Download citation
Download citation
link to html
The title compound, disodium 3-ammonium-1-hydroxy­propyl­idene-1,1-bis­phospho­nate pentahydrate, 2Na+·C3H9NO7P22-·5H2O, is used for the diagnosis and treatment of a number of bone disorders. In the solid state, disodium pamidronate shows zwitterionic character and has four different modes of chelation to sodium. The metal is octahedrally coordinated by zwitterion and water O atoms. Both coordination to sodium and hydrogen bonding determine the packing in the crystal, which comprises columns lying parallel to the crystallographic a axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101019655/na1543sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101019655/na1543Isup2.hkl
Contains datablock I

CCDC reference: 181981

Comment top

Several bisphosphonates are safe and efficacious therapeutic agents widely used for the treatment of a number of bone disorders, e.g. osteoporosis, Paget's disease of bone and bone metastases. They have the PCP group in common, which is an analogue to inorganic pyrophosphate and has the ability to adsorb with high affinity to the mineral phase of bone, while the lateral chain attached to the central C atom operates at the cellular level affecting the activity of the macrophage cells that resorb bone tissue, the osteoclasts. The title compound, (I), belongs to the group of nitrogen-containing bisphosphonates, which act intracellularly by inducing the repression of the enzymes of the mevalonate pathway, responsibles of the function of key proteins involved in cellular signaling, thus leading to the selective loss of activity of the osteoclasts and then to their apoptotic death (Russell & Rogers, 1999; Rogers et al., 2000; Rodan & Martin, 2000). The nitrogen-containing bisphosphonates also exert herbicidal and antiparasitic activities (Martin et al., 1999), and could offer a novel therapeutic alternative for the treatment of American trypanosomiasis (Urbina et al., 1999). In nuclear medicine, technetium-labelled pamidronate has been applied as a scanning agent in bone scintigraphy, a sensible procedure to detect bone metastases (Degrossi et al., 1985) and, according to preclinical studies, α- and β-particle emitter compounds derived from pamidronate could yield highly effective radiopharmaceuticals for the treament of bone cancer (Larsen et al., 1999; Zeevaart et al., 1999). Due to the importance of the subject, there has been an increasing interest in determining the structure as well as in elucidating the coordination chemistry of the bisphosphonates. The structure of the free acid of pamidronate is known, and the data, deposited in the Cambridge Structural Database (Allen et al., 1983) with refcode SOPSEV (Shkol'nikova et al., 1990), were retrieved and subsequently used to compare both structures. As a part of our ongoing study on the molecular and crystal structures of chemical compounds that affect osseous metabolism and are used as therapeutic agents to treat bone diseases (Vega et al., 1996, 1998), we report herein the single-crystal X-ray analysis of the disodium salt of pamidronate, (I).

In the title compound (see Fig. 1), the central C1 atom is substituted with (PO3)2-, (PO3H)- and OH groups and an alkylamine lateral chain containing the terminal quaternary ammonium group. As with the previously studied free acid, it has zwitterionic character and possesses a monoprotonated phosphonate group. The geometry around each P atom is a distorted tetrahedron, as can be assessed by the ranges of bond angles around P1 and P2 of 106.41 (15)–113.87 (14) and 103.46 (14)–119.49 (14)°, respectively. The P1—O bond lengths are essentially similar, and the O—P1—O bond angles deviate by less than 5° from the ideal tetrahedral angle (see Table 1); therefore, the examination of the geometry around P1 shows that all the P1—O bonds have partial double-bond character. The value of the O1—P1—O3 angle [113.87 (14)°] suggests that atoms O1 and O3 have slightly more negative charge than O2; the P1—O2 bond is close to 10σ larger than P1—O1 and P1—O3. In the monoprotonated phosphonate group, the P2—O bond lengths differ considerably, and, as in that of SOPSEV (Shkol'nikova et al., 1990), the largest distance corresponds to the single bond of the protonated O atom. It was expected that the other two bonds would be of similar length due to electronic delocalization between the charge and the lone-pair electrons of the unprotonated O atoms. This is clearly evident in SOPSEV, where the bond lengths are 1.506 and 1.507 Å; however, in this work, P2—O4 [1.514 (2) Å] and P2—O5 [1.487 (2) Å] differ by more than 12σ. Such dissimilarity seems to be due to an unequitable electronic delocalization of the negative charge, so that, instead of spreading over both unprotonated O atoms, it could largely be associated with one of them. The O4—P2—O5 angle is close to 120°, possibly as the result of Coulombic repulsion between the negative charges; hence, it is almost 4° larger than that found in SOPSEV (Shkol'nikova et al., 1990) and more than 5° wider than O1—P1—O3. The influence of the intermolecular interactions on the bonds in the (PO3H)- group (Shkol'nikova et al., 1990) and the presence of an O—H···O intermolecular hydrogen bond (H···O 1.73 Å) usually result in the P—O bond lengths of a phosphonate being similar. In the title compound, this is not the case, as the O6—H3···O2W hydrogen bond (H···O 2.01 Å) is significantly larger than that in SOPSEV (Shkol'nikova et al., 1990).

In disodium pamidronate, one phosphonate group is staggered with respect to the other, as can be described by the six torsion angles along the P1···P2 direction: O1–P1–P2–O5 - 20.4 (1)°, O2–P1–P2–O6 - 41.2 (2)°, O3–P1–P2–O4 - 26.9 (1)°, O3–P1–P2–O5 92.4 (1)°, O1–P1–P2–O6 94.5 (2)° and O2–P1–P2–O4 84.6 (2)°. As expected, the sum of the absolute values of the averages of the negative and positive torsion angles is 120°. A comparison of the O2–P1–C1–P2 and O6–P2–C1–P1 torsion angles [160.98 (15) and 171.43 (15)°, respectively, in the present work, and -162.91 and -174.46° in SOPSEV (Shkol'nikova et al., 1990)] indicates that the O atoms of the O—P—C—P—O chain, in both structures, depart slightly from a planar W configuration. Such a configuration of the O—P—C—P—O chain is related to the biological activity of the compound (Shkol'nikova et al., 1990). Upon inspecting the orientation of one PO3 group with respect to the other, Leroux et al. (1991) observed an inverse correlation between the value of the P—C—P angle (ϕ) and a certain `staggering' angle among the PO3 groups when viewed along the P···P vector (ρ). The ρ angle was calculated as the product of averaging the Ox—P1—C1—P2 and P1—C1—P2—Oy sum (Vega et al., 1996); thus, the ϕ/ρ relationship (in °) found for pamidronate, 110.3/46 (5)° in this work and 110.6/45 (6)° in SOPSEV, is in agreement with that observed for related compounds and hence confirms the general trend (Vega et al., 1996).

All the O atoms of the zwitterion, with the exception of O2, are engaged in the coordination to sodium, wherefore disodium pamidronate shows four different modes of chelation: (i) tridentate, involving the hydroxyl O7 atom and the phosphonyl O1 and O5 atoms; (ii) bidentate, involving the phosphonyl O3 and O4 atoms; (iii) monodentate, involving atom O6; and (iv) bridging, involving atom O5 (Fig. 1). All but one water O atom are involved in the coordination to sodium, the exception being O5W located near the positive end of the zwitterion, i.e. the quaternary ammonium. Atom O1W acts, together with the phosphonyl O5 atom, bridge Na1 and Na2; the cations approach at a rather close Na···Na distance of 3.357 (2) Å. A sixfold coordination sphere surrounds Na1 and Na2, whereby each is approximately located at the centre of a distorted octahedron (see Table 1). The best equatorial plane of the O6Na1 octahedron is that defined by atoms O5, O7, O1W and O3i, the cation lying 0.113 (2) Å from this plane and forming an O1···Na1···O4i angle of 160.45 (11)° with apical atoms O1 and O4i [symmetry code: (i) 1 + x, y, z]. Instead, the main constituents of the O6Na2 octahedron are the crystallization water O atoms. In this case, the cation lies 0.116 (2) Å from the equatorial plane defined by atoms O1W, O2W, O3W and O6ii, and an O5···Na2···O4W angle of 162.87 (11)° [symmetry code: (ii) 1 - x, 2 - y, 1 - z].

16 of the 19 available H atoms, namely the hydroxyl, phosphonyl, four alkylamine and ten water H atoms, are involved in an intricate hydrogen-bonding scheme (see Table 2). The H···O distances found in this work, ranging from 1.88 to 2.15 Å for the 14 single hydrogen bonds, are significantly larger than those in SOPSEV (H···O 1.70 Å–1.97 Å; Shkol'nikova et al., 1990), where the two shortest distances determine the packing of the molecules in chains. The packing in the crystal of SOPSEV is different to that of the disodium salt (see below), a fact which could be associated to the lower solubility of the free acid in comparison with that of the title compound.

The coordination to metal and the hydrogen bonding determine the packing in the crystal of disodium pamidronate. Centrosymmetrically related zwitterions, linked by monodentate ligation through O6···Na2ii, form a `dimer'. This dimer is joined to a [100]-translated dimer via the ligation to Na1 (Fig. 2), so that the stacking of dimers along the crystallographic a axis results in the formation of a column. As is apparent in Fig. 2, the negative end of the zwitterion occupies the centre of the column, adjacent to the cations, whereas its positive end (the quaternary ammonium) projects away of the centre as far as possible. The packing of the crystal structure is completed by the hydrogen-bonding interactions, which, as only a few of them occur inside a column, appear to be the main intercolumnar cohesive forces.

Experimental top

The title compound was obtained from Laboratorios Gador S·A., Buenos Aires, Argentina. Crystals suitable for X-ray diffraction were obtained by slow evaporation from a water solution.

Refinement top

H atoms were treated as riding at distances of 0.97 (C—H), 0.89 (N—H) and 0.82 Å (O—H) and their isotropic displacement parameters were constrained to be 1.2 times those of their hosts (1.5 for those attached to O atoms). All OW—-HW distances were restrained according to a SHELXL97 DFIX instruction, with Uiso(HW) = 1.5Ueq(OW).

Computing details top

Data collection: COLLECT (Nonius, 1997-2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL/PC (Sheldrick, 1991); software used to prepare material for publication: PARST (Nardelli, 1995) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the title compound showing the atom-numbering scheme and displacement displacement ellipsoids drawn at a 30% probability level. The sixfold coordination to sodium is depicted as dashed lines, with symmetry-related atoms represented as circles of arbitrary radii [symmetry codes: (') x + 1, y, z; (*) -x + 1, -y + 2, -z + 1].
[Figure 2] Fig. 2. Fig..: Packing diagram showing the coordination to sodium (dashed lines). H atoms and water molecules have been omitted for clarity. [Symmetry codes: (') x - 1, y, z; (*) -x + 1, -y + 2, -z + 1.]
Disodium 3-ammonium-1-hydroxypropylidene-1,1-bisphosphonate pentahydrate top
Crystal data top
2Na+·C3H9NO7P22·5H2OZ = 2
Mr = 369.11F(000) = 384
Triclinic, P1Dx = 1.832 Mg m3
a = 5.9588 (4) ÅMo Kα radiation, λ = 0.71070 Å
b = 10.901 (1) ÅCell parameters from 10466 reflections
c = 11.290 (1) Åθ = 1.0–25.0°
α = 113.700 (5)°µ = 0.45 mm1
β = 93.164 (4)°T = 293 K
γ = 91.957 (5)°Needle, colourless
V = 669.22 (10) Å30.4 × 0.04 × 0.01 mm
Data collection top
Nonius KappaCCD
diffractometer
2342 independent reflections
Radiation source: fine-focus sealed tube1750 reflections with I > 2σ(I)
Horizonally mounted graphite crystal monochromatorRint = 0.1
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 3.4°
ϕ scans, and ω scans with κ offsetsh = 67
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1212
Tmin = 0.841, Tmax = 0.995l = 1313
12361 measured reflections
Refinement top
Refinement on F210 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0309P)2 + 0.397P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.106(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.26 e Å3
2342 reflectionsΔρmin = 0.42 e Å3
182 parameters
Crystal data top
2Na+·C3H9NO7P22·5H2Oγ = 91.957 (5)°
Mr = 369.11V = 669.22 (10) Å3
Triclinic, P1Z = 2
a = 5.9588 (4) ÅMo Kα radiation
b = 10.901 (1) ŵ = 0.45 mm1
c = 11.290 (1) ÅT = 293 K
α = 113.700 (5)°0.4 × 0.04 × 0.01 mm
β = 93.164 (4)°
Data collection top
Nonius KappaCCD
diffractometer
2342 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
1750 reflections with I > 2σ(I)
Tmin = 0.841, Tmax = 0.995Rint = 0.1
12361 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04210 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.06Δρmax = 0.26 e Å3
2342 reflectionsΔρmin = 0.42 e Å3
182 parameters
Special details top

Experimental. Data collection was performed at the Instituto de Física de São Carlos, Universidade de São Paulo, SP, Brazil.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6263 (4)0.4861 (2)0.2788 (2)0.0308 (6)
O20.3187 (4)0.3839 (2)0.1018 (2)0.0297 (6)
O30.2180 (4)0.5310 (2)0.3278 (2)0.0307 (6)
O40.1729 (4)0.8299 (2)0.3843 (2)0.0300 (6)
O50.5950 (4)0.8069 (2)0.4350 (2)0.0305 (6)
O60.4716 (4)0.9291 (2)0.2967 (2)0.0297 (6)
H30.60870.9430.30240.045*
O70.6409 (4)0.6664 (2)0.1510 (2)0.0304 (6)
H40.63440.64020.07190.046*
P10.39309 (14)0.50445 (9)0.22913 (9)0.0247 (2)
P20.41060 (14)0.81014 (9)0.34225 (9)0.0252 (2)
C10.4169 (5)0.6567 (3)0.1922 (3)0.0257 (7)
C20.2327 (6)0.6433 (4)0.0864 (3)0.0280 (8)
H50.25060.56070.01160.034*
H60.08780.63450.11820.034*
C30.2269 (6)0.7569 (4)0.0413 (3)0.0296 (8)
H70.13950.82770.09770.036*
H80.37870.79420.0450.036*
N10.1233 (5)0.7040 (3)0.0945 (3)0.0289 (7)
H90.01250.66550.09820.035*
H100.210.64370.14670.035*
H110.11060.77130.11960.035*
Na10.8945 (2)0.65987 (14)0.36738 (14)0.0345 (4)
Na20.6798 (2)0.84930 (15)0.64724 (14)0.0353 (4)
O1W0.9121 (4)0.6732 (3)0.5929 (3)0.0405 (7)
H11W0.86780.60730.60260.061*
H12W1.04630.67420.60150.061*
O2W1.0727 (4)0.9784 (3)0.6470 (3)0.0378 (6)
H21W1.10270.93020.57610.057*
H22W1.00671.04170.64390.057*
O3W0.3751 (4)0.6828 (3)0.5996 (3)0.0376 (6)
H31W0.36940.63410.52250.056*
H32W0.38240.62710.63070.056*
O4W0.6594 (4)0.8618 (3)0.8683 (3)0.0412 (7)
H41W0.71980.91380.93680.062*
H42W0.65940.79170.87710.062*
O5W0.7798 (4)1.0498 (3)1.1232 (3)0.0420 (7)
H51W0.65471.07661.13690.063*
H52W0.82251.03411.18370.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0276 (12)0.0292 (13)0.0377 (14)0.0008 (10)0.0027 (11)0.0166 (12)
O20.0335 (13)0.0241 (13)0.0280 (13)0.0036 (10)0.0025 (10)0.0072 (11)
O30.0307 (13)0.0319 (14)0.0315 (14)0.0014 (10)0.0100 (11)0.0142 (12)
O40.0246 (12)0.0290 (13)0.0339 (14)0.0004 (10)0.0050 (10)0.0101 (11)
O50.0285 (12)0.0322 (14)0.0275 (13)0.0023 (10)0.0032 (10)0.0092 (11)
O60.0283 (12)0.0273 (13)0.0338 (14)0.0043 (10)0.0001 (10)0.0134 (11)
O70.0249 (12)0.0393 (15)0.0262 (13)0.0019 (10)0.0036 (10)0.0124 (12)
P10.0237 (4)0.0244 (5)0.0260 (5)0.0006 (3)0.0022 (4)0.0101 (4)
P20.0252 (5)0.0241 (5)0.0257 (5)0.0001 (4)0.0018 (4)0.0095 (4)
C10.0226 (16)0.0283 (19)0.0258 (18)0.0037 (14)0.0020 (14)0.0111 (15)
C20.0275 (17)0.0300 (19)0.0254 (18)0.0009 (14)0.0019 (14)0.0108 (16)
C30.0300 (18)0.0288 (19)0.0276 (19)0.0019 (15)0.0042 (15)0.0101 (16)
N10.0266 (15)0.0324 (17)0.0296 (16)0.0000 (12)0.0015 (12)0.0153 (14)
Na10.0283 (7)0.0314 (8)0.0410 (8)0.0003 (6)0.0046 (6)0.0116 (7)
Na20.0388 (8)0.0346 (8)0.0330 (8)0.0037 (6)0.0047 (6)0.0137 (7)
O1W0.0339 (14)0.0433 (16)0.0538 (18)0.0051 (12)0.0094 (13)0.0285 (15)
O2W0.0435 (15)0.0338 (15)0.0374 (15)0.0053 (12)0.0014 (12)0.0157 (12)
O3W0.0371 (14)0.0408 (16)0.0394 (15)0.0037 (12)0.0005 (12)0.0216 (13)
O4W0.0471 (16)0.0360 (16)0.0385 (16)0.0008 (12)0.0022 (13)0.0137 (13)
O5W0.0445 (15)0.0444 (17)0.0402 (16)0.0007 (13)0.0011 (13)0.0211 (14)
Geometric parameters (Å, º) top
P1—O11.519 (2)Na1—O3i2.380 (3)
P1—O21.537 (2)Na1—O4i2.386 (3)
P1—O31.518 (2)Na1—O52.387 (3)
P2—O41.514 (2)Na1—O72.827 (3)
P2—O51.487 (2)Na1—O1W2.487 (3)
P2—O61.614 (2)Na1—Na23.357 (2)
O6—H30.82Na2—O52.274 (3)
C1—O71.451 (4)Na2—O6ii2.456 (3)
O7—H40.82Na2—O1W2.304 (3)
C1—P11.869 (3)Na2—O2W2.691 (3)
C1—P21.845 (4)Na2—O3W2.401 (3)
C1—C21.536 (5)Na2—O4W2.454 (3)
C2—C31.517 (5)O1W—H11W0.8066
C2—H50.97O1W—H12W0.7994
C2—H60.97O2W—H21W0.7958
C3—N11.492 (4)O2W—H22W0.8178
C3—H70.97O3W—H31W0.815
C3—H80.97O3W—H32W0.816
N1—H90.89O4W—H41W0.8076
N1—H100.89O4W—H42W0.809
N1—H110.89O5W—H51W0.81
Na1—O12.289 (3)O5W—H52W0.7998
P1—O1—Na1122.19 (14)O1—Na1—O587.68 (9)
P1—O3—Na1iii132.67 (14)O3i—Na1—O5172.30 (11)
P2—O4—Na1iii127.12 (14)O4i—Na1—O595.68 (9)
P2—O5—Na2142.86 (15)O1—Na1—O1W97.54 (10)
P2—O5—Na1122.16 (14)O3i—Na1—O1W89.51 (9)
Na2—O5—Na192.09 (10)O4i—Na1—O1W101.94 (10)
P2—O6—Na2ii131.40 (13)O5—Na1—O1W84.65 (9)
P2—O6—H3109.5O1—Na1—O767.25 (8)
Na2ii—O6—H3105O3i—Na1—O7117.85 (9)
C1—O7—Na198.61 (17)O4i—Na1—O795.94 (9)
C1—O7—H4109.5O5—Na1—O769.08 (8)
Na1—O7—H4143.9O1W—Na1—O7149.54 (9)
O1—P1—O3113.87 (14)O1—Na1—Na2101.66 (8)
O2—P1—O3111.70 (13)O3i—Na1—Na2130.51 (8)
O1—P1—O2109.92 (14)O4i—Na1—Na293.68 (8)
O1—P1—C1106.90 (14)O7—Na1—Na2111.63 (7)
O2—P1—C1107.69 (14)O5—Na2—O1W91.63 (10)
O3—P1—C1106.41 (15)O5—Na2—O3W80.71 (10)
O4—P2—O5119.49 (14)O5—Na2—O4W162.87 (11)
O5—P2—O6108.88 (13)O1W—Na2—O3W85.99 (10)
O4—P2—O6105.96 (13)O1W—Na2—O4W92.13 (10)
O4—P2—C1110.28 (14)O3W—Na2—O4W82.89 (10)
O5—P2—C1107.60 (15)O5—Na2—O6ii88.04 (9)
O6—P2—C1103.46 (14)O1W—Na2—O6ii164.15 (11)
O7—C1—C2111.9 (3)O3W—Na2—O6ii109.56 (10)
O7—C1—P2103.4 (2)O4W—Na2—O6ii92.82 (10)
C2—C1—P2114.2 (2)O5—Na2—O2W90.95 (9)
O7—C1—P1108.1 (2)O1W—Na2—O2W80.22 (9)
C2—C1—P1108.7 (2)O3W—Na2—O2W163.69 (10)
P1—C1—P2110.27 (17)O4W—Na2—O2W106.16 (9)
C3—C2—C1116.6 (3)O6ii—Na2—O2W83.94 (9)
C3—C2—H5108.1O3W—Na2—Na189.67 (8)
C1—C2—H5108.1O4W—Na2—Na1139.77 (8)
C3—C2—H6108.1O6ii—Na2—Na1126.65 (8)
C1—C2—H6108.1O2W—Na2—Na174.61 (7)
H5—C2—H6107.3Na2—O1W—Na188.86 (10)
N1—C3—C2109.0 (3)Na2—O1W—H11W117.3
N1—C3—H7109.9Na1—O1W—H11W117.2
C2—C3—H7109.9Na2—O1W—H12W129.7
N1—C3—H8109.9Na1—O1W—H12W95.7
C2—C3—H8109.9H11W—O1W—H12W104.8
H7—C3—H8108.3Na2—O2W—H21W97.3
C3—N1—H9109.5Na2—O2W—H22W91
C3—N1—H10109.5H21W—O2W—H22W109.6
H9—N1—H10109.5Na2—O3W—H31W108.5
C3—N1—H11109.5Na2—O3W—H32W119.4
H9—N1—H11109.5H31W—O3W—H32W100.4
H10—N1—H11109.5Na2—O4W—H41W131.3
O1—Na1—O3i98.07 (10)Na2—O4W—H42W117
O1—Na1—O4i160.45 (11)H41W—O4W—H42W101.9
O3i—Na1—O4i80.61 (9)H51W—O5W—H52W106.5
Na1iii—O3—P1—O1147.60 (17)C1—O7—Na1—O4i138.29 (18)
Na1iii—O3—P1—O287.2 (2)C1—O7—Na1—O544.46 (18)
Na1iii—O3—P1—C130.1 (2)C1—O7—Na1—O1W12.3 (3)
Na1—O1—P1—O394.46 (18)C1—O7—Na1—Na241.93 (19)
Na1—O1—P1—O2139.35 (15)P2—O5—Na2—O1W145.3 (2)
Na1—O1—P1—C122.8 (2)Na1—O5—Na2—O1W13.18 (10)
Na2—O5—P2—O411.8 (3)P2—O5—Na2—O3W59.6 (3)
Na1—O5—P2—O4142.58 (15)Na1—O5—Na2—O3W98.85 (10)
Na2—O5—P2—O6110.0 (2)P2—O5—Na2—O4W42.7 (5)
Na1—O5—P2—O695.59 (17)Na1—O5—Na2—O4W115.8 (4)
Na2—O5—P2—C1138.4 (2)P2—O5—Na2—O6ii50.5 (3)
Na1—O5—P2—C115.91 (19)Na1—O5—Na2—O6ii150.96 (9)
Na1iii—O4—P2—O588.9 (2)P2—O5—Na2—O2W134.4 (2)
Na1iii—O4—P2—O6147.88 (16)Na1—O5—Na2—O2W67.06 (9)
Na1iii—O4—P2—C136.5 (2)P2—O5—Na2—Na1158.5 (3)
Na2ii—O6—P2—O5106.09 (18)O1—Na1—Na2—O573.43 (11)
Na2ii—O6—P2—O423.6 (2)O3i—Na1—Na2—O5175.18 (14)
Na2ii—O6—P2—C1139.68 (17)O4i—Na1—Na2—O594.39 (11)
Na1—O7—C1—C2174.3 (2)O1W—Na1—Na2—O5162.08 (14)
Na1—O7—C1—P262.36 (18)O7—Na1—Na2—O53.49 (10)
Na1—O7—C1—P154.59 (19)O1—Na1—Na2—O1W88.65 (12)
O5—P2—C1—O759.1 (2)O3i—Na1—Na2—O1W22.74 (13)
O4—P2—C1—O7168.96 (19)O4i—Na1—Na2—O1W103.53 (12)
O6—P2—C1—O756.0 (2)O5—Na1—Na2—O1W162.08 (14)
O5—P2—C1—C2179.0 (2)O7—Na1—Na2—O1W158.59 (12)
O4—P2—C1—C247.1 (3)O1—Na1—Na2—O3W3.77 (10)
O6—P2—C1—C265.8 (2)O3i—Na1—Na2—O3W107.63 (12)
O5—P2—C1—P156.28 (19)O4i—Na1—Na2—O3W171.58 (10)
O4—P2—C1—P175.62 (19)O5—Na1—Na2—O3W77.19 (11)
O6—P2—C1—P1171.43 (15)O1W—Na1—Na2—O3W84.88 (11)
O3—P1—C1—O7153.5 (2)O7—Na1—Na2—O3W73.71 (9)
O1—P1—C1—O731.5 (3)O1—Na1—Na2—O4W82.33 (15)
O2—P1—C1—O786.6 (2)O3i—Na1—Na2—O4W29.07 (18)
O3—P1—C1—C284.8 (2)O4i—Na1—Na2—O4W109.85 (14)
O1—P1—C1—C2153.1 (2)O5—Na1—Na2—O4W155.76 (17)
O2—P1—C1—C235.1 (3)O1W—Na1—Na2—O4W6.32 (15)
O3—P1—C1—P241.1 (2)O7—Na1—Na2—O4W152.27 (13)
O1—P1—C1—P280.95 (18)O1—Na1—Na2—O6ii110.63 (11)
O2—P1—C1—P2160.98 (15)O3i—Na1—Na2—O6ii137.98 (12)
O7—C1—C2—C359.7 (4)O4i—Na1—Na2—O6ii57.19 (12)
P2—C1—C2—C357.4 (4)O5—Na1—Na2—O6ii37.20 (12)
P1—C1—C2—C3179.0 (3)O1W—Na1—Na2—O6ii160.72 (14)
C1—C2—C3—N1153.6 (3)O7—Na1—Na2—O6ii40.69 (12)
P1—O1—Na1—O3i156.29 (16)O1—Na1—Na2—O2W179.32 (9)
P1—O1—Na1—O4i71.6 (4)O3i—Na1—Na2—O2W67.93 (11)
P1—O1—Na1—O528.85 (17)O4i—Na1—Na2—O2W12.86 (9)
P1—O1—Na1—O1W113.14 (17)O5—Na1—Na2—O2W107.25 (11)
P1—O1—Na1—O739.41 (15)O1W—Na1—Na2—O2W90.67 (11)
P1—O1—Na1—Na269.35 (17)O7—Na1—Na2—O2W110.74 (9)
P2—O5—Na1—O154.81 (17)O5—Na2—O1W—Na112.64 (10)
Na2—O5—Na1—O1110.04 (10)O3W—Na2—O1W—Na193.20 (10)
P2—O5—Na1—O4i105.88 (16)O4W—Na2—O1W—Na1175.92 (10)
Na2—O5—Na1—O4i89.27 (10)O6ii—Na2—O1W—Na175.9 (4)
P2—O5—Na1—O1W152.60 (16)O2W—Na2—O1W—Na178.04 (9)
Na2—O5—Na1—O1W12.24 (10)O1—Na1—O1W—Na299.02 (10)
P2—O5—Na1—O711.68 (14)O3i—Na1—O1W—Na2162.91 (10)
Na2—O5—Na1—O7176.53 (10)O4i—Na1—O1W—Na282.61 (10)
P2—O5—Na1—Na2164.8 (2)O5—Na1—O1W—Na212.08 (9)
C1—O7—Na1—O152.05 (18)O7—Na1—O1W—Na242.0 (2)
C1—O7—Na1—O3i139.22 (18)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+2, z+1; (iii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H3···O50.822.502.523 (4)82
C2—H5···O20.972.552.962 (4)106
O3W—H31W···O30.822.152.919 (4)157
O4W—H41W···O5W0.812.032.816 (4)164
O2W—H21W···O4i0.802.072.859 (4)171
O1W—H12W···O3Wi0.801.962.753 (3)171
N1—H11···O5Wii0.892.052.872 (4)153
O2W—H22W···O4ii0.821.902.717 (3)172
N1—H9···O2iv0.891.882.757 (3)169
O3W—H32W···O1v0.821.892.703 (3)172
O4W—H42W···O2v0.812.032.838 (4)176
O1W—H11W···O3v0.812.022.814 (3)166
N1—H10···O1vi0.891.932.817 (4)172
O7—H4···O2vi0.821.912.708 (3)165
C2—H5···O7vi0.972.553.503 (4)167
O6—H3···O2Wvii0.822.012.811 (3)165
O5W—H52W···O2Wviii0.802.042.830 (4)172
O5W—H51W···O4Wix0.812.022.813 (4)168
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+2, z+1; (iv) x, y+1, z; (v) x+1, y+1, z+1; (vi) x+1, y+1, z; (vii) x+2, y+2, z+1; (viii) x+2, y+2, z+2; (ix) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formula2Na+·C3H9NO7P22·5H2O
Mr369.11
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.9588 (4), 10.901 (1), 11.290 (1)
α, β, γ (°)113.700 (5), 93.164 (4), 91.957 (5)
V3)669.22 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.4 × 0.04 × 0.01
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.841, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
12361, 2342, 1750
Rint0.1
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.106, 1.06
No. of reflections2342
No. of parameters182
No. of restraints10
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.42

Computer programs: COLLECT (Nonius, 1997-2000), HKL SCALEPACK (Otwinowski & Minor, 1997), HKL SCALEPACK and DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP in SHELXTL/PC (Sheldrick, 1991), PARST (Nardelli, 1995) and WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
P1—O11.519 (2)Na1—O12.289 (3)
P1—O21.537 (2)Na1—O3i2.380 (3)
P1—O31.518 (2)Na1—O4i2.386 (3)
P2—O41.514 (2)Na1—O52.387 (3)
P2—O51.487 (2)Na1—O72.827 (3)
P2—O61.614 (2)Na1—O1W2.487 (3)
C1—O71.451 (4)Na2—O52.274 (3)
C1—P11.869 (3)Na2—O6ii2.456 (3)
C1—P21.845 (4)Na2—O1W2.304 (3)
C1—C21.536 (5)Na2—O2W2.691 (3)
C2—C31.517 (5)Na2—O3W2.401 (3)
C3—N11.492 (4)Na2—O4W2.454 (3)
O1—P1—O3113.87 (14)P1—C1—P2110.27 (17)
O2—P1—O3111.70 (13)O1—Na1—O4i160.45 (11)
O1—P1—O2109.92 (14)O3i—Na1—O1W89.51 (9)
O1—P1—C1106.90 (14)O5—Na1—O1W84.65 (9)
O2—P1—C1107.69 (14)O3i—Na1—O7117.85 (9)
O3—P1—C1106.41 (15)O5—Na1—O769.08 (8)
O4—P2—O5119.49 (14)O5—Na2—O4W162.87 (11)
O5—P2—O6108.88 (13)O1W—Na2—O3W85.99 (10)
O4—P2—O6105.96 (13)O3W—Na2—O6ii109.56 (10)
O4—P2—C1110.28 (14)O1W—Na2—O2W80.22 (9)
O5—P2—C1107.60 (15)O6ii—Na2—O2W83.94 (9)
O6—P2—C1103.46 (14)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H3···O50.822.502.523 (4)82
C2—H5···O20.972.552.962 (4)106
O3W—H31W···O30.822.152.919 (4)157
O4W—H41W···O5W0.812.032.816 (4)164
O2W—H21W···O4i0.802.072.859 (4)171
O1W—H12W···O3Wi0.801.962.753 (3)171
N1—H11···O5Wii0.892.052.872 (4)153
O2W—H22W···O4ii0.821.902.717 (3)172
N1—H9···O2iii0.891.882.757 (3)169
O3W—H32W···O1iv0.821.892.703 (3)172
O4W—H42W···O2iv0.812.032.838 (4)176
O1W—H11W···O3iv0.812.022.814 (3)166
N1—H10···O1v0.891.932.817 (4)172
O7—H4···O2v0.821.912.708 (3)165
C2—H5···O7v0.972.553.503 (4)167
O6—H3···O2Wvi0.822.012.811 (3)165
O5W—H52W···O2Wvii0.802.042.830 (4)172
O5W—H51W···O4Wviii0.812.022.813 (4)168
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+2, z+1; (iii) x, y+1, z; (iv) x+1, y+1, z+1; (v) x+1, y+1, z; (vi) x+2, y+2, z+1; (vii) x+2, y+2, z+2; (viii) x+1, y+2, z+2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds