Download citation
Download citation
link to html
In the title compound, [RuCl2(C42H42NP3)]·2.5CHCl3·H2O, the Ru atom is six-coordinated, to one tetradentate tris­(di­phenyl­phosphinoethyl)­amine ligand and two Cl atoms, in a distorted octahedral arrangement. Molecules of chloro­form and water stabilize the framework through intermolecular hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102008004/na1568sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102008004/na1568Isup2.hkl
Contains datablock I

CCDC reference: 106900

Comment top

Tris(diphenylphosphinoethyl)amine (NP3) is a very interesting polydentate ligand with chelating properties and mixed-donor functionality. Coordination compounds incorporating this ligand and several metal ions have been reported since its initial synthesis (Sacconi & Bertini, 1968). Either a tridentate or tetradentade form of coordination has been observed for NP3–metal compounds, although unusual mono- (Zank et al.,1997) or bidentate coordination to the same metal can be achieved (Cecconi et al., 1989; Ghilardi & Sacconi, 1975). Specifically for ruthenium–NP3 complexes, only one structure has been reported previously, viz. [Ru(NP3)Cl{ CCC(OMe)CHCPh2}], (II) (Wolinska et al., 1991), in which the NP3 ligand exhibits a tetradentade coordination.

The title compound, (I), offers interesting catalytic properties, as shown by Fontal & Suarez (1985) in the case of hydrogenation and hydroformylation, as well as others (Dahlenburg et al., 1991) in 1-alkynes dimerization reactions, but in spite of a good spectroscopic characterization, especially through 1H and 31P NMR spectroscopic analysis, the crystal structure of (I) was hitherto unreported.

From the synthetic point of view, RuCl2(NP3) is used as a starting material in the production of alkenyl–allenylidene compounds useful in the preparation of either metal-containing polymers or new polyunsaturated organic substrates (Wolinska et al., 1991). It is interesting to note that the method of synthesis of (I) differs from that reported in the previous literature, where RuCl2(NP3) is prepared from RuCl2(PPh3)3 and the NP3 ligand under reflux in toluene. Complex (I) instead, is obtained by reaction of RuCl2(dmso)4 (dmso is dimethyl sulfoxide) and NP3 in toluene solution. Also, it should be noted that the same reaction with RuCl2(dmso)4 and NP3 but in acetone affords the RuCl2(NP3)(dmso) compound where NP3 seems to act as a tridentade ligand (Taqui-Khan & Rama-Rao, 1988).

The asymmetric unit of (I) consists of one complex molecule, 2.5 chloroform molecules and one water molecule. The Ru atom is coordinated by two Cl atoms and one NP3 ligand, which is bound through the N and P atoms to complete the octahedral environment of the Ru atom, as depicted in Fig. 1. The coordination geometry is distorted, with bond angles quite similar to those exhibited by analogous complex (II), with P1—Ru—P2 = 165.28 (4)°, N—Ru—Cl1 = 176.1 (1)° and P3—Ru—C1 = 170.3 (1)°. The distances involving the trans P atoms are longer than the distance involving the P atom trans to chlorine (Ru—P3; Table 1). When compared to analogous complex (II), the bond distances involving the trans P atoms are similar, but the Ru—P3 distance in (II) of 2.430 (1) Å is unusually long. This can be attributed to a greater trans effect of the allene ligand due to its π-acceptor nature, compared to the Cl atom in (I). The Cl atoms are in a cis configuration, with longer bond distances compared to the mean value reported for the parent complex cis-RuCl2(dmso)4 [Ru—Cl 2.420 (2) Å; Alessio et al., 1988; Attia & Calligaris, 1987]. The arrangement of the internal aromatic rings in the coordinated NP3 ligand allows for ππ face-to-face interactions with an average centroid–centroid distance of 3.672 (8) Å.

Molecules of chloroform and water are incorporated in the lattice as crystallization solvents; hydrogen-bond analysis, performed with PLATON (Spek, 1999), showed a series of intermolecular and intramolecular contacts (Table 2). A further analysis provided evidence that the chloroform and water molecules interact with the Cl atoms of the complex via C—H···Cl and O—H···Cl hydrogen bonds, respectively. Each coordinated Cl atom (Cl1 and Cl2) serves as an acceptor of four hydrogen-bonds; additionally, direct interactions between complex molecules through C72···Cl2 and C91···Cl2 were observed. These hydrogen bonds may account for the molecular packing and the stability of the structure. Intramolecular interaction could contribute to the distorted environment around the Ru atom also.

In addition, all three chloroform molecules are disordered, this disorder was modelled with two set of positions for molecules 1 and 2, with refined occupation factors of 0.70:0.30 and 0.60:0.40, respectively. Disorder in the third molecule was completely modelled with two set of positions. Refinement of the occupation factor of this molecule reveals a partial occupation of 1/2, distributed between 0.2 and 0.3 for both orientations.

Experimental top

The synthesis of (I) was carried out under a nitrogen atmosphere by refluxing a solution of cis-RuCl2(dmso)4 (484.53 mg, 1 mmol) with tris(diphenylphosphinoethyl)amine (653.75 mg, 1 mmol) in stirred toluene for 3 h. The resulting orange–yellow mixture was vacuum filtered and evaporated. The yellow solid obtained was washed with ether (yield 85%). 31P NMR (CDCl3, recorded on a Bruker 300 MHz s pectrometer): δ = -27.2 (d), -47.9 (t). Elemental analysis, alculated for C42H42Cl2NP3Ru: C 61.0, H 5.09, Cl 8.58, N 1.69, P 11.26%; found: C 60.1, H 5.22, Cl 8.19, N 1.61, P 10.20%. Crystals of (I) were obtained by slow evaporation of a chloroform solution of the complex at room temperature.

Refinement top

All H atoms were placed in calculated positions and allowed for as riding (C—H = 0.93–0.98 Å). Disorder of the chloroform molecules was modelled with two sites for each molecule, and these were refined isotropically constraining C—Cl distances to 1.750 (2) Å. The occupation factors of chloroform molecules 1 and 2 were refined with SHELXTL (Siemens, 1994), option PART. The best model for the third chloroform molecule was obtained by free refinement of the occupation factor for each set of positions, which gives a partial occupation of 0.5. These occupations were fixed during the final refinements. The H atoms of the water molecule were not located in the density map, but were calculated using the HYDROGEN program (Nardelli, 1999).

Computing details top

Data collection: COLLECT in UCLA Crystallographic Package (Strouse, 1988); cell refinement: LEAST in UCLA Crystallographic Package; data reduction: REDUCE in UCLA Crystallographic Package; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1994); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. View of the title compund, showing the labelling of the non-H atoms and ellipsoids at the 40% probability level.
cis-dicloro [tris-(diphenylphosphinoethyl)amine] ruthenium (II) chloform solvate top
Crystal data top
[RuCl2(C42H42NP3)]·2.5CHCl3·H2OF(000) = 2314
Mr = 1140.88Dx = 1.514 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
a = 17.541 (2) ÅCell parameters from 80 reflections
b = 12.112 (1) Åθ = 10–20°
c = 24.950 (3) ŵ = 0.95 mm1
β = 109.26 (1)°T = 293 K
V = 5004.1 (9) Å3Plate, yellow
Z = 40.5 × 0.3 × 0.2 mm
Data collection top
Nicolet P3/F (Crystal Logic)
diffractometer
4795 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.039
Graphite monochromatorθmax = 25.0°, θmin = 1.9°
ω scansh = 020
Absorption correction: ψ scan
(North et al., 1968)
k = 814
Tmin = 0.718, Tmax = 0.827l = 2928
10018 measured reflections3 standard reflections every 97 reflections
8811 independent reflections intensity decay: 10%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.080Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.223H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0838P)2 + 23.3179P]
where P = (Fo2 + 2Fc2)/3
8811 reflections(Δ/σ)max < 0.001
533 parametersΔρmax = 1.01 e Å3
19 restraintsΔρmin = 1.11 e Å3
Crystal data top
[RuCl2(C42H42NP3)]·2.5CHCl3·H2OV = 5004.1 (9) Å3
Mr = 1140.88Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.541 (2) ŵ = 0.95 mm1
b = 12.112 (1) ÅT = 293 K
c = 24.950 (3) Å0.5 × 0.3 × 0.2 mm
β = 109.26 (1)°
Data collection top
Nicolet P3/F (Crystal Logic)
diffractometer
4795 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.039
Tmin = 0.718, Tmax = 0.8273 standard reflections every 97 reflections
10018 measured reflections intensity decay: 10%
8811 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.08019 restraints
wR(F2) = 0.223H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0838P)2 + 23.3179P]
where P = (Fo2 + 2Fc2)/3
8811 reflectionsΔρmax = 1.01 e Å3
533 parametersΔρmin = 1.11 e Å3
Special details top

Experimental. The crystal was mounted in a sealed glass capillary with a small amount of crystallization solvent.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru0.33330 (4)0.84994 (6)0.24476 (3)0.0334 (2)
Cl10.25206 (13)0.7588 (2)0.29487 (9)0.0476 (6)
Cl20.40038 (14)0.67090 (18)0.24200 (10)0.0461 (6)
P10.45084 (13)0.88285 (19)0.32270 (9)0.0377 (5)
P20.24359 (14)0.8031 (2)0.15485 (9)0.0385 (5)
P30.28817 (14)1.02386 (19)0.24611 (9)0.0380 (5)
N0.4058 (4)0.9222 (6)0.1972 (3)0.0385 (17)
C110.4602 (5)0.9915 (8)0.3766 (3)0.043 (2)
C120.4130 (5)0.9771 (8)0.4109 (4)0.048 (2)
H120.37950.91590.40610.058*
C130.4161 (6)1.0546 (9)0.4524 (4)0.058 (3)
H130.38321.04630.47480.069*
C140.4672 (7)1.1435 (9)0.4608 (4)0.063 (3)
H140.47051.19370.48970.075*
C150.5139 (7)1.1581 (9)0.4262 (4)0.066 (3)
H150.54741.21940.43120.079*
C160.5111 (6)1.0819 (8)0.3840 (4)0.055 (3)
H160.54291.09130.36100.066*
C210.5006 (5)0.7707 (8)0.3719 (4)0.043 (2)
C220.5832 (6)0.7809 (9)0.4029 (4)0.058 (3)
H220.61360.84050.39800.069*
C230.6176 (8)0.6957 (12)0.4420 (4)0.078 (4)
H230.67260.69940.46210.093*
C240.5758 (9)0.6090 (11)0.4520 (5)0.077 (4)
H240.60050.55590.47910.092*
C250.4951 (8)0.6023 (9)0.4205 (5)0.067 (3)
H250.46540.54250.42620.080*
C260.4562 (7)0.6816 (8)0.3805 (4)0.053 (3)
H260.40160.67500.35990.063*
C310.2439 (5)0.6595 (7)0.1324 (4)0.044 (2)
C320.2608 (6)0.6265 (9)0.0849 (4)0.056 (3)
H320.27460.67990.06290.068*
C330.2582 (7)0.5169 (10)0.0682 (5)0.073 (3)
H330.27020.49720.03580.088*
C340.2377 (7)0.4395 (10)0.1000 (6)0.078 (4)
H340.23490.36580.08910.093*
C350.2210 (7)0.4675 (10)0.1480 (6)0.074 (3)
H350.20750.41340.16970.088*
C360.2245 (6)0.5782 (8)0.1640 (5)0.060 (3)
H360.21340.59730.19670.072*
C410.1348 (6)0.8266 (7)0.1261 (4)0.045 (2)
C420.0966 (6)0.8716 (8)0.0720 (4)0.057 (3)
H420.12710.89700.05030.068*
C430.0137 (7)0.8779 (9)0.0514 (5)0.069 (3)
H430.01150.90740.01550.083*
C440.0322 (7)0.8417 (11)0.0825 (5)0.077 (4)
H440.08810.84630.06770.093*
C450.0052 (6)0.7972 (9)0.1371 (5)0.063 (3)
H450.02550.77280.15890.075*
C460.0881 (6)0.7908 (8)0.1574 (4)0.051 (2)
H460.11330.76150.19330.061*
C510.1967 (5)1.0754 (8)0.1911 (4)0.045 (2)
C520.1220 (6)1.0506 (8)0.1956 (5)0.056 (3)
H520.11921.00800.22590.067*
C530.0507 (6)1.0883 (10)0.1555 (5)0.067 (3)
H530.00101.06950.15870.081*
C540.0543 (7)1.1532 (10)0.1115 (5)0.071 (3)
H540.00711.18000.08500.085*
C550.1264 (7)1.1777 (9)0.1068 (4)0.063 (3)
H550.12841.22050.07640.075*
C560.1981 (6)1.1410 (8)0.1462 (4)0.055 (3)
H560.24721.16060.14230.066*
C610.2705 (6)1.0884 (9)0.3081 (4)0.050 (2)
C620.2948 (7)1.1965 (9)0.3249 (5)0.064 (3)
H620.32451.23570.30650.076*
C630.2752 (8)1.2449 (11)0.3681 (5)0.078 (4)
H630.29181.31660.37960.094*
C640.2307 (8)1.1860 (12)0.3943 (5)0.082 (4)
H640.21821.21810.42420.098*
C650.2051 (7)1.0842 (12)0.3781 (5)0.075 (3)
H650.17271.04830.39560.090*
C660.2255 (6)1.0304 (10)0.3358 (4)0.058 (3)
H660.20970.95770.32600.069*
C710.4924 (6)0.8907 (8)0.2246 (4)0.049 (2)
H7110.52480.92660.20490.059*
H7120.49800.81150.22140.059*
C720.5237 (5)0.9234 (8)0.2873 (4)0.046 (2)
H7210.53211.00260.29050.055*
H7220.57510.88760.30580.055*
C810.3793 (6)0.8758 (8)0.1379 (4)0.046 (2)
H8110.39700.79970.13920.055*
H8120.40470.91730.11510.055*
C820.2879 (6)0.8808 (8)0.1100 (4)0.047 (2)
H8210.27220.84870.07230.056*
H8220.26960.95680.10670.056*
C910.3996 (6)1.0476 (7)0.1921 (4)0.042 (2)
H9110.45251.07650.19530.050*
H9120.36361.06570.15430.050*
C920.3702 (5)1.1060 (7)0.2344 (4)0.044 (2)
H9210.35031.17880.22040.053*
H9220.41421.11470.26990.053*
O0.3225 (8)0.5235 (11)0.3028 (6)0.185 (7)
H1O0.27140.52440.28800.222*
H2O0.34060.47430.28590.222*
C1A0.0398 (2)0.6052 (5)0.2053 (3)0.095 (4)*
H1A0.04350.61220.16710.114*
Cl1A0.0416 (5)0.4661 (6)0.2247 (4)0.155 (3)*0.70
Cl2A0.1205 (3)0.6730 (5)0.2550 (2)0.1021 (17)*0.70
Cl3A0.0460 (3)0.6736 (7)0.2094 (4)0.1068 (18)*0.70
Cl110.0128 (12)0.4700 (7)0.1820 (9)0.155 (3)*0.30
Cl210.1220 (6)0.6264 (13)0.2672 (4)0.1021 (17)*0.30
Cl310.0566 (6)0.6554 (17)0.1983 (9)0.1068 (18)*0.30
C2B0.2345 (3)0.3280 (6)0.4177 (3)0.092 (4)*
H2B0.23660.31010.37990.110*
Cl1B0.3322 (3)0.3360 (7)0.4668 (3)0.100 (2)*0.60
Cl2B0.1742 (5)0.2324 (7)0.4378 (4)0.128 (3)*0.60
Cl3B0.1844 (8)0.4536 (8)0.4160 (6)0.194 (5)*0.60
Cl120.3246 (3)0.2772 (7)0.4658 (3)0.071 (2)*0.40
Cl220.1556 (6)0.2898 (12)0.4422 (5)0.124 (4)*0.40
Cl320.2358 (13)0.4725 (6)0.4202 (8)0.191 (7)*0.40
C3C0.00000.50000.00000.045 (16)*0.20
H3CA0.04420.51370.03420.054*0.20
Cl1C0.0495 (16)0.6276 (11)0.0124 (13)0.140 (9)*0.20
Cl2C0.0464 (17)0.427 (3)0.0413 (12)0.166 (12)*0.20
Cl3C0.0618 (12)0.412 (2)0.0232 (11)0.132 (8)*0.20
C3CA0.0402 (13)0.4921 (13)0.0224 (7)0.065 (10)*0.30
H3CB0.09610.48980.04550.078*0.30
Cl130.0097 (15)0.3889 (17)0.0293 (10)0.166 (8)*0.30
Cl230.0090 (13)0.6153 (13)0.0151 (8)0.138 (6)*0.30
Cl330.0282 (15)0.479 (3)0.0597 (10)0.196 (9)*0.30
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru0.0347 (4)0.0352 (4)0.0323 (4)0.0004 (3)0.0139 (3)0.0023 (3)
Cl10.0478 (13)0.0558 (14)0.0461 (13)0.0014 (11)0.0248 (11)0.0108 (11)
Cl20.0498 (13)0.0391 (13)0.0519 (13)0.0073 (10)0.0201 (11)0.0001 (10)
P10.0362 (12)0.0396 (13)0.0381 (12)0.0003 (10)0.0134 (10)0.0024 (10)
P20.0417 (13)0.0419 (13)0.0320 (12)0.0033 (10)0.0122 (10)0.0012 (10)
P30.0400 (13)0.0355 (13)0.0369 (12)0.0024 (10)0.0106 (10)0.0010 (10)
N0.034 (4)0.045 (4)0.039 (4)0.003 (3)0.015 (3)0.003 (3)
C110.046 (5)0.049 (6)0.031 (4)0.017 (5)0.009 (4)0.002 (4)
C120.044 (5)0.058 (6)0.037 (5)0.003 (5)0.007 (4)0.004 (5)
C130.059 (6)0.073 (8)0.045 (6)0.009 (6)0.021 (5)0.005 (5)
C140.082 (8)0.052 (6)0.046 (6)0.006 (6)0.010 (5)0.014 (5)
C150.076 (8)0.062 (7)0.052 (6)0.016 (6)0.013 (6)0.018 (6)
C160.056 (6)0.054 (6)0.054 (6)0.016 (5)0.016 (5)0.009 (5)
C210.044 (5)0.045 (5)0.036 (5)0.004 (4)0.009 (4)0.003 (4)
C220.054 (6)0.067 (7)0.051 (6)0.013 (5)0.015 (5)0.003 (5)
C230.084 (9)0.104 (10)0.037 (6)0.049 (8)0.008 (6)0.005 (6)
C240.119 (12)0.069 (8)0.046 (6)0.035 (8)0.030 (7)0.014 (6)
C250.091 (9)0.051 (7)0.066 (7)0.002 (6)0.034 (7)0.009 (6)
C260.065 (7)0.055 (6)0.041 (5)0.018 (5)0.022 (5)0.008 (4)
C310.042 (5)0.038 (5)0.050 (5)0.002 (4)0.014 (4)0.001 (4)
C320.065 (7)0.056 (7)0.056 (6)0.005 (5)0.030 (5)0.006 (5)
C330.079 (8)0.073 (8)0.071 (8)0.003 (7)0.027 (7)0.024 (7)
C340.069 (8)0.054 (7)0.118 (11)0.012 (6)0.042 (8)0.021 (7)
C350.073 (8)0.054 (7)0.110 (10)0.011 (6)0.051 (8)0.005 (7)
C360.070 (7)0.046 (6)0.071 (7)0.008 (5)0.034 (6)0.000 (5)
C410.056 (6)0.038 (5)0.040 (5)0.014 (4)0.014 (4)0.001 (4)
C420.068 (7)0.051 (6)0.046 (6)0.007 (5)0.012 (5)0.000 (5)
C430.055 (7)0.065 (8)0.060 (7)0.004 (6)0.020 (6)0.012 (6)
C440.045 (6)0.087 (9)0.085 (9)0.005 (7)0.002 (6)0.002 (7)
C450.039 (6)0.068 (7)0.079 (8)0.001 (5)0.017 (5)0.008 (6)
C460.046 (6)0.051 (6)0.054 (6)0.004 (5)0.015 (5)0.006 (5)
C510.044 (5)0.049 (6)0.036 (5)0.005 (4)0.005 (4)0.005 (4)
C520.051 (6)0.048 (6)0.066 (7)0.002 (5)0.016 (5)0.002 (5)
C530.040 (6)0.085 (8)0.066 (7)0.006 (6)0.003 (5)0.011 (7)
C540.060 (7)0.062 (7)0.073 (8)0.013 (6)0.001 (6)0.010 (6)
C550.062 (7)0.055 (7)0.055 (6)0.000 (5)0.002 (5)0.015 (5)
C560.053 (6)0.047 (6)0.055 (6)0.002 (5)0.005 (5)0.012 (5)
C610.044 (5)0.061 (7)0.041 (5)0.019 (5)0.008 (4)0.003 (5)
C620.062 (7)0.054 (7)0.065 (7)0.013 (5)0.009 (6)0.014 (6)
C630.079 (9)0.069 (8)0.068 (8)0.020 (7)0.001 (7)0.022 (7)
C640.080 (9)0.105 (11)0.065 (8)0.012 (8)0.030 (7)0.029 (8)
C650.067 (8)0.102 (10)0.062 (7)0.012 (7)0.031 (6)0.017 (7)
C660.062 (7)0.070 (7)0.046 (6)0.000 (6)0.025 (5)0.012 (5)
C710.051 (6)0.053 (6)0.052 (6)0.002 (5)0.029 (5)0.001 (5)
C720.042 (5)0.052 (6)0.043 (5)0.001 (5)0.013 (4)0.006 (4)
C810.060 (6)0.047 (6)0.036 (5)0.008 (5)0.023 (4)0.001 (4)
C820.056 (6)0.052 (6)0.035 (5)0.016 (5)0.018 (4)0.000 (4)
C910.047 (5)0.040 (5)0.040 (5)0.009 (4)0.016 (4)0.009 (4)
C920.048 (5)0.033 (5)0.049 (5)0.002 (4)0.012 (4)0.005 (4)
O0.149 (11)0.149 (12)0.234 (16)0.028 (10)0.032 (11)0.076 (11)
Geometric parameters (Å, º) top
Ru—N2.188 (7)C61—C661.399 (14)
Ru—P32.254 (2)C62—C631.367 (15)
Ru—P22.346 (2)C62—H620.9300
Ru—P12.355 (2)C63—C641.372 (18)
Ru—Cl12.447 (2)C63—H630.9300
Ru—Cl22.479 (2)C64—C651.328 (18)
P1—C721.844 (9)C64—H640.9300
P1—C211.846 (9)C65—C661.384 (14)
P1—C111.850 (9)C65—H650.9300
P2—C821.820 (8)C66—H660.9300
P2—C411.827 (10)C71—C721.528 (12)
P2—C311.828 (9)C71—H7110.9700
P3—C511.842 (9)C71—H7120.9700
P3—C611.848 (10)C72—H7210.9700
P3—C921.849 (9)C72—H7220.9700
N—C711.494 (11)C81—C821.523 (13)
N—C811.507 (10)C81—H8110.9700
N—C911.524 (11)C81—H8120.9700
C11—C121.382 (12)C82—H8210.9700
C11—C161.386 (13)C82—H8220.9700
C12—C131.387 (13)C91—C921.498 (12)
C12—H120.9300C91—H9110.9700
C13—C141.373 (15)C91—H9120.9700
C13—H130.9300C92—H9210.9700
C14—C151.383 (15)C92—H9220.9700
C14—H140.9300O—H1O0.8495
C15—C161.388 (14)O—H2O0.8494
C15—H150.9300C1A—Cl111.7494 (10)
C16—H160.9300C1A—Cl311.7496 (10)
C21—C261.388 (13)C1A—Cl2A1.7497 (11)
C21—C221.406 (13)C1A—Cl211.7499 (11)
C22—C231.410 (15)C1A—Cl3A1.7503 (10)
C22—H220.9300C1A—Cl1A1.7506 (10)
C23—C241.352 (18)C1A—H1A0.9800
C23—H230.9300C2B—Cl221.7495 (10)
C24—C251.376 (17)C2B—Cl1B1.7498 (11)
C24—H240.9300C2B—Cl3B1.7499 (10)
C25—C261.391 (14)C2B—Cl121.7501 (11)
C25—H250.9300C2B—Cl321.7503 (11)
C26—H260.9300C2B—Cl2B1.7505 (10)
C31—C321.373 (13)C2B—H2B0.9800
C31—C361.373 (13)C3C—Cl1Ci1.7496 (10)
C32—C331.388 (15)C3C—Cl1C1.7496 (10)
C32—H320.9300C3C—Cl2C1.7500 (10)
C33—C341.352 (17)C3C—Cl2Ci1.7500 (10)
C33—H330.9300C3C—Cl3Ci1.7500 (10)
C34—C351.364 (16)C3C—Cl3C1.7500 (10)
C34—H340.9300C3C—H3CA0.9600
C35—C361.394 (15)Cl1C—Cl2Ci1.48 (4)
C35—H350.9300Cl1C—Cl3Ci2.11 (3)
C36—H360.9300Cl2C—Cl1Ci1.48 (4)
C41—C461.375 (12)Cl2C—Cl3Ci2.00 (4)
C41—C421.402 (13)Cl3C—Cl2Ci2.00 (4)
C42—C431.375 (14)Cl3C—Cl1Ci2.11 (3)
C42—H420.9300C3CA—C3CAi1.50 (4)
C43—C441.361 (16)C3CA—Cl23i1.54 (3)
C43—H430.9300C3CA—Cl13i1.72 (3)
C44—C451.410 (16)C3CA—Cl131.7500 (10)
C44—H440.9300C3CA—Cl231.7500 (10)
C45—C461.375 (13)C3CA—Cl331.7500 (10)
C45—H450.9300C3CA—Cl33i2.02 (3)
C46—H460.9300C3CA—H3CA0.3817
C51—C561.380 (13)C3CA—H3CB0.9600
C51—C521.385 (13)Cl13—Cl23i1.26 (3)
C52—C531.394 (14)Cl13—C3CAi1.72 (3)
C52—H520.9300Cl13—Cl33i1.85 (3)
C53—C541.369 (16)Cl23—Cl13i1.26 (3)
C53—H530.9300Cl23—C3CAi1.54 (3)
C54—C551.341 (15)Cl23—Cl33i1.70 (3)
C54—H540.9300Cl23—H3CA1.7052
C55—C561.389 (13)Cl33—Cl23i1.70 (3)
C55—H550.9300Cl33—Cl13i1.85 (3)
C56—H560.9300Cl33—C3CAi2.02 (3)
C61—C621.397 (14)Cl33—H3CA1.6523
N—Ru—P384.5 (2)N—C81—C82111.8 (7)
N—Ru—P284.55 (19)N—C81—H811109.3
P3—Ru—P296.44 (9)C82—C81—H811109.3
N—Ru—P182.68 (19)N—C81—H812109.3
P3—Ru—P192.61 (8)C82—C81—H812109.3
P2—Ru—P1163.56 (8)H811—C81—H812107.9
N—Ru—Cl1176.6 (2)C81—C82—P2107.3 (6)
P3—Ru—Cl198.47 (9)C81—C82—H821110.3
P2—Ru—Cl193.41 (8)P2—C82—H821110.3
P1—Ru—Cl198.81 (8)C81—C82—H822110.3
N—Ru—Cl288.2 (2)P2—C82—H822110.3
P3—Ru—Cl2171.89 (9)H821—C82—H822108.5
P2—Ru—Cl286.38 (8)C92—C91—N116.2 (7)
P1—Ru—Cl282.92 (8)C92—C91—H911108.2
Cl1—Ru—Cl288.93 (8)N—C91—H911108.2
C72—P1—C21105.4 (4)C92—C91—H912108.2
C72—P1—C11104.5 (4)N—C91—H912108.2
C21—P1—C1197.5 (4)H911—C91—H912107.4
C72—P1—Ru101.9 (3)C91—C92—P3108.9 (6)
C21—P1—Ru121.2 (3)C91—C92—H921109.9
C11—P1—Ru124.3 (3)P3—C92—H921109.9
C82—P2—C41106.3 (4)C91—C92—H922109.9
C82—P2—C31104.9 (4)P3—C92—H922109.9
C41—P2—C3197.8 (4)H921—C92—H922108.3
C82—P2—Ru100.1 (3)H1O—O—H2O107.8
C41—P2—Ru128.5 (3)Cl11—C1A—Cl3198.4 (10)
C31—P2—Ru117.0 (3)Cl11—C1A—Cl2A137.9 (8)
C51—P3—C6197.8 (4)Cl31—C1A—Cl2A115.9 (8)
C51—P3—C92103.4 (4)Cl11—C1A—Cl21118.9 (9)
C61—P3—C92104.9 (5)Cl31—C1A—Cl21121.7 (10)
C51—P3—Ru122.0 (3)Cl2A—C1A—Cl2121.0 (5)
C61—P3—Ru124.4 (3)Cl11—C1A—Cl3A108.6 (8)
C92—P3—Ru101.8 (3)Cl31—C1A—Cl3A11.6 (9)
C71—N—C81107.0 (7)Cl2A—C1A—Cl3A104.3 (4)
C71—N—C91109.1 (7)Cl21—C1A—Cl3A110.7 (6)
C81—N—C91107.3 (7)Cl11—C1A—Cl1A33.8 (7)
C71—N—Ru109.5 (5)Cl31—C1A—Cl1A106.9 (9)
C81—N—Ru109.7 (5)Cl2A—C1A—Cl1A108.6 (5)
C91—N—Ru114.0 (5)Cl21—C1A—Cl1A87.8 (7)
C12—C11—C16120.5 (9)Cl3A—C1A—Cl1A112.2 (6)
C12—C11—P1115.6 (7)Cl11—C1A—H1A81.7
C16—C11—P1123.9 (7)Cl31—C1A—H1A104.2
C11—C12—C13119.6 (10)Cl2A—C1A—H1A110.5
C11—C12—H12120.2Cl21—C1A—H1A123.0
C13—C12—H12120.2Cl3A—C1A—H1A110.5
C14—C13—C12120.4 (10)Cl1A—C1A—H1A110.5
C14—C13—H13119.8Cl22—C2B—Cl1B118.3 (6)
C12—C13—H13119.8Cl22—C2B—Cl3B77.9 (7)
C13—C14—C15119.8 (10)Cl1B—C2B—Cl3B109.7 (7)
C13—C14—H14120.1Cl22—C2B—Cl12107.8 (6)
C15—C14—H14120.1Cl1B—C2B—Cl1223.9 (3)
C14—C15—C16120.5 (10)Cl3B—C2B—Cl12130.9 (7)
C14—C15—H15119.7Cl22—C2B—Cl32104.7 (10)
C16—C15—H15119.7Cl1B—C2B—Cl3285.5 (8)
C11—C16—C15119.1 (10)Cl3B—C2B—Cl3229.8 (7)
C11—C16—H16120.5Cl12—C2B—Cl32109.2 (8)
C15—C16—H16120.5Cl22—C2B—Cl2B26.1 (5)
C26—C21—C22120.8 (9)Cl1B—C2B—Cl2B112.4 (5)
C26—C21—P1120.6 (7)Cl3B—C2B—Cl2B103.7 (7)
C22—C21—P1118.5 (7)Cl12—C2B—Cl2B93.7 (5)
C21—C22—C23116.4 (11)Cl32—C2B—Cl2B130.8 (9)
C21—C22—H22121.8Cl22—C2B—H2B124.3
C23—C22—H22121.8Cl1B—C2B—H2B110.3
C24—C23—C22124.2 (12)Cl3B—C2B—H2B110.3
C24—C23—H23117.9Cl12—C2B—H2B105.6
C22—C23—H23117.9Cl32—C2B—H2B104.6
C23—C24—C25117.4 (11)Cl2B—C2B—H2B110.3
C23—C24—H24121.3Cl1Ci—C3C—Cl1C180.0 (16)
C25—C24—H24121.3Cl1Ci—C3C—Cl2C50.0 (16)
C24—C25—C26122.4 (11)Cl1C—C3C—Cl2C130.0 (16)
C24—C25—H25118.8Cl1Ci—C3C—Cl2Ci130.0 (16)
C26—C25—H25118.8Cl1C—C3C—Cl2Ci50.0 (16)
C21—C26—C25118.8 (10)Cl2C—C3C—Cl2Ci180.0 (13)
C21—C26—H26120.6Cl1Ci—C3C—Cl3Ci105.7 (12)
C25—C26—H26120.6Cl1C—C3C—Cl3Ci74.3 (12)
C32—C31—C36116.8 (9)Cl2C—C3C—Cl3Ci69.7 (16)
C32—C31—P2124.4 (7)Cl2Ci—C3C—Cl3Ci110.3 (16)
C36—C31—P2118.7 (7)Cl1Ci—C3C—Cl3C74.3 (12)
C31—C32—C33122.9 (10)Cl1C—C3C—Cl3C105.7 (12)
C31—C32—H32118.6Cl2C—C3C—Cl3C110.3 (16)
C33—C32—H32118.6Cl2Ci—C3C—Cl3C69.7 (16)
C34—C33—C32118.4 (11)Cl3Ci—C3C—Cl3C180.0 (13)
C34—C33—H33120.8Cl1Ci—C3C—H3CA77.7
C32—C33—H33120.8Cl1C—C3C—H3CA102.3
C33—C34—C35121.2 (11)Cl2C—C3C—H3CA102.4
C33—C34—H34119.4Cl2Ci—C3C—H3CA77.6
C35—C34—H34119.4Cl3Ci—C3C—H3CA77.4
C34—C35—C36119.3 (12)Cl3C—C3C—H3CA102.6
C34—C35—H35120.4Cl2Ci—Cl1C—C3C65.0 (8)
C36—C35—H35120.4Cl2Ci—Cl1C—Cl3Ci104.8 (14)
C31—C36—C35121.4 (11)C3C—Cl1C—Cl3Ci52.9 (6)
C31—C36—H36119.3Cl1Ci—Cl2C—C3C65.0 (8)
C35—C36—H36119.3Cl1Ci—Cl2C—Cl3Ci105.6 (15)
C46—C41—C42118.9 (9)C3C—Cl2C—Cl3Ci55.1 (8)
C46—C41—P2118.0 (7)C3C—Cl3C—Cl2Ci55.1 (8)
C42—C41—P2123.0 (8)C3C—Cl3C—Cl1Ci52.8 (6)
C43—C42—C41119.5 (10)Cl2Ci—Cl3C—Cl1Ci100.8 (10)
C43—C42—H42120.2C3CAi—C3CA—Cl23i70.5 (14)
C41—C42—H42120.2C3CAi—C3CA—Cl13i65.4 (12)
C44—C43—C42121.3 (10)Cl23i—C3CA—Cl13i115.8 (18)
C44—C43—H43119.4C3CAi—C3CA—Cl1363.6 (14)
C42—C43—H43119.4Cl23i—C3CA—Cl1344.4 (10)
C43—C44—C45120.1 (10)Cl13i—C3CA—Cl13129.0 (15)
C43—C44—H44120.0C3CAi—C3CA—Cl2355.9 (11)
C45—C44—H44120.0Cl23i—C3CA—Cl23126.4 (15)
C46—C45—C44118.3 (10)Cl13i—C3CA—Cl2342.4 (9)
C46—C45—H45120.8Cl13—C3CA—Cl23104.4 (13)
C44—C45—H45120.8C3CAi—C3CA—Cl3376.6 (18)
C41—C46—C45122.0 (10)Cl23i—C3CA—Cl3361.9 (13)
C41—C46—H46119.0Cl13i—C3CA—Cl3364.2 (14)
C45—C46—H46119.0Cl13—C3CA—Cl33103.3 (16)
C56—C51—C52117.4 (9)Cl23—C3CA—Cl33102.4 (15)
C56—C51—P3123.8 (8)C3CAi—C3CA—Cl33i57.4 (10)
C52—C51—P3118.8 (7)Cl23i—C3CA—Cl33i99.2 (13)
C51—C52—C53121.3 (10)Cl13i—C3CA—Cl33i93.9 (13)
C51—C52—H52119.4Cl13—C3CA—Cl33i58.1 (12)
C53—C52—H52119.4Cl23—C3CA—Cl33i53.0 (11)
C54—C53—C52119.8 (11)Cl33—C3CA—Cl33i134.0 (14)
C54—C53—H53120.1C3CAi—C3CA—H3CA112.3
C52—C53—H53120.1Cl23i—C3CA—H3CA128.7
C55—C54—C53119.4 (10)Cl13i—C3CA—H3CA47.4
C55—C54—H54120.3Cl13—C3CA—H3CA172.2
C53—C54—H54120.3Cl23—C3CA—H3CA77.0
C54—C55—C56121.8 (10)Cl33—C3CA—H3CA69.0
C54—C55—H55119.1Cl33i—C3CA—H3CA126.2
C56—C55—H55119.1C3CAi—C3CA—H3CB167.7
C51—C56—C55120.3 (10)Cl23i—C3CA—H3CB117.9
C51—C56—H56119.9Cl13i—C3CA—H3CB114.7
C55—C56—H56119.9Cl13—C3CA—H3CB115.1
C62—C61—C66119.2 (10)Cl23—C3CA—H3CB115.1
C62—C61—P3122.0 (9)Cl33—C3CA—H3CB115.0
C66—C61—P3118.6 (8)Cl33i—C3CA—H3CB110.9
C63—C62—C61120.6 (12)H3CA—C3CA—H3CB70.4
C63—C62—H62119.7Cl23i—Cl13—C3CAi69.9 (13)
C61—C62—H62119.7Cl23i—Cl13—C3CA58.8 (13)
C62—C63—C64118.8 (12)C3CAi—Cl13—C3CA51.0 (15)
C62—C63—H63120.6Cl23i—Cl13—Cl33i121.9 (17)
C64—C63—H63120.6C3CAi—Cl13—Cl33i58.6 (9)
C65—C64—C63121.8 (12)C3CA—Cl13—Cl33i68.3 (13)
C65—C64—H64119.1Cl13i—Cl23—C3CAi76.8 (13)
C63—C64—H64119.1Cl13i—Cl23—Cl33i135.7 (17)
C64—C65—C66121.5 (13)C3CAi—Cl23—Cl33i65.2 (9)
C64—C65—H65119.3Cl13i—Cl23—C3CA67.7 (15)
C66—C65—H65119.3C3CAi—Cl23—C3CA53.6 (15)
C65—C66—C61118.0 (11)Cl33i—Cl23—C3CA71.7 (14)
C65—C66—H66121.0Cl13i—Cl23—H3CA58.2
C61—C66—H66121.0C3CAi—Cl23—H3CA62.1
N—C71—C72111.7 (7)Cl33i—Cl23—H3CA83.5
N—C71—H711109.3C3CA—Cl23—H3CA12.6
C72—C71—H711109.3Cl23i—Cl33—C3CA52.9 (11)
N—C71—H712109.3Cl23i—Cl33—Cl13i102.3 (13)
C72—C71—H712109.3C3CA—Cl33—Cl13i57.2 (12)
H711—C71—H712107.9Cl23i—Cl33—C3CAi55.3 (9)
C71—C72—P1110.4 (6)C3CA—Cl33—C3CAi46.0 (14)
C71—C72—H721109.6Cl13i—Cl33—C3CAi53.6 (8)
P1—C72—H721109.6Cl23i—Cl33—H3CA65.0
C71—C72—H722109.6C3CA—Cl33—H3CA12.5
P1—C72—H722109.6Cl13i—Cl33—H3CA50.1
H721—C72—H722108.1C3CAi—Cl33—H3CA53.2
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2B—H2B···Cl1i0.982.383.349 (7)171
C26—H26···Cl10.932.783.635 (12)153
C66—H66···Cl10.932.713.521 (11)146
C71—H712···Cl20.972.583.216 (10)122
C72—H721···Cl2ii0.972.623.455 (10)144
C91—H911···Cl2ii0.972.793.666 (11)151
C46—H46···Cl10.932.883.698 (9)148
C15—H15···Cl12iii0.932.893.511 (11)126
C66—H66···Cl31iv0.932.893.590 (18)133
C54—H54···Cl22iv0.932.733.545 (15)146
C54—H54···Cl13v0.932.873.50 (2)126
O—H1O···Cl210.852.783.46 (2)151
O—H2O···Cl2i0.852.463.31 (2)176
Symmetry codes: (i) x, y+1, z; (ii) x1, y+1/2, z1/2; (iii) x1, y+1, z1; (iv) x, y+3/2, z1/2; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formula[RuCl2(C42H42NP3)]·2.5CHCl3·H2O
Mr1140.88
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)17.541 (2), 12.112 (1), 24.950 (3)
β (°) 109.26 (1)
V3)5004.1 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.95
Crystal size (mm)0.5 × 0.3 × 0.2
Data collection
DiffractometerNicolet P3/F (Crystal Logic)
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.718, 0.827
No. of measured, independent and
observed [I > 2σ(I)] reflections
10018, 8811, 4795
Rint0.039
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.223, 1.05
No. of reflections8811
No. of parameters533
No. of restraints19
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0838P)2 + 23.3179P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.01, 1.11

Computer programs: COLLECT in UCLA Crystallographic Package (Strouse, 1988), LEAST in UCLA Crystallographic Package, REDUCE in UCLA Crystallographic Package, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens, 1994), SHELXTL.

Selected geometric parameters (Å, º) top
Ru—N2.188 (7)P2—C821.820 (8)
Ru—P32.254 (2)P2—C411.827 (10)
Ru—P22.346 (2)P2—C311.828 (9)
Ru—P12.355 (2)P3—C511.842 (9)
Ru—Cl12.447 (2)P3—C611.848 (10)
Ru—Cl22.479 (2)P3—C921.849 (9)
P1—C721.844 (9)N—C711.494 (11)
P1—C211.846 (9)N—C811.507 (10)
P1—C111.850 (9)N—C911.524 (11)
N—Ru—P384.5 (2)P2—Ru—Cl193.41 (8)
N—Ru—P284.55 (19)P1—Ru—Cl198.81 (8)
P3—Ru—P296.44 (9)N—Ru—Cl288.2 (2)
N—Ru—P182.68 (19)P3—Ru—Cl2171.89 (9)
P3—Ru—P192.61 (8)P2—Ru—Cl286.38 (8)
P2—Ru—P1163.56 (8)P1—Ru—Cl282.92 (8)
N—Ru—Cl1176.6 (2)Cl1—Ru—Cl288.93 (8)
P3—Ru—Cl198.47 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2B—H2B···Cl1i0.982.383.349 (7)171
C26—H26···Cl10.932.783.635 (12)153
C66—H66···Cl10.932.713.521 (11)146
C71—H712···Cl20.972.583.216 (10)122
C72—H721···Cl2ii0.972.623.455 (10)144
C91—H911···Cl2ii0.972.793.666 (11)151
C46—H46···Cl10.932.883.698 (9)148
C15—H15···Cl12iii0.932.893.511 (11)126
C66—H66···Cl31iv0.932.893.590 (18)133
C54—H54···Cl22iv0.932.733.545 (15)146
C54—H54···Cl13v0.932.873.50 (2)126
O—H1O···Cl210.852.783.46 (2)151
O—H2O···Cl2i0.852.463.31 (2)176
Symmetry codes: (i) x, y+1, z; (ii) x1, y+1/2, z1/2; (iii) x1, y+1, z1; (iv) x, y+3/2, z1/2; (v) x, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds