Download citation
Download citation
link to html
The preparation, characterization, and molecular and crystal structures of succinimido 2-(tosyl­amino)­isobutyrate, C15H18N2O6S, are described. The succinimido ring is nearly orthogonal to the ester group.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102004717/na1559sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102004717/na1559Isup2.hkl
Contains datablock I

CCDC reference: 187930

Comment top

X-Ray diffraction has been shown to represent an excellent technique to contribute to our understanding of α-amino acid chemistry (Toniolo et al., 1996). However, reactive intermediates in peptide synthesis are commonly characterized by low melting points and poor crystallinities. Using an appropriate combination of a high molecular weight aromatic Nα-protecting group [e.g. the para-toluenesulfonyl (Tos) group] and a conformationally restricted α-amino acid (e.g. a Cα,α-disubstituted glycine, such as Aib, α-aminoisobutyric acid), known to exhibit a higher tendency to crystallize than protein residues, this drawback may be easily overcome.

We describe here the synthesis, characterization, and results of a crystallographic analysis of Tos-Aib-OSu (OSu is oxysuccinimide), or succinimido 2-(tosylamino)isobutyrate, (I). Among the variety of Nα-protected α-amino acid hydroxylamine derivatives reported in the literature, one of the most popular methods for activation of the COOH function in peptide synthesis, the formation of N-oxysuccinimido esters (Anderson et al., 1964), has been extensively exploited because: (i) the water-soluble by-product N-hydroxysuccinimide can be easily removed by extraction and (ii) they allow amide bond formation with no racemization (epimerization), even if a peptide segment is activated (Benoiton et al., 1995). The only X-ray diffraction structure published for an N-oxysuccinimido ester of an amino acid or peptide is Boc-L-Val-OSu (Boc is tert-butyloxycarbonyl) (Sukumar et al., 1993).

In Tos-Aib-OSu (Fig. 1), the C11O3 bond length (Table 1) is close to that typical of carboxylic esters (Allen et al., 1987). Atoms C8, C11, O3, and O4 of the ester group are coplanar within 0.030 (2) Å, while atom N2 is displaced from the ester plane by 0.189 (2) Å.

The pentaatomic succinimido ring is slightly puckered towards the 4T3 (twist) disposition, as indicated by the values of the puckering parameters (relative to the N2—C12—C13—C14—C15 atom sequence) of q2 = 0.095 (2) Å and ϕ2 = -94.2 (13)° (Cremer & Pople, 1975). Such ring conformation is characterized by a local pseudo-twofold axis along N2 and the midpoint of the C13—C14 bond. The characteristic O4—N2 bond is 1.391 (2) Å. The value of the ratio Δ/σ between the two N—Csp2 bond lengths, 4.01, is just significant. The internal bond angles of the succinimido moiety have values in the range 104.9 (2)–106.2 (1)°, as expected for a pentagonal ring, with the exception of the bond angle at nitrogen (Table 1). The exocyclic bond angles involving the two carbonyl O atoms are remarkably expanded, and lie in the range 124.1 (2)–130.8 (2)°, and the C11—O4—N2 bond angle is wide (Table 1). The dihedral angle between the average –COO ester and succinimido planes is nearly orthogonal, 105.2 (1)°, presumably to reduce potential lone-pair repulsion between O3 and the O5 and O6 carbonyl O atoms. The O3···O5 and O3···O6 distances are 3.255 (3) and 3.834 (3) Å, respectively. A similar succinimido geometry has been reported for Boc-L-Val-OSu (Sukumar et al., 1993).

The S1—N1—C8—C11 and N1—C8—C11—O4 amino acid backbone torsion angles are 65.5 (2) and 33.2 (2)°, respectively. These values confirm the propensity of Aib for the helical region of the conformational map (Karle & Balaram, 1990; Toniolo & Benedetti, 1991). The conformationally sensitive Aib τ(N1—C8—C11) bond angle (Paterson et al., 1981) is close to the regular tetrahedral value (Table 1). The C5—S1—N1—C8 torsion angle is close to 90°, its value being 97.64 (18)°. Significantly short intramolecular distances between non-bonded atoms are O2···C11 of 2.938 (3) Å and O2···O4 of 3.140 (3) Å. The S1 atom is 2.746 (2) Å from C8, 3.291 (4) Å from C10, and 3.325 (2) Å from C11. The dihedral angle between the average planes of the aromatic ring of the Tos group and the ester –COO group is 149.1 (1)°, while that involving the Tos aromatic ring and the succinimido moiety is 128.4 (1)°.

In the crystal, the molecules form dimers stabilized by double intermolecular hydrogen bonds between (sulfonamido) N1—H1 groups and (succinimido) O6 C15 groups of symmetry-related molecules. The N1···O6i distance and N1—H···O6i angle [symmetry code: (i) 1 - x, 1 - y, 2 - z; Table 2] are within the accepted range for such an interaction (Görbitz, 1989).

Experimental top

For the synthesis of Tos-Aib-OSu, Tos-Aib-OH (Leplawy et al., 1960) (386 mg, 1.5 mmol) and N-ethyl-N'-[(3-dimethylamino)propyl]carbodiimide hydrochloride (288 mg, 1.5 mmol) were dissolved at 273 K in acetonitrile (5 ml) in the presence of N-hydroxysuccinimide (173 mg, 1.5 mmol) and N-methylmorpholine (0.165 ml, 1.5 mmol). The reaction mixture was stirred for 1 h at 273 K and 3 h at room temperature. The solvent was evaporated, and the residue was taken up in ethyl acetate and washed with 0.5 M citric acid, water, 5% NaHCO3, and water. The organic layer was dried over anhydrous Na2SO4 and evaporated to dryness. The title compound was obtained in 73% yield from ethyl acetate–petroleum ether (1:3) as a colourless solid with a melting point of 448–449 K. TLC: RF (CHCl3/ethanol, 9:1) 0.85; IR (KBr): 3309, 1811, 1778, 1731 cm-1; 1H NMR (200 MHz, CDCl3): δ 7.83–7.26 (4H, 4 aromatic CH), 5.27 (1H, Aib NH), 2.84 (4H, OSu 2 CH2), 2.42 (3H, Tos CH3), 1.64 (6H, 2 Aib CH3). Single crystals were obtained from ethyl acetate/petroleum ether by vapour diffusion.

Refinement top

All H atoms were placed at idealized positions and refined as riding (N—H = 0.86 Å and C—H = 0.93–0.97 Å), with Uiso values 1.2 (or 1.5 for methyl H atoms) times the Ueq of the parent atom.

Computing details top

Data collection: FEBO (Belletti, 1993); cell refinement: FEBO; data reduction: FEBO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PARST96 (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. A view of the molecule of the title compound with the atom-numbering scheme. Displacement ellipsoids are shown at the 30% probability level and H atoms are represented by spheres of arbitrary radii.
Nα-para-toluenesulfonyl-α-aminoisobutyric acid N-oxysuccinimido ester top
Crystal data top
C15H18N2O6SF(000) = 372
Mr = 354.37Dx = 1.378 Mg m3
Triclinic, P1Melting point = 448–449 K
a = 9.094 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.575 (2) ÅCell parameters from 48 reflections
c = 8.352 (1) Åθ = 7–12°
α = 93.03 (3)°µ = 0.22 mm1
β = 115.84 (3)°T = 293 K
γ = 93.97 (3)°Prism, colourless
V = 853.9 (3) Å30.40 × 0.40 × 0.40 mm
Z = 2
Data collection top
Philips PW1100
diffractometer
Rint = 0.033
Radiation source: fine-focus sealed tubeθmax = 28.0°, θmin = 2.5°
Graphite monochromatorh = 1210
θ–2θ scansk = 1616
4129 measured reflectionsl = 011
4111 independent reflections3 standard reflections every 50 reflections
2635 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0774P)2]
where P = (Fo2 + 2Fc2)/3
4111 reflections(Δ/σ)max = 0.003
217 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C15H18N2O6Sγ = 93.97 (3)°
Mr = 354.37V = 853.9 (3) Å3
Triclinic, P1Z = 2
a = 9.094 (2) ÅMo Kα radiation
b = 12.575 (2) ŵ = 0.22 mm1
c = 8.352 (1) ÅT = 293 K
α = 93.03 (3)°0.40 × 0.40 × 0.40 mm
β = 115.84 (3)°
Data collection top
Philips PW1100
diffractometer
Rint = 0.033
4129 measured reflections3 standard reflections every 50 reflections
4111 independent reflections intensity decay: none
2635 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.03Δρmax = 0.33 e Å3
4111 reflectionsΔρmin = 0.47 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.50577 (6)0.25466 (5)0.69163 (7)0.04807 (18)
O10.4914 (2)0.33587 (14)0.5727 (2)0.0693 (5)
O20.65872 (18)0.21134 (15)0.7838 (2)0.0686 (5)
O30.81110 (17)0.27878 (13)1.25327 (19)0.0552 (4)
O40.75233 (15)0.41003 (11)1.06611 (18)0.0456 (4)
O51.03799 (19)0.34401 (13)1.0541 (2)0.0611 (4)
O60.84233 (19)0.58495 (14)1.3197 (2)0.0650 (5)
N10.4605 (2)0.30570 (14)0.8442 (2)0.0471 (4)
H10.38990.35190.81310.057*
N20.91272 (18)0.45475 (13)1.1719 (2)0.0442 (4)
C10.0124 (4)0.1061 (3)0.2386 (5)0.1038 (12)
H1A0.03780.15550.19120.156*
H1B0.09950.07740.14210.156*
H1C0.05630.14280.30880.156*
C20.1145 (3)0.0161 (2)0.3547 (4)0.0665 (7)
C30.2591 (3)0.0373 (2)0.4922 (4)0.0770 (8)
H30.27730.10800.51550.092*
C40.3784 (3)0.0442 (2)0.5970 (3)0.0692 (7)
H40.47560.02800.68940.083*
C50.3531 (2)0.14900 (17)0.5645 (3)0.0471 (5)
C60.2085 (3)0.1720 (2)0.4286 (4)0.0803 (9)
H60.18940.24270.40630.096*
C70.0913 (3)0.0890 (2)0.3251 (4)0.0932 (11)
H70.00600.10510.23280.112*
C80.5286 (2)0.28062 (17)1.0306 (3)0.0451 (5)
C90.4491 (3)0.3489 (3)1.1229 (3)0.0717 (8)
H9A0.47050.42321.11130.108*
H9B0.49430.33711.24720.108*
H9C0.33260.32911.06790.108*
C100.5018 (3)0.1621 (2)1.0512 (4)0.0803 (9)
H10A0.38740.13730.98430.120*
H10B0.53610.15221.17510.120*
H10C0.56500.12221.00720.120*
C110.7134 (2)0.31702 (15)1.1302 (2)0.0392 (4)
C121.0473 (2)0.41760 (16)1.1557 (3)0.0427 (4)
C131.1938 (2)0.49006 (17)1.2884 (3)0.0476 (5)
H13A1.25850.51921.23130.057*
H13B1.26310.45091.38600.057*
C141.1254 (2)0.57926 (18)1.3570 (3)0.0500 (5)
H14A1.17810.58801.48660.060*
H14B1.14300.64651.31310.060*
C150.9448 (3)0.54536 (17)1.2873 (3)0.0450 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0387 (3)0.0546 (3)0.0435 (3)0.0056 (2)0.0140 (2)0.0062 (2)
O10.0780 (12)0.0715 (12)0.0530 (9)0.0247 (9)0.0287 (8)0.0048 (8)
O20.0384 (8)0.0789 (12)0.0736 (11)0.0059 (7)0.0138 (8)0.0203 (9)
O30.0449 (8)0.0605 (10)0.0459 (8)0.0031 (7)0.0062 (7)0.0149 (7)
O40.0342 (7)0.0462 (8)0.0468 (8)0.0025 (6)0.0095 (6)0.0084 (6)
O50.0555 (9)0.0626 (10)0.0641 (10)0.0021 (7)0.0291 (8)0.0166 (8)
O60.0552 (9)0.0723 (11)0.0685 (11)0.0184 (8)0.0274 (8)0.0037 (9)
N10.0389 (9)0.0566 (11)0.0378 (9)0.0113 (8)0.0089 (7)0.0015 (8)
N20.0318 (8)0.0437 (9)0.0513 (10)0.0030 (7)0.0150 (7)0.0035 (7)
C10.0661 (18)0.079 (2)0.129 (3)0.0194 (15)0.0190 (19)0.042 (2)
C20.0461 (13)0.0599 (15)0.0770 (17)0.0051 (11)0.0165 (12)0.0207 (13)
C30.0780 (18)0.0475 (14)0.0815 (19)0.0006 (12)0.0155 (15)0.0083 (13)
C40.0598 (15)0.0540 (15)0.0650 (15)0.0062 (11)0.0023 (12)0.0066 (12)
C50.0403 (10)0.0501 (12)0.0430 (11)0.0016 (9)0.0128 (9)0.0045 (9)
C60.0652 (16)0.0538 (15)0.0767 (18)0.0001 (12)0.0085 (14)0.0016 (13)
C70.0567 (16)0.0727 (19)0.093 (2)0.0022 (14)0.0167 (15)0.0132 (16)
C80.0362 (10)0.0541 (12)0.0369 (10)0.0030 (9)0.0098 (8)0.0030 (9)
C90.0490 (13)0.115 (2)0.0560 (14)0.0071 (14)0.0282 (11)0.0010 (14)
C100.0671 (16)0.0705 (18)0.0736 (17)0.0250 (13)0.0064 (14)0.0238 (14)
C110.0396 (10)0.0403 (10)0.0363 (9)0.0021 (8)0.0160 (8)0.0009 (8)
C120.0410 (10)0.0457 (11)0.0412 (10)0.0010 (8)0.0182 (8)0.0053 (9)
C130.0374 (10)0.0526 (12)0.0474 (11)0.0011 (9)0.0148 (9)0.0012 (9)
C140.0469 (11)0.0504 (12)0.0450 (11)0.0057 (9)0.0157 (9)0.0046 (9)
C150.0453 (11)0.0446 (11)0.0429 (11)0.0073 (9)0.0167 (9)0.0063 (9)
Geometric parameters (Å, º) top
S1—O21.4282 (17)C4—H40.9300
S1—O11.4352 (18)C5—C61.374 (3)
S1—N11.617 (2)C6—C71.386 (4)
S1—C51.769 (2)C6—H60.9300
O3—C111.180 (2)C7—H70.9300
O4—N21.391 (2)C8—C101.524 (3)
O4—C111.398 (2)C8—C91.536 (3)
O5—C121.194 (2)C8—C111.536 (3)
O6—C151.208 (3)C9—H9A0.9600
N1—C81.464 (3)C9—H9B0.9600
N1—H10.8600C9—H9C0.9600
N2—C151.380 (3)C10—H10A0.9600
N2—C121.397 (3)C10—H10B0.9600
C1—C21.510 (3)C10—H10C0.9600
C1—H1A0.9600C12—C131.508 (3)
C1—H1B0.9600C13—C141.521 (3)
C1—H1C0.9600C13—H13A0.9700
C2—C71.372 (4)C13—H13B0.9700
C2—C31.372 (3)C14—C151.504 (3)
C3—C41.385 (3)C14—H14A0.9700
C3—H30.9300C14—H14B0.9700
C4—C51.374 (3)
O2—S1—O1120.19 (12)N1—C8—C9106.89 (17)
O2—S1—N1106.15 (10)C10—C8—C9111.0 (2)
O1—S1—N1106.59 (10)N1—C8—C11111.4 (2)
O2—S1—C5108.84 (11)C10—C8—C11108.53 (18)
O1—S1—C5106.20 (10)C9—C8—C11105.17 (17)
N1—S1—C5108.44 (10)C8—C9—H9A109.5
N2—O4—C11112.2 (2)C8—C9—H9B109.5
C8—N1—S1126.06 (14)H9A—C9—H9B109.5
C8—N1—H1117.0C8—C9—H9C109.5
S1—N1—H1117.0H9A—C9—H9C109.5
C15—N2—O4120.85 (16)H9B—C9—H9C109.5
C15—N2—C12116.4 (2)C8—C10—H10A109.5
O4—N2—C12122.45 (16)C8—C10—H10B109.5
C2—C1—H1A109.5H10A—C10—H10B109.5
C2—C1—H1B109.5C8—C10—H10C109.5
H1A—C1—H1B109.5H10A—C10—H10C109.5
C2—C1—H1C109.5H10B—C10—H10C109.5
H1A—C1—H1C109.5O3—C11—O4122.5 (2)
H1B—C1—H1C109.5O3—C11—C8126.4 (2)
C7—C2—C3117.7 (2)O4—C11—C8110.8 (2)
C7—C2—C1121.6 (2)O5—C12—N2124.3 (2)
C3—C2—C1120.7 (3)O5—C12—C13130.8 (2)
C2—C3—C4121.4 (3)N2—C12—C13104.9 (2)
C2—C3—H3119.3C12—C13—C14106.1 (2)
C4—C3—H3119.3C12—C13—H13A110.5
C5—C4—C3120.0 (2)C14—C13—H13A110.5
C5—C4—H4120.0C12—C13—H13B110.5
C3—C4—H4120.0C14—C13—H13B110.5
C6—C5—C4119.5 (2)H13A—C13—H13B108.7
C6—C5—S1119.41 (18)C15—C14—C13105.7 (2)
C4—C5—S1121.05 (17)C15—C14—H14A110.6
C5—C6—C7119.4 (3)C13—C14—H14A110.6
C5—C6—H6120.3C15—C14—H14B110.6
C7—C6—H6120.3C13—C14—H14B110.6
C2—C7—C6122.0 (2)H14A—C14—H14B108.7
C2—C7—H7119.0O6—C15—N2124.1 (2)
C6—C7—H7119.0O6—C15—C14130.0 (2)
N1—C8—C10113.52 (19)N2—C15—C14105.9 (2)
O2—S1—N1—C819.2 (2)S1—N1—C8—C1165.5 (2)
O1—S1—N1—C8148.40 (17)N2—O4—C11—O34.6 (3)
C5—S1—N1—C897.64 (18)N2—O4—C11—C8170.28 (15)
C11—O4—N2—C15104.6 (2)N1—C8—C11—O3152.2 (2)
C11—O4—N2—C1281.6 (2)C10—C8—C11—O326.5 (3)
C7—C2—C3—C40.5 (5)C9—C8—C11—O392.4 (3)
C1—C2—C3—C4178.4 (3)N1—C8—C11—O433.2 (2)
C2—C3—C4—C50.1 (5)C10—C8—C11—O4158.87 (19)
C3—C4—C5—C60.5 (4)C9—C8—C11—O482.2 (2)
C3—C4—C5—S1178.0 (2)C15—N2—C12—O5175.6 (2)
O2—S1—C5—C6162.4 (2)O4—N2—C12—O51.6 (3)
O1—S1—C5—C631.7 (2)C15—N2—C12—C133.9 (2)
N1—S1—C5—C682.5 (2)O4—N2—C12—C13177.95 (16)
O2—S1—C5—C416.2 (2)O5—C12—C13—C14171.1 (2)
O1—S1—C5—C4146.9 (2)N2—C12—C13—C148.4 (2)
N1—S1—C5—C498.9 (2)C12—C13—C14—C159.8 (2)
C4—C5—C6—C70.8 (5)O4—N2—C15—O68.3 (3)
S1—C5—C6—C7177.8 (3)C12—N2—C15—O6177.6 (2)
C3—C2—C7—C60.2 (5)O4—N2—C15—C14171.79 (16)
C1—C2—C7—C6178.7 (3)C12—N2—C15—C142.4 (2)
C5—C6—C7—C20.4 (5)C13—C14—C15—O6172.4 (2)
S1—N1—C8—C1057.4 (3)C13—C14—C15—N27.5 (2)
S1—N1—C8—C9179.86 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O6i0.862.152.964 (2)159
Symmetry code: (i) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC15H18N2O6S
Mr354.37
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.094 (2), 12.575 (2), 8.352 (1)
α, β, γ (°)93.03 (3), 115.84 (3), 93.97 (3)
V3)853.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.40 × 0.40 × 0.40
Data collection
DiffractometerPhilips PW1100
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4129, 4111, 2635
Rint0.033
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.142, 1.03
No. of reflections4111
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.47

Computer programs: FEBO (Belletti, 1993), FEBO, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), PARST96 (Nardelli, 1995).

Selected geometric parameters (Å, º) top
S1—N11.617 (2)O6—C151.208 (3)
O3—C111.180 (2)N1—C81.464 (3)
O4—N21.391 (2)N2—C151.380 (3)
O4—C111.398 (2)N2—C121.397 (3)
O5—C121.194 (2)C8—C111.536 (3)
N2—O4—C11112.2 (2)O5—C12—C13130.8 (2)
C15—N2—C12116.4 (2)N2—C12—C13104.9 (2)
N1—C8—C11111.4 (2)C12—C13—C14106.1 (2)
O3—C11—O4122.5 (2)C15—C14—C13105.7 (2)
O3—C11—C8126.4 (2)O6—C15—N2124.1 (2)
O4—C11—C8110.8 (2)O6—C15—C14130.0 (2)
O5—C12—N2124.3 (2)N2—C15—C14105.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O6i0.862.152.964 (2)159
Symmetry code: (i) x+1, y+1, z+2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds