Download citation
Download citation
link to html
In the title acids, C15H14O4S, (I), and C16H16O4S, (II), respectively, the angle between the planes of the benzene ring and the carboxyl group is 13.7 (1)° for (I) and 21.3 (1)° for (II). The molecular structures are stabilized by intramolecular C—H...O hydrogen bonds. The crystal packing is stabilized by a single O—H...O hydrogen bond in both compounds, in which the O and H atoms are ordered; H...O 1.87 Å for (I) and 1.83 Å for (II), O...O 2.680 (2) Å for (I) and 2.652 (3) Å for (II), and O—H...O 172° for (I) and 175° for (II). The hydrogen bond forms a cyclic dimer, with graph-set descriptor R{_2^2}(8), about a centre of symmetry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102004389/na1557sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102004389/na1557Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102004389/na1557IIsup3.hkl
Contains datablock II

CCDC references: 171578; 171579

Comment top

The title compounds, (I) and (II), are potential intermediates for the synthesis of 2-alkylbenzoic acid starting from o-toluic acid. Sulfates, sulfones, thiols, sulfonamides and sulfoxides are some of the compounds that belong to this class, and many of these exihibit insecticidal, germicidal or antimicrobial activities (Krishnaiah et al., 1995; De Benedetti et al., 1985; Dupont et al., 1978). Sulfur-containing compounds, for the most part, act as simple narcotics (Schultz et al., 2001). A series of acyclic sulfones have been identified as high-affinity selective 5-HT(2 A) receptor antagonists (Fletcher et al., 2002). Para-amino,para-phenylsulfones are well known as antibacterial and antileprotic agents (McCullough & Maren, 1973; De Benedetti, 1992). The conformation about the S atom determines whether the pharmacological activity of the compound is mild or strong (McKenna et al., 1989). In order to obtain detailed information on their molecular conformation in the solid state, the pesent X-ray study on the title sulfones has been carried out and the results are presented here. \sch

Figs. 1 and 2 show the molecular structures of (I) and (II), respectively, with the atom-numbering schemes. In both compounds, the C—O distances are as expected. The SC(phenyl) distances [1.766 (2) Å in (I) and 1.767 (2) Å in (II)] compare well with the literature value of 1.763 (9) Å for Car—SO2—C (Allen et al., 1987). The S1—C8 distances [1.806 (2) Å for (I) and 1.813 (2) Å for (II)] are longer than the literature value of 1.786 (18) Å for Csp3—SO2—C (Allen et al., 1987). The mean SO distance of 1.436 (2) Å agrees well with the reported value of 1.436 (2) Å (Bocelli & Rizzoli, 1990; Jeyakanthan & Velmurugan, 1998).

The angular disposition of the bonds about the S1 atom in (I) and (II) shows significant deviation from that of a regular tetrahedron, with the largest deviation in the O—S—O angle for both (I) and (II). In both compounds, the widening of the O4—S1—O2 angle [to 118.6 (1)° in (I) and 118.4 (1)° in (II)], and the resulting narrowing of C—S—C from the ideal tetrahedral value [C10—S1—C8 in (I) to 102.6 (1)° and C11—S1—C8 in (II) to 105.2 (1)°], are attributed to the Thorpe-Ingold effect (Bassindale, 1984). The dihedral angles between the carboxyl group and the C1—C6 phenyl ring are 13.7 (1) and 21.3 (1)° in (I) and (II), respectively. In both compounds, the orientation of the carboxyl group with respect to the phenyl is influenced by C6—H6···O3 and C8—H8···O1 interactions (Tables 2 and 4). The interplanar angle between the phenyl rings in (I) is 9.2 (1)°. In the case of (II), this angle increases to 22.5 (1)°, due to the bulkier nature of the propyl group compared with the ethyl group. By changing the ethyl substituent for a propyl, the space group is changed and the volume per molecule increases by 26.9 Å3, corresponding to 7.98%.

The slight increases in the C7—C1—C2 [123.4 (2)° in (I) and 123.5 (2)° in (II)] and C1—C2—C8 [123.7 (2)° in (I) and 123.1 (2)° in (II)] angles in both compounds, from the ideal value of 120°, can be attributed to the steric interaction of the C7 and C8 substituents. The slight difference in the C2—C8—C9 bond angle between (I) and (II) is due to the slightly bulkier nature of the propyl group in (II) than the ethyl group in (I).

In addition to van der Waals interactions, there is one O—H···O intermolecular hydrogen bond in both compounds. Each of the hydrogen bonds in (I) and (II) participates in an eight-membered cyclic dimer arrangement, as shown in the packing diagrams (Figs.3 and 4), with an R22(8) ring descriptor (Bernstein et al., 1995). A similar pattern is also observed for 2-(isopropylthio)benzoic acid (Gerkin, 1999). The molecular structures of (I) and (II) are stabilized by intramolecular C—H···O hydrogen bonds.

Experimental top

The title compounds were prepared by the alkylation of methyl 2-phenylsulfonyl methylbenzoate with the corresponding alkyl iodides in the presence of sodium hydride in dry dimethylsulfoxide at room temperature. The ester group suffered hydrolysis under the reaction conditions. Compounds (I) and (II) were recrystallized from ethyl acetate and hexane by slow evaporation.

Refinement top

All H atoms were geometrically fixed with C—H = 0.93–0.98 Å and O—H = 0.82 Å, and allowed to ride on the corresponding parent atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O). Are these the correct constraints?

Computing details top

Data collection: SMART (Siemens, 1996) for (I); CAD-4 Software (Enraf-Nonius, 1989) for (II). Cell refinement: SAINT (Siemens, 1996) for (I); CAD-4 Software for (II). Data reduction: SAINT for (I); SDP (Frenz, 1989) for (II). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997); software used to prepare material for publication: SHELX97 and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I) showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of the molecular structure of (II) showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. The crystal structure of (I) with the hydrogen-bonding scheme shown as dashed lines.
[Figure 4] Fig. 4. The crystal structure of (II) with the hydrogen-bonding scheme shown as dashed lines.
(I) 2-[1-(Phenylsulfonyl)ethyl]benzoic acid top
Crystal data top
C15H14O4SF(000) = 608
Mr = 290.32Dx = 1.432 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.8969 (3) ÅCell parameters from 7690 reflections
b = 8.5064 (1) Åθ = 2.9–28.4°
c = 13.0472 (3) ŵ = 0.25 mm1
β = 109.803 (1)°T = 293 K
V = 1346.71 (5) Å3Block, colourless
Z = 40.38 × 0.28 × 0.24 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
2293 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.050
Graphite monochromatorθmax = 28.3°, θmin = 2.9°
ω scansh = 1716
9552 measured reflectionsk = 911
3352 independent reflectionsl = 1317
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0693P)2]
where P = (Fo2 + 2Fc2)/3
3352 reflections(Δ/σ)max = 0.001
183 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
C15H14O4SV = 1346.71 (5) Å3
Mr = 290.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.8969 (3) ŵ = 0.25 mm1
b = 8.5064 (1) ÅT = 293 K
c = 13.0472 (3) Å0.38 × 0.28 × 0.24 mm
β = 109.803 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2293 reflections with I > 2σ(I)
9552 measured reflectionsRint = 0.050
3352 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 0.94Δρmax = 0.30 e Å3
3352 reflectionsΔρmin = 0.57 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.78809 (4)0.48405 (5)0.03251 (4)0.03726 (16)
C10.78032 (13)0.05270 (19)0.07200 (14)0.0307 (4)
C20.83321 (14)0.17356 (19)0.03421 (14)0.0305 (4)
O10.59096 (10)0.10876 (17)0.03430 (13)0.0527 (4)
C70.65802 (15)0.0380 (2)0.04011 (16)0.0349 (4)
C80.77233 (14)0.30243 (19)0.04315 (15)0.0324 (4)
H80.69380.27540.06950.039*
C100.69326 (15)0.6102 (2)0.06069 (15)0.0353 (4)
O20.75019 (14)0.45641 (19)0.12232 (12)0.0600 (4)
O30.62727 (12)0.0617 (2)0.10068 (14)0.0628 (5)
H30.56070.07680.07400.094*
C60.84428 (16)0.0622 (2)0.14186 (16)0.0395 (4)
H60.80960.14280.16590.047*
O40.89691 (11)0.54596 (17)0.05446 (14)0.0565 (4)
C50.95799 (16)0.0581 (2)0.17582 (17)0.0451 (5)
H50.99930.13570.22200.054*
C90.80833 (17)0.3230 (2)0.14254 (16)0.0467 (5)
H9A0.88390.35650.11930.070*
H9B0.76280.40080.19020.070*
H9C0.80100.22480.18060.070*
C150.72894 (18)0.7206 (2)0.11904 (18)0.0499 (5)
H150.80360.73110.10870.060*
C41.00946 (16)0.0611 (2)0.14104 (18)0.0470 (5)
H41.08600.06550.16510.056*
C30.94848 (15)0.1748 (2)0.07054 (17)0.0415 (5)
H3A0.98480.25370.04680.050*
C110.58196 (17)0.5938 (3)0.0773 (2)0.0533 (6)
H110.55800.51820.03890.064*
C120.50703 (19)0.6897 (3)0.1505 (2)0.0636 (7)
H120.43230.67990.16090.076*
C130.5417 (2)0.7990 (3)0.2077 (2)0.0634 (7)
H130.49040.86330.25730.076*
C140.6523 (2)0.8153 (3)0.1930 (2)0.0631 (7)
H140.67530.88990.23280.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0417 (3)0.0345 (2)0.0340 (3)0.00012 (19)0.0109 (2)0.00078 (19)
C10.0310 (9)0.0317 (8)0.0290 (9)0.0012 (7)0.0097 (7)0.0040 (7)
C20.0296 (8)0.0320 (9)0.0292 (9)0.0003 (7)0.0089 (7)0.0024 (7)
O10.0327 (7)0.0583 (9)0.0627 (10)0.0071 (6)0.0103 (7)0.0207 (8)
C70.0352 (9)0.0335 (9)0.0364 (11)0.0058 (7)0.0127 (8)0.0007 (8)
C80.0307 (9)0.0313 (8)0.0335 (10)0.0030 (7)0.0087 (8)0.0017 (7)
C100.0389 (10)0.0320 (9)0.0372 (11)0.0005 (7)0.0156 (8)0.0029 (7)
O20.0877 (12)0.0609 (9)0.0396 (9)0.0154 (8)0.0325 (9)0.0047 (7)
O30.0396 (8)0.0751 (11)0.0701 (11)0.0114 (7)0.0140 (8)0.0328 (9)
C60.0445 (11)0.0358 (9)0.0391 (11)0.0001 (8)0.0153 (9)0.0039 (8)
O40.0388 (8)0.0448 (8)0.0716 (11)0.0100 (6)0.0001 (7)0.0062 (7)
C50.0437 (11)0.0455 (11)0.0423 (12)0.0125 (8)0.0096 (10)0.0078 (9)
C90.0571 (13)0.0499 (11)0.0360 (11)0.0068 (10)0.0196 (10)0.0037 (9)
C150.0482 (12)0.0441 (11)0.0604 (15)0.0039 (9)0.0224 (11)0.0077 (10)
C40.0297 (9)0.0540 (12)0.0528 (13)0.0051 (8)0.0081 (9)0.0039 (10)
C30.0325 (9)0.0422 (10)0.0488 (12)0.0020 (8)0.0126 (9)0.0043 (9)
C110.0461 (12)0.0499 (12)0.0715 (16)0.0034 (10)0.0302 (11)0.0077 (11)
C120.0425 (12)0.0588 (14)0.0848 (19)0.0100 (10)0.0154 (13)0.0040 (13)
C130.0707 (17)0.0514 (13)0.0537 (15)0.0186 (12)0.0025 (13)0.0002 (11)
C140.0806 (18)0.0477 (13)0.0603 (16)0.0029 (12)0.0230 (13)0.0158 (11)
Geometric parameters (Å, º) top
S1—O41.434 (2)C5—C41.371 (3)
S1—O21.434 (2)C5—H50.9300
S1—C101.7656 (19)C9—H9A0.9600
S1—C81.8074 (18)C9—H9B0.9600
C1—C61.399 (2)C9—H9C0.9600
C1—C21.412 (2)C15—C141.382 (3)
C1—C71.494 (2)C15—H150.9300
C2—C31.399 (2)C4—C31.382 (3)
C2—C81.517 (2)C4—H40.9300
O1—C71.218 (2)C3—H3A0.9300
C7—O31.309 (2)C11—C121.373 (3)
C8—C91.528 (3)C11—H110.9300
C8—H80.9800C12—C131.359 (4)
C10—C151.382 (3)C12—H120.9300
C10—C111.384 (3)C13—C141.380 (3)
O3—H30.8200C13—H130.9300
C6—C51.381 (3)C14—H140.9300
C6—H60.9300
O4—S1—O2118.59 (11)C4—C5—H5120.2
O4—S1—C10108.48 (9)C6—C5—H5120.2
O2—S1—C10108.3 (1)C8—C9—H9A109.5
O4—S1—C8110.14 (9)C8—C9—H9B109.5
O2—S1—C8107.45 (9)H9A—C9—H9B109.5
C10—S1—C8102.69 (8)C8—C9—H9C109.5
C6—C1—C2119.23 (16)H9A—C9—H9C109.5
C6—C1—C7117.20 (16)H9B—C9—H9C109.5
C2—C1—C7123.57 (15)C10—C15—C14119.2 (2)
C3—C2—C1118.09 (16)C10—C15—H15120.4
C3—C2—C8118.1 (2)C14—C15—H15120.4
C1—C2—C8123.8 (2)C5—C4—C3120.51 (18)
O1—C7—O3121.5 (2)C5—C4—H4119.7
O1—C7—C1125.3 (2)C3—C4—H4119.7
O3—C7—C1113.2 (2)C4—C3—C2121.36 (18)
C2—C8—C9114.20 (15)C4—C3—H3A119.3
C2—C8—S1108.5 (1)C2—C3—H3A119.3
C9—C8—S1110.8 (1)C12—C11—C10119.8 (2)
C2—C8—H8107.7C12—C11—H11120.1
C9—C8—H8107.7C10—C11—H11120.1
S1—C8—H8107.7C13—C12—C11120.2 (2)
C15—C10—C11120.20 (19)C13—C12—H12119.9
C15—C10—S1120.66 (15)C11—C12—H12119.9
C11—C10—S1119.10 (15)C12—C13—C14120.6 (2)
C7—O3—H3109.5C12—C13—H13119.7
C5—C6—C1121.27 (18)C14—C13—H13119.7
C5—C6—H6119.4C13—C14—C15120.0 (2)
C1—C6—H6119.4C13—C14—H14120.0
C4—C5—C6119.54 (18)C15—C14—H14120.0
C6—C1—C2—C31.3 (3)C8—S1—C10—C15101.33 (17)
C7—C1—C2—C3179.70 (17)O4—S1—C10—C11166.76 (17)
C6—C1—C2—C8178.92 (16)O2—S1—C10—C1136.81 (19)
C7—C1—C2—C80.1 (3)C8—S1—C10—C1176.66 (17)
C6—C1—C7—O1165.62 (19)C2—C1—C6—C51.0 (3)
C2—C1—C7—O113.4 (3)C7—C1—C6—C5179.91 (18)
C6—C1—C7—O314.0 (3)C1—C6—C5—C40.4 (3)
C2—C1—C7—O3166.95 (18)C11—C10—C15—C140.7 (3)
C3—C2—C8—C951.6 (2)S1—C10—C15—C14178.68 (17)
C1—C2—C8—C9128.65 (18)C6—C5—C4—C31.5 (3)
C3—C2—C8—S172.54 (19)C5—C4—C3—C21.2 (3)
C1—C2—C8—S1107.2 (2)C1—C2—C3—C40.2 (3)
O4—S1—C8—C275.2 (1)C8—C2—C3—C4179.97 (18)
O2—S1—C8—C255.3 (1)C15—C10—C11—C121.2 (3)
C10—S1—C8—C2169.4 (1)S1—C10—C11—C12179.20 (18)
O4—S1—C8—C951.0 (2)C10—C11—C12—C130.9 (4)
O2—S1—C8—C9178.6 (1)C11—C12—C13—C140.2 (4)
C10—S1—C8—C964.44 (14)C12—C13—C14—C150.3 (4)
O4—S1—C10—C1515.3 (2)C10—C15—C14—C130.1 (3)
O2—S1—C10—C15145.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O30.932.322.665 (2)102
C8—H8···O10.982.102.895 (2)138
O3—H3···O1i0.821.872.680 (2)172
Symmetry code: (i) x+1, y, z.
(II) 2-[1-(Phenylsulfonyl)propyl]benzoic acid top
Crystal data top
C16H16O4SZ = 2
Mr = 304.35F(000) = 320
Triclinic, P1Dx = 1.390 Mg m3
a = 7.4805 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.5125 (9) ÅCell parameters from 25 reflections
c = 14.4853 (18) Åθ = 2.8–25.0°
α = 94.634 (9)°µ = 0.24 mm1
β = 91.807 (1)°T = 293 K
γ = 116.020 (8)°Block, colourless
V = 727.09 (16) Å30.40 × 0.30 × 0.26 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.016
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.8°
Graphite monochromatorh = 88
w/2θ scansk = 88
2625 measured reflectionsl = 017
2518 independent reflections3 standard reflections every 300 min
2004 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0549P)2 + 0.1743P]
where P = (Fo2 + 2Fc2)/3
2518 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C16H16O4Sγ = 116.020 (8)°
Mr = 304.35V = 727.09 (16) Å3
Triclinic, P1Z = 2
a = 7.4805 (10) ÅMo Kα radiation
b = 7.5125 (9) ŵ = 0.24 mm1
c = 14.4853 (18) ÅT = 293 K
α = 94.634 (9)°0.40 × 0.30 × 0.26 mm
β = 91.807 (1)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.016
2625 measured reflections3 standard reflections every 300 min
2518 independent reflections intensity decay: 1%
2004 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.01Δρmax = 0.28 e Å3
2518 reflectionsΔρmin = 0.19 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.20708 (8)0.44293 (8)0.16910 (4)0.04162 (19)
O10.3803 (2)0.5780 (2)0.42924 (12)0.0561 (5)
O20.2830 (3)0.3211 (2)0.21172 (12)0.0603 (5)
O30.2600 (3)0.2837 (3)0.48350 (13)0.0654 (5)
H30.37360.33050.50820.098*
O40.0334 (2)0.3469 (2)0.10488 (11)0.0559 (5)
C10.0374 (3)0.3470 (3)0.38971 (14)0.0374 (5)
C20.0049 (3)0.4326 (3)0.31428 (14)0.0371 (5)
C30.2037 (3)0.3623 (3)0.28149 (17)0.0494 (6)
H3A0.23400.41780.23180.059*
C40.3568 (3)0.2135 (4)0.32024 (18)0.0561 (6)
H40.48820.17110.29730.067*
C50.3145 (4)0.1279 (4)0.39295 (18)0.0564 (6)
H50.41720.02630.41900.068*
C60.1199 (3)0.1931 (3)0.42713 (16)0.0489 (6)
H60.09220.13380.47600.059*
C70.2418 (3)0.4146 (3)0.43423 (14)0.0411 (5)
C80.1556 (3)0.5853 (3)0.26256 (14)0.0377 (5)
H80.27630.65210.30490.045*
C90.1063 (3)0.7462 (3)0.22693 (15)0.0441 (5)
H9A0.21630.83390.19390.053*
H9B0.01120.68390.18370.053*
C100.0687 (4)0.8674 (4)0.30598 (17)0.0550 (6)
H10A0.05380.78580.33190.082*
H10B0.05920.97960.28300.082*
H10C0.17680.91360.35310.082*
C110.3998 (3)0.6215 (3)0.11182 (15)0.0383 (5)
C120.5860 (3)0.7331 (3)0.15787 (17)0.0486 (6)
H120.61070.71580.21900.058*
C130.7347 (3)0.8709 (4)0.11141 (19)0.0550 (6)
H130.86000.94850.14180.066*
C140.6984 (4)0.8939 (4)0.02084 (19)0.0551 (6)
H140.79990.98520.01030.066*
C150.5130 (4)0.7828 (4)0.02414 (17)0.0514 (6)
H150.48960.79900.08560.062*
C160.3613 (3)0.6473 (3)0.02139 (15)0.0446 (5)
H160.23470.57430.00850.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0417 (3)0.0341 (3)0.0467 (3)0.0141 (2)0.0052 (2)0.0067 (2)
O10.0477 (10)0.0464 (10)0.0633 (11)0.0102 (8)0.0162 (8)0.0170 (8)
O20.0758 (12)0.0514 (10)0.0719 (12)0.0401 (9)0.0239 (9)0.0268 (9)
O30.0529 (11)0.0533 (10)0.0794 (13)0.0122 (8)0.0198 (9)0.0273 (9)
O40.0447 (9)0.0477 (9)0.0539 (10)0.0031 (8)0.0003 (8)0.0063 (8)
C10.0414 (12)0.0378 (11)0.0338 (11)0.0182 (10)0.0030 (9)0.0032 (9)
C20.0355 (11)0.0367 (11)0.0369 (11)0.0141 (9)0.0012 (9)0.0033 (9)
C30.0391 (13)0.0542 (14)0.0528 (14)0.0185 (11)0.0034 (10)0.0104 (11)
C40.0338 (12)0.0625 (16)0.0657 (16)0.0155 (12)0.0012 (11)0.0090 (13)
C50.0422 (14)0.0572 (15)0.0598 (16)0.0113 (12)0.0144 (12)0.0125 (12)
C60.0502 (14)0.0509 (14)0.0430 (13)0.0185 (11)0.0072 (11)0.0123 (11)
C70.0472 (13)0.0403 (12)0.0363 (12)0.0199 (11)0.0003 (10)0.0062 (9)
C80.0365 (11)0.0363 (11)0.0364 (11)0.0130 (9)0.0036 (9)0.0047 (9)
C90.0504 (13)0.0395 (12)0.0443 (13)0.0215 (11)0.0004 (10)0.0069 (10)
C100.0661 (16)0.0462 (14)0.0548 (15)0.0269 (12)0.0072 (12)0.0039 (11)
C110.0375 (11)0.0343 (11)0.0445 (12)0.0167 (9)0.0047 (9)0.0059 (9)
C120.0424 (13)0.0462 (13)0.0541 (14)0.0165 (11)0.0030 (11)0.0095 (11)
C130.0366 (13)0.0460 (14)0.0766 (18)0.0130 (11)0.0002 (12)0.0085 (12)
C140.0526 (15)0.0443 (13)0.0725 (18)0.0222 (12)0.0217 (13)0.0181 (12)
C150.0637 (16)0.0523 (14)0.0438 (13)0.0293 (13)0.0104 (12)0.0111 (11)
C160.0469 (13)0.0411 (12)0.0457 (13)0.0196 (10)0.0022 (10)0.0046 (10)
Geometric parameters (Å, º) top
S1—O21.437 (2)C8—C91.531 (3)
S1—O41.438 (2)C8—H80.9800
S1—C111.767 (2)C9—C101.515 (3)
S1—C81.813 (2)C9—H9A0.9700
O1—C71.220 (3)C9—H9B0.9700
O3—C71.311 (2)C10—H10A0.9600
O3—H30.8200C10—H10B0.9600
C1—C61.401 (3)C10—H10C0.9600
C1—C21.407 (3)C11—C121.384 (3)
C1—C71.488 (3)C11—C161.379 (3)
C2—C31.393 (3)C12—C131.382 (3)
C2—C81.518 (3)C12—H120.9300
C3—C41.377 (3)C13—C141.371 (4)
C3—H3A0.9300C13—H130.9300
C4—C51.374 (3)C14—C151.372 (3)
C4—H40.9300C14—H140.9300
C5—C61.377 (3)C15—C161.379 (3)
C5—H50.9300C15—H150.9300
C6—H60.9300C16—H160.9300
O2—S1—O4118.47 (11)C9—C8—H8107.7
O2—S1—C11108.79 (10)S1—C8—H8107.7
O4—S1—C11108.1 (1)C10—C9—C8111.36 (18)
O2—S1—C8106.8 (1)C10—C9—H9A109.4
O4—S1—C8108.8 (1)C8—C9—H9A109.4
C11—S1—C8105.2 (1)C10—C9—H9B109.4
C7—O3—H3109.5C8—C9—H9B109.4
C6—C1—C2119.08 (19)H9A—C9—H9B108.0
C6—C1—C7117.51 (19)C9—C10—H10A109.5
C2—C1—C7123.39 (18)C9—C10—H10B109.5
C3—C2—C1117.93 (19)H10A—C10—H10B109.5
C3—C2—C8118.64 (19)C9—C10—H10C109.5
C1—C2—C8123.25 (18)H10A—C10—H10C109.5
C4—C3—C2122.2 (2)H10B—C10—H10C109.5
C4—C3—H3A118.9C12—C11—C16121.0 (2)
C2—C3—H3A118.9C12—C11—S1119.92 (17)
C3—C4—C5119.7 (2)C16—C11—S1119.10 (17)
C3—C4—H4120.2C11—C12—C13118.8 (2)
C5—C4—H4120.2C11—C12—H12120.6
C4—C5—C6119.8 (2)C13—C12—H12120.6
C4—C5—H5120.1C14—C13—C12120.4 (2)
C6—C5—H5120.1C14—C13—H13119.8
C5—C6—C1121.3 (2)C12—C13—H13119.8
C5—C6—H6119.4C13—C14—C15120.3 (2)
C1—C6—H6119.4C13—C14—H14119.8
O1—C7—O3121.8 (2)C15—C14—H14119.8
O1—C7—C1124.5 (2)C16—C15—C14120.3 (2)
O3—C7—C1113.7 (2)C16—C15—H15119.8
C2—C8—C9115.77 (17)C14—C15—H15119.8
C2—C8—S1105.6 (1)C15—C16—C11119.1 (2)
C9—C8—S1111.9 (1)C15—C16—H16120.4
C2—C8—H8107.7C11—C16—H16120.4
C6—C1—C2—C31.4 (3)C11—S1—C8—C2178.1 (1)
C7—C1—C2—C3177.04 (19)O2—S1—C8—C9170.6 (2)
C6—C1—C2—C8173.70 (19)O4—S1—C8—C960.5 (2)
C7—C1—C2—C87.9 (3)C11—S1—C8—C955.1 (2)
C1—C2—C3—C40.2 (3)C2—C8—C9—C1060.3 (2)
C8—C2—C3—C4175.1 (2)S1—C8—C9—C10178.58 (16)
C2—C3—C4—C50.9 (4)O2—S1—C11—C1248.9 (2)
C3—C4—C5—C60.7 (4)O4—S1—C11—C12178.7 (2)
C4—C5—C6—C10.5 (4)C8—S1—C11—C1265.2 (2)
C2—C1—C6—C51.6 (3)O2—S1—C11—C16131.2 (2)
C7—C1—C6—C5176.9 (2)O4—S1—C11—C161.4 (2)
C6—C1—C7—O1157.2 (2)C8—S1—C11—C16114.7 (2)
C2—C1—C7—O121.2 (3)C16—C11—C12—C130.5 (3)
C6—C1—C7—O320.3 (3)S1—C11—C12—C13179.6 (2)
C2—C1—C7—O3161.2 (2)C11—C12—C13—C141.0 (4)
C3—C2—C8—C939.7 (3)C12—C13—C14—C151.2 (4)
C1—C2—C8—C9145.3 (2)C13—C14—C15—C160.2 (4)
C3—C2—C8—S184.7 (2)C14—C15—C16—C111.6 (3)
C1—C2—C8—S190.3 (2)C12—C11—C16—C151.8 (3)
O2—S1—C8—C262.6 (2)S1—C11—C16—C15178.3 (2)
O4—S1—C8—C266.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O30.932.362.695 (3)101
C8—H8···O10.982.152.917 (3)134
C16—H16···O40.932.502.887 (3)105
O3—H3···O1i0.821.832.652 (3)175
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC15H14O4SC16H16O4S
Mr290.32304.35
Crystal system, space groupMonoclinic, P21/cTriclinic, P1
Temperature (K)293293
a, b, c (Å)12.8969 (3), 8.5064 (1), 13.0472 (3)7.4805 (10), 7.5125 (9), 14.4853 (18)
α, β, γ (°)90, 109.803 (1), 9094.634 (9), 91.807 (1), 116.020 (8)
V3)1346.71 (5)727.09 (16)
Z42
Radiation typeMo KαMo Kα
µ (mm1)0.250.24
Crystal size (mm)0.38 × 0.28 × 0.240.40 × 0.30 × 0.26
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Enraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9552, 3352, 2293 2625, 2518, 2004
Rint0.0500.016
(sin θ/λ)max1)0.6670.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.124, 0.94 0.040, 0.107, 1.01
No. of reflections33522518
No. of parameters183192
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.570.28, 0.19

Computer programs: SMART (Siemens, 1996), CAD-4 Software (Enraf-Nonius, 1989), SAINT (Siemens, 1996), CAD-4 Software, SAINT, SDP (Frenz, 1989), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ZORTEP (Zsolnai, 1997), SHELX97 and PARST (Nardelli, 1995).

Selected geometric parameters (Å, º) for (I) top
S1—O41.434 (2)O1—C71.218 (2)
S1—O21.434 (2)C7—O31.309 (2)
O4—S1—C10108.48 (9)O1—C7—C1125.3 (2)
O2—S1—C10108.3 (1)O3—C7—C1113.2 (2)
O4—S1—C8110.14 (9)C2—C8—S1108.5 (1)
O2—S1—C8107.45 (9)C9—C8—S1110.8 (1)
O1—C7—O3121.5 (2)
O4—S1—C8—C275.2 (1)O2—S1—C8—C9178.6 (1)
O2—S1—C8—C255.3 (1)O4—S1—C10—C1515.3 (2)
O4—S1—C8—C951.0 (2)O2—S1—C10—C15145.2 (2)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O30.932.322.665 (2)102
C8—H8···O10.982.102.895 (2)138
O3—H3···O1i0.821.872.680 (2)172
Symmetry code: (i) x+1, y, z.
Selected geometric parameters (Å, º) for (II) top
S1—O21.437 (2)O1—C71.220 (3)
S1—O41.438 (2)O3—C71.311 (2)
S1—C111.767 (2)
O4—S1—C11108.1 (1)O1—C7—C1124.5 (2)
O2—S1—C8106.8 (1)O3—C7—C1113.7 (2)
O4—S1—C8108.8 (1)C2—C8—S1105.6 (1)
O1—C7—O3121.8 (2)C9—C8—S1111.9 (1)
O2—S1—C8—C262.6 (2)O4—S1—C11—C12178.7 (2)
O4—S1—C8—C266.3 (2)C8—S1—C11—C1265.2 (2)
C11—S1—C8—C2178.1 (1)O2—S1—C11—C16131.2 (2)
O2—S1—C8—C9170.6 (2)O4—S1—C11—C161.4 (2)
O4—S1—C8—C960.5 (2)C8—S1—C11—C16114.7 (2)
C11—S1—C8—C955.1 (2)S1—C11—C12—C13179.6 (2)
O2—S1—C11—C1248.9 (2)S1—C11—C16—C15178.3 (2)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O30.932.362.695 (3)101
C8—H8···O10.982.152.917 (3)134
C16—H16···O40.932.502.887 (3)105
O3—H3···O1i0.821.832.652 (3)175
Symmetry code: (i) x+1, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds