82 (15)C63—C64—C70—C691.1 (3)
O11—P1—N3—N442.77 (16)O641—C64—C70—C651.8 (3)
O2—P1—N3—C3111.4 (2)C63—C64—C70—C65179.08 (19)
O21—P1—N3—C31116.05 (19)O2—P1—O11—C1256.98 (16)
O11—P1—N3—C31139.35 (19)O21—P1—O11—C12176.89 (13)
C31—N3—N4—C51.4 (3)N3—P1—O11—C1269.43 (15)
P1—N3—N4—C5176.5 (1)P1—O11—C12—C1770.1 (2)
N3—N4—C5—C63177.5 (2)P1—O11—C12—C13113.46 (18)
C69—O61—C62—C630.2 (3)C17—C12—C13—C142.3 (3)
O61—C62—C63—C642.2 (3)O11—C12—C13—C14174.1 (2)
O61—C62—C63—C5177.17 (18)C12—C13—C14—C151.4 (4)
N4—C5—C63—C620.0 (3)C13—C14—C15—C160.8 (4)
N4—C5—C63—C64179.4 (2)C14—C15—C16—C172.2 (4)
C62—C63—C64—O641176.4 (2)C13—C12—C17—C160.9 (3)
C5—C63—C64—O6414.2 (3)O11—C12—C17—C16175.35 (19)
C62—C63—C64—C702.7 (3)C15—C16—C17—C121.3 (4)
C5—C63—C64—C70176.66 (16)O2—P1—O21—C2257.06 (17)
C70—C65—C66—C671.4 (4)O11—P1—O21—C2268.20 (15)
C65—C66—C67—C681.1 (4)N3—P1—O21—C22177.96 (14)
C66—C67—C68—C690.5 (4)P1—O21—C22—C27111.79 (19)
C62—O61—C69—C702.0 (3)P1—O21—C22—C2370.8 (2)
C62—O61—C69—C68178.1 (2)C27—C22—C23—C240.9 (3)
C67—C68—C69—O61178.2 (2)O21—C22—C23—C24178.18 (18)
C67—C68—C69—C701.7 (4)C22—C23—C24—C250.5 (4)
O61—C69—C70—C65178.57 (18)C23—C24—C25—C261.8 (4)
C68—C69—C70—C651.3 (3)C24—C25—C26—C271.7 (4)
O61—C69—C70—C641.2 (3)C23—C22—C27—C261.1 (3)
C68—C69—C70—C64178.8 (2)O21—C22—C27—C26178.4 (2)
C66—C65—C70—C690.2 (3)C25—C26—C27—C220.2 (4)
C66—C65—C70—C64179.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C31—H312···O20.92 (3)2.50 (3)3.013 (3)116 (2)
C5—H51···O6410.95 (2)2.49 (2)2.828 (2)101 (2)
C65—H65···O6410.942.622.873 (3)96
C62—H62···N40.94 (2)2.62 (2)2.819 (3)92 (1)

Experimental details

Crystal data
Chemical formulaC23H19N2O5P
Mr434.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.312 (2), 10.611 (1), 23.595 (2)
β (°) 90.76 (1)
V3)2082.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.6 × 0.5 × 0.4
Data collection
DiffractometerRigaku AFC-5S
diffractometer
Absorption correctionAnalytical
(de Meulenaer & Tompa, 1965)
Tmin, Tmax0.915, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
3738, 3648, 2746
Rint0.015
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.130, 1.14
No. of reflections3648
No. of parameters301
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.24

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1989), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 1989), SHELXS86 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1998), SHELXL97 and PARST97 (Nardelli, 1996).

Selected geometric parameters (Å, º) top
P1—O21.450 (1)O61—C621.345 (2)
P1—O211.579 (1)O61—C691.375 (2)
P1—O111.588 (1)C62—C631.340 (3)
P1—N31.641 (2)C63—C641.459 (2)
N3—N41.384 (2)C64—O6411.222 (2)
N3—C311.455 (3)C64—C701.465 (3)
N4—C51.269 (2)C69—C701.376 (3)
C5—C631.460 (3)
O2—P1—O21116.86 (8)C62—O61—C69117.9 (2)
O2—P1—O11115.59 (8)C63—C62—O61125.9 (2)
O21—P1—O1199.66 (7)C62—C63—C64119.3 (2)
O2—P1—N3112.98 (9)C62—C63—C5122.0 (2)
O21—P1—N3103.64 (8)C64—C63—C5118.7 (2)
O11—P1—N3106.52 (8)O641—C64—C63122.5 (2)
N4—N3—C31121.4 (2)O641—C64—C70122.9 (2)
N4—N3—P1115.5 (1)C63—C64—C70114.5 (2)
C31—N3—P1123.1 (2)O61—C69—C70121.7 (2)
C5—N4—N3118.7 (2)C69—C70—C64120.7 (2)
N4—C5—C63120.7 (2)
O2—P1—N3—N4170.7 (1)N3—N4—C5—C63177.5 (2)
O2—P1—N3—C3111.4 (2)N4—C5—C63—C620.0 (3)
C31—N3—N4—C51.4 (3)N4—C5—C63—C64179.4 (2)
P1—N3—N4—C5176.5 (1)C5—C63—C64—O6414.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C31—H312···O20.92 (3)2.50 (3)3.013 (3)116 (2)
C5—H51···O6410.95 (2)2.49 (2)2.828 (2)101 (2)
C65—H65···O6410.942.622.873 (3)96
C62—H62···N40.94 (2)2.62 (2)2.819 (3)92 (1)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds