Download citation
Download citation
link to html
The asymmetric unit of the title compound, [CuCl(C10H6NO2)(C14H12N2)], contains two monomeric copper mol­ecules, A and B. Each Cu atom is coordinated to one 2,9-di­methyl-1,10-phenanthroline (neocuproine) ligand via both N atoms, to one iso­quinoline-1-carboxyl­ate anion (IQC-) via the N and one O atom, and to one Cl- anion. The environment of the Cu atom is approximately square pyramidal, with the apical position occupied by an N atom of neocuproine. In mol­ecule A, the Cu atom is 0.301 (1) Å above the basal plane; this distance is 0.316 (1) Å in mol­ecule B. The crystal packing is characterized by several hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101011799/na1524sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101011799/na1524Isup2.hkl
Contains datablock I

CCDC reference: 175058

Comment top

Copper(II) complexes with nonsteroidal antiinflammatory drugs (NSAIDs) have been extensively studied since Sorenson (1976) demonstrated that they are more active than their parent drugs and exhibit antiulcer activity. He also showed that 3,5-diisopropylsalicylic acid, which is an inactive agent, becomes a potent antiinflammatory compound when it chelates to CuII. Moreover, binary complexes of CuII with 3,5-disubstituted salicylates, and ternary complexes with added phenanthrolines, have been prepared and characterized by Randford et al. (1993). These complexes have been tested for antiviral and cytotoxic activities; ternary complexes were ten times as cytotoxic as their binary analogues.

Among the molecules investigated by Sorenson, the group of heterocyclic carboxylic acid chelates has not been adequately evaluated to enable the separation of members of this class of coordination compounds based upon their antiinflammatory activity. Therefore, in the course of our investigations, we have previously examined the synthesis and crystal structures of two binary complexes formed by CuII salts with N,O-1-isoquinolinecarboxylic acid (HIQC; (Pardo et al., 1999, 2000). Following Randford's work, we decided to synthesize and characterize ternary complexes of CuII with HIQC and the heteroaromatic N base 2,9-dimethyl-1,10-phenanthroline, before testing their biological activities. To this end, the title compound, (I), has been prepared and its crystal structure is presented here. \sch

Compound (I) consists of two crystallographically independant and monomeric molecules, A and B. Each CuII cation is surrounded by one 2,9-dimethyl-1,10-phenanthroline (neocuproine) ligand via both N atoms, one isoquinoline-1-carboxylate anion (IQC-) and one Cl- anion. The IQC- anion is bidentate via the carboxylate and the N atom. The CuII cation shows a distorted square pyramidal coordination. Each pseudo basal plane, P1 or P2 for molecules A or B, respectively, is formed by atom N20 (or N70) from the neocuproine, O1 (or O51) and N1 (or N51) from IQC-, and Cl1 (or Cl51) [maximum deviations: 0.056 (1) Å for O1 out of P1 and 0.080 (1) Å for O51 out of P2]. The apical position is occupied by atom N11 of the neocuproine in molecule A, at 2.424 (2) Å from P1; in molecule B, N61 is 2.439 (2) Å from P2. Atom Cu1 lies 0.301 (1) Å out of P1 in molecule A, and atom Cu51 is 0.316 (1) Å out of P2 in molecule B. The copper-to-carboxylate oxygen distances Cu1—O1 and Cu51—O51 [1.950 (2) and 1.948 (2) Å, respectively] are to be compared with the corresponding values in bis[N,O-1-isoquinolinecarboxylato]copper(II) [1.928 (3) Å; Pardo et al., 1999].

The distances between Cu and the N atoms belonging to the basal planes are similar [average 2.024 (2) Å]. The observed Cu—Napical bond lengths [2.231 (2) in A and 2.228 (2) Å in B] agree fairly well with the corresponding value of 2.290 (3) Å de scribed by Li et al. (1999) in µ-[1,1'-(1,2-ethanediyl)bis(1H-1,2,4-triazole)]-N4:N4'- bis{bis[1,1,1-trifluoro-3-(2-thenoyl)acetonato-O,O']copper(II)}. In the basal planes, the values of the bond angles at the Cu atoms are in the range 80.99 (9)–94.83 (7)° for molecule A and 80.77 (9)–94.72 (7)° for molecule B.

The distances and angles within the IQC- ligand are analogous to those observed in bis[N,O-1-isoquinolinecarboxylato]copper(II) (Pardo et al., 1999). The isoquinoline mean plane P3 in molecule A makes a dihedral angle of 8.9 (2)° with the O1/O2/C1/C2 mean plane; the equivalent plane P4 in molecule B makes a dihedral angle of 6.8 (2)° with O51/O52/C51/C52.

The distances and angles within the neocuproine ligands do not differ from those found in the literature. The neocuproine mean plane in molecule A makes a dihedral angle of 71.26 (3)° with P3; in molecule B, the neocuproine mean plane makes a dihedral angle of 69.07 (3)° with P4.

The packing in (I) is characterized by interactions that can be considered as hydrogen bonds, since they correspond to H···A contacts significantly shorter than the sum of van der Waals radii (Table 2). The first two are responsible for the orientation of the isoquinoline plane in both molecules; the third and fourth are related to the orientation of the isoquinoline with respect to the chlorine ligand. The last two interactions are the ones mainly responsible for the crystal packing. The crystalline cohesion is likewise ensured by several van der Waals contacts, the shortest being 3.198 (4) Å.

Related literature top

For related literature, see: Li et al. (1999); Pardo et al. (1999, 2000); Randford et al. (1993); Sorenson (1976).

Experimental top

The copper(II) coordination compound of 1-carboxyisoquinoline was synthesized using the procedure of Sorenson (1976). The title complex was prepared by the reaction of neocuproine (NC) with isoquinolinecarboxylatocopper(II) (NC:Cu 2:1) in methanol. After addition of HCl (H+:Cu 1:1) and stirring for about 1 hr, a precipitate was formed and collected by filtration. This blue precipitate was washed with methanol, dried overnight at 333 K and 15 mm H g (1 mm H g = 133.322 Pa) and dissolved in N,N-dimethylacetamide. Single crystals of (I) were obtained by slow evaporation of this solution under ambient air pressure. The crystal density was measured by flotation in?

Refinement top

All H atoms were refined in idealized positions using a riding model (C—H = 0.95 and 0.98 Å) with a collective isotropic displacement parameter Uiso(H) = 0.049 (2) Å2.

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1998); cell refinement: SCALEPACK in HKL (Otwinowski & Minor, 1997); data reduction: SCALEPACK in HKL; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A perspective view of the asymetric unit of (I) showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
Chloro(isoquinoline-1-carboxylato-O,N)(2,9-dimethyl-1,10-phenanthroline- N,N')copper(II) top
Crystal data top
[CuCl(C12H6NO2)(C14H12N2)]F(000) = 1960
Mr = 479.41Dx = 1.548 Mg m3
Dm = 1.54 Mg m3
Dm measured by flotation
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.855 (1) ÅCell parameters from 72742 reflections
b = 15.955 (1) Åθ = 1.0–27.5°
c = 22.391 (1) ŵ = 1.22 mm1
β = 103.77 (1)°T = 180 K
V = 4113.5 (5) Å3Parallelepiped, blue
Z = 80.25 × 0.23 × 0.20 mm
Data collection top
Nonius KappaCCD
diffractometer
5404 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.040
Horizonally mounted graphite crystal monochromatorθmax = 26.0°, θmin = 1.8°
Detector resolution: 9 pixels mm-1h = 149
CCD scansk = 1319
14915 measured reflectionsl = 2027
7291 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
7291 reflections(Δ/σ)max = 0.001
564 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
[CuCl(C12H6NO2)(C14H12N2)]V = 4113.5 (5) Å3
Mr = 479.41Z = 8
Monoclinic, P21/nMo Kα radiation
a = 11.855 (1) ŵ = 1.22 mm1
b = 15.955 (1) ÅT = 180 K
c = 22.391 (1) Å0.25 × 0.23 × 0.20 mm
β = 103.77 (1)°
Data collection top
Nonius KappaCCD
diffractometer
5404 reflections with I > 2σ(I)
14915 measured reflectionsRint = 0.040
7291 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.05Δρmax = 0.35 e Å3
7291 reflectionsΔρmin = 0.63 e Å3
564 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Refinement on F2 for all reflections except for 16 flagged for potential systematic errors.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.85423 (3)0.11159 (2)0.34493 (2)0.02421 (12)
Cl10.71937 (7)0.10748 (5)0.25373 (4)0.0349 (2)
O10.99955 (17)0.09785 (12)0.40693 (10)0.0326 (5)
N10.8409 (2)0.01078 (15)0.36344 (11)0.0252 (5)
C11.0267 (3)0.02433 (19)0.42741 (14)0.0297 (7)
O21.11572 (19)0.00542 (14)0.46510 (11)0.0450 (6)
C20.9363 (2)0.04292 (18)0.39963 (13)0.0247 (6)
C30.9516 (2)0.13104 (18)0.40889 (13)0.0258 (6)
C41.0538 (3)0.1691 (2)0.44372 (15)0.0346 (7)
H41.11630.13530.46540.0486 (18)*
C51.0627 (3)0.2544 (2)0.44624 (16)0.0421 (8)
H51.13230.27940.46920.0486 (18)*
C60.9713 (3)0.3056 (2)0.41558 (16)0.0401 (8)
H60.97990.36480.41760.0486 (18)*
C70.8707 (3)0.27168 (19)0.38309 (15)0.0363 (8)
H70.80830.30700.36360.0486 (18)*
C80.8584 (2)0.18360 (17)0.37813 (14)0.0265 (6)
C90.7569 (3)0.14592 (19)0.34269 (14)0.0318 (7)
H90.69240.17970.32360.0486 (18)*
C100.7512 (2)0.06150 (18)0.33576 (14)0.0288 (7)
H100.68290.03710.31100.0486 (18)*
N110.75995 (19)0.19653 (14)0.39560 (11)0.0237 (5)
C120.6827 (2)0.18092 (18)0.42886 (13)0.0250 (6)
C130.6277 (2)0.24658 (19)0.45341 (14)0.0302 (7)
H130.57260.23390.47680.0486 (18)*
C140.6531 (2)0.3278 (2)0.44384 (14)0.0312 (7)
H140.61600.37190.46030.0486 (18)*
C150.7674 (3)0.42978 (19)0.39651 (15)0.0337 (7)
H150.73440.47610.41290.0486 (18)*
C160.8438 (3)0.44360 (19)0.36155 (15)0.0327 (7)
H160.86380.49950.35380.0486 (18)*
C170.9761 (2)0.38612 (19)0.29971 (14)0.0313 (7)
H170.99950.44090.29120.0486 (18)*
C181.0211 (2)0.3177 (2)0.27671 (14)0.0324 (7)
H181.07530.32500.25200.0486 (18)*
C190.9872 (2)0.23660 (19)0.28960 (14)0.0289 (7)
N200.91137 (19)0.22526 (14)0.32417 (11)0.0245 (5)
C210.8660 (2)0.29268 (18)0.34796 (13)0.0253 (6)
C220.8953 (2)0.37560 (18)0.33591 (14)0.0278 (7)
C230.7350 (2)0.34595 (18)0.40933 (13)0.0276 (7)
C240.7856 (2)0.27772 (17)0.38563 (13)0.0238 (6)
C250.6542 (3)0.09135 (19)0.43782 (15)0.0333 (7)
H2510.62540.06470.39770.0486 (18)*
H2520.59430.08840.46130.0486 (18)*
H2530.72420.06220.46040.0486 (18)*
C261.0316 (3)0.1602 (2)0.26391 (15)0.0370 (8)
H2611.05330.11780.29630.0486 (18)*
H2621.09980.17500.24850.0486 (18)*
H2630.97080.13770.23010.0486 (18)*
Cu511.14745 (3)0.02256 (2)0.15969 (2)0.02570 (12)
Cl511.28626 (7)0.01808 (5)0.24910 (4)0.0350 (2)
O510.99770 (18)0.00803 (13)0.10166 (10)0.0373 (5)
N511.1584 (2)0.10103 (15)0.14109 (11)0.0266 (6)
C510.9683 (3)0.0657 (2)0.08261 (15)0.0362 (8)
O520.8765 (2)0.08489 (16)0.04750 (14)0.0666 (9)
C521.0596 (2)0.13272 (19)0.10763 (13)0.0260 (6)
C531.0443 (3)0.22087 (18)0.09725 (13)0.0280 (7)
C540.9391 (3)0.2582 (2)0.06507 (15)0.0357 (7)
H540.87330.22420.04860.0486 (18)*
C550.9322 (3)0.3437 (2)0.05771 (16)0.0459 (9)
H550.86110.36860.03650.0486 (18)*
C561.0286 (4)0.3943 (2)0.08106 (17)0.0493 (10)
H561.02240.45320.07500.0486 (18)*
C571.1308 (3)0.3611 (2)0.11219 (16)0.0450 (9)
H571.19550.39650.12770.0486 (18)*
C581.1411 (3)0.27309 (19)0.12161 (14)0.0329 (7)
C591.2441 (3)0.2362 (2)0.15572 (15)0.0360 (8)
H591.31000.27030.17200.0486 (18)*
C601.2501 (3)0.15181 (19)0.16549 (14)0.0316 (7)
H601.31940.12800.18970.0486 (18)*
N611.2382 (2)0.10542 (14)0.10602 (11)0.0251 (5)
C621.3122 (2)0.08861 (19)0.07141 (14)0.0291 (7)
C631.3661 (3)0.1533 (2)0.04530 (14)0.0351 (8)
H631.42020.13970.02160.0486 (18)*
C641.3410 (3)0.2347 (2)0.05384 (15)0.0359 (8)
H641.37650.27790.03560.0486 (18)*
C651.2312 (3)0.3389 (2)0.10153 (15)0.0365 (8)
H651.26330.38460.08400.0486 (18)*
C661.1565 (3)0.3540 (2)0.13721 (15)0.0348 (8)
H661.13700.41020.14430.0486 (18)*
C671.0264 (3)0.2993 (2)0.20116 (15)0.0347 (7)
H671.00300.35440.20890.0486 (18)*
C680.9822 (3)0.2319 (2)0.22565 (15)0.0345 (7)
H680.92770.24010.25010.0486 (18)*
C691.0176 (2)0.15030 (19)0.21473 (14)0.0306 (7)
N701.0925 (2)0.13730 (15)0.17985 (11)0.0263 (5)
C711.1362 (2)0.20369 (17)0.15426 (12)0.0214 (6)
C721.1062 (3)0.28731 (19)0.16460 (14)0.0299 (7)
C731.2627 (2)0.25504 (19)0.08964 (14)0.0302 (7)
C741.2141 (2)0.18735 (17)0.11542 (13)0.0253 (6)
C751.3372 (3)0.0013 (2)0.06167 (16)0.0388 (8)
H7511.26460.03020.04250.0486 (18)*
H7521.39110.00520.03470.0486 (18)*
H7531.37210.02750.10130.0486 (18)*
C760.9733 (3)0.0753 (2)0.24195 (16)0.0405 (8)
H7611.03650.05040.27330.0486 (18)*
H7620.91040.09220.26090.0486 (18)*
H7630.94400.03400.20960.0486 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0241 (2)0.0232 (2)0.0256 (2)0.00144 (13)0.00654 (16)0.00088 (14)
Cl10.0393 (5)0.0338 (4)0.0276 (4)0.0049 (3)0.0001 (3)0.0000 (3)
O10.0293 (12)0.0249 (11)0.0400 (13)0.0037 (8)0.0008 (10)0.0020 (9)
N10.0253 (13)0.0267 (14)0.0244 (13)0.0018 (10)0.0075 (11)0.0011 (10)
C10.0245 (16)0.0347 (18)0.0293 (17)0.0021 (13)0.0051 (13)0.0041 (14)
O20.0338 (13)0.0380 (13)0.0516 (15)0.0042 (10)0.0130 (11)0.0104 (11)
C20.0245 (15)0.0270 (16)0.0240 (15)0.0004 (12)0.0087 (12)0.0016 (12)
C30.0282 (16)0.0285 (16)0.0214 (15)0.0017 (12)0.0074 (12)0.0032 (13)
C40.0336 (17)0.0326 (18)0.0347 (19)0.0035 (13)0.0022 (14)0.0026 (14)
C50.042 (2)0.038 (2)0.044 (2)0.0115 (15)0.0062 (16)0.0088 (16)
C60.058 (2)0.0269 (18)0.037 (2)0.0100 (15)0.0161 (17)0.0032 (15)
C70.050 (2)0.0265 (17)0.0337 (19)0.0016 (14)0.0117 (16)0.0032 (14)
C80.0327 (16)0.0230 (16)0.0247 (16)0.0002 (12)0.0086 (13)0.0016 (12)
C90.0308 (16)0.0320 (18)0.0313 (18)0.0067 (13)0.0050 (14)0.0003 (14)
C100.0235 (15)0.0296 (17)0.0307 (17)0.0010 (12)0.0013 (13)0.0002 (13)
N110.0234 (12)0.0243 (13)0.0235 (13)0.0010 (9)0.0058 (10)0.0001 (10)
C120.0209 (14)0.0322 (17)0.0212 (15)0.0015 (12)0.0035 (12)0.0014 (12)
C130.0274 (16)0.0362 (18)0.0283 (17)0.0029 (13)0.0090 (13)0.0004 (14)
C140.0278 (16)0.0389 (19)0.0258 (17)0.0086 (13)0.0044 (13)0.0066 (14)
C150.0345 (17)0.0263 (17)0.0367 (19)0.0068 (13)0.0018 (14)0.0027 (14)
C160.0345 (18)0.0227 (16)0.0369 (19)0.0021 (12)0.0006 (15)0.0015 (14)
C170.0264 (16)0.0315 (18)0.0337 (18)0.0061 (12)0.0028 (14)0.0077 (14)
C180.0250 (15)0.0431 (19)0.0299 (18)0.0051 (13)0.0082 (13)0.0049 (14)
C190.0226 (15)0.0404 (18)0.0239 (16)0.0005 (12)0.0062 (12)0.0024 (13)
N200.0226 (12)0.0281 (14)0.0232 (13)0.0004 (10)0.0061 (10)0.0009 (10)
C210.0216 (14)0.0265 (16)0.0269 (16)0.0013 (11)0.0040 (12)0.0021 (12)
C220.0229 (15)0.0279 (16)0.0298 (17)0.0000 (12)0.0005 (12)0.0043 (13)
C230.0269 (15)0.0270 (16)0.0265 (17)0.0059 (12)0.0016 (13)0.0013 (13)
C240.0220 (14)0.0241 (15)0.0232 (15)0.0007 (11)0.0012 (12)0.0007 (12)
C250.0318 (17)0.0352 (18)0.0361 (19)0.0049 (13)0.0144 (14)0.0001 (14)
C260.0357 (18)0.045 (2)0.0353 (19)0.0041 (14)0.0189 (15)0.0023 (15)
Cu510.0245 (2)0.0253 (2)0.0275 (2)0.00001 (14)0.00657 (16)0.00057 (15)
Cl510.0376 (4)0.0345 (4)0.0297 (4)0.0040 (3)0.0015 (3)0.0019 (3)
O510.0307 (12)0.0320 (13)0.0448 (14)0.0045 (9)0.0004 (10)0.0048 (10)
N510.0246 (13)0.0303 (14)0.0253 (14)0.0016 (10)0.0071 (11)0.0004 (11)
C510.0293 (18)0.042 (2)0.0361 (19)0.0072 (14)0.0054 (15)0.0086 (16)
O520.0434 (16)0.0527 (17)0.083 (2)0.0141 (12)0.0265 (15)0.0276 (15)
C520.0246 (15)0.0331 (17)0.0215 (15)0.0002 (12)0.0082 (12)0.0017 (13)
C530.0335 (17)0.0321 (17)0.0216 (15)0.0032 (13)0.0128 (13)0.0024 (13)
C540.0381 (18)0.040 (2)0.0306 (18)0.0083 (14)0.0118 (15)0.0036 (15)
C550.053 (2)0.048 (2)0.038 (2)0.0229 (18)0.0140 (17)0.0008 (17)
C560.073 (3)0.031 (2)0.044 (2)0.0135 (18)0.015 (2)0.0014 (16)
C570.065 (2)0.0304 (19)0.038 (2)0.0043 (16)0.0106 (18)0.0046 (15)
C580.0412 (18)0.0305 (18)0.0287 (17)0.0019 (14)0.0118 (14)0.0026 (13)
C590.0398 (19)0.0328 (19)0.0337 (18)0.0088 (14)0.0051 (15)0.0023 (14)
C600.0264 (16)0.0355 (19)0.0310 (18)0.0027 (13)0.0030 (13)0.0003 (14)
N610.0230 (12)0.0293 (14)0.0236 (13)0.0004 (10)0.0068 (10)0.0013 (10)
C620.0260 (16)0.0373 (18)0.0236 (16)0.0025 (13)0.0049 (13)0.0007 (13)
C630.0307 (17)0.047 (2)0.0296 (18)0.0000 (14)0.0112 (14)0.0055 (15)
C640.0299 (17)0.045 (2)0.0321 (18)0.0073 (14)0.0053 (14)0.0069 (15)
C650.0358 (18)0.0279 (18)0.041 (2)0.0081 (14)0.0003 (15)0.0030 (15)
C660.0340 (18)0.0253 (17)0.0394 (19)0.0004 (13)0.0028 (15)0.0016 (14)
C670.0335 (17)0.0337 (18)0.0325 (18)0.0066 (14)0.0008 (14)0.0074 (14)
C680.0285 (16)0.045 (2)0.0306 (18)0.0066 (14)0.0086 (14)0.0060 (15)
C690.0268 (16)0.0386 (19)0.0273 (17)0.0017 (13)0.0085 (13)0.0033 (14)
N700.0241 (12)0.0303 (14)0.0247 (13)0.0011 (10)0.0063 (10)0.0013 (11)
C710.0206 (14)0.0247 (15)0.0156 (14)0.0024 (11)0.0022 (11)0.0015 (11)
C720.0251 (15)0.0301 (17)0.0306 (17)0.0016 (12)0.0010 (13)0.0041 (13)
C730.0251 (16)0.0342 (18)0.0283 (17)0.0058 (12)0.0007 (13)0.0016 (14)
C740.0222 (14)0.0288 (16)0.0227 (15)0.0014 (11)0.0009 (12)0.0005 (12)
C750.0413 (19)0.0397 (19)0.040 (2)0.0068 (15)0.0198 (16)0.0004 (16)
C760.0411 (19)0.044 (2)0.042 (2)0.0002 (15)0.0219 (16)0.0005 (16)
Geometric parameters (Å, º) top
Cu1—O11.950 (2)Cu51—O511.948 (2)
Cu1—N12.010 (2)Cu51—N512.026 (2)
Cu1—N202.028 (2)Cu51—N702.030 (2)
Cu1—N112.231 (2)Cu51—N612.228 (2)
Cu1—Cl12.2752 (9)Cu51—Cl512.2701 (9)
O1—C11.273 (3)O51—C511.271 (4)
N1—C21.327 (4)N51—C521.330 (4)
N1—C101.363 (4)N51—C601.362 (4)
C1—O21.222 (3)C51—O521.220 (4)
C1—C21.539 (4)C51—C521.530 (4)
C2—C31.427 (4)C52—C531.430 (4)
C3—C41.412 (4)C53—C541.415 (4)
C3—C81.427 (4)C53—C581.418 (4)
C4—C51.365 (4)C54—C551.374 (5)
C5—C61.400 (5)C55—C561.395 (5)
C6—C71.353 (4)C56—C571.354 (5)
C7—C81.415 (4)C57—C581.420 (4)
C8—C91.409 (4)C58—C591.406 (4)
C9—C101.356 (4)C59—C601.363 (4)
N11—C121.334 (4)N61—C621.329 (4)
N11—C241.361 (3)N61—C741.365 (3)
C12—C131.413 (4)C62—C631.411 (4)
C12—C251.493 (4)C62—C751.491 (4)
C13—C141.359 (4)C63—C641.356 (5)
C14—C231.407 (4)C64—C731.402 (4)
C15—C161.349 (4)C65—C661.347 (5)
C15—C231.439 (4)C65—C731.431 (4)
C16—C221.430 (4)C66—C721.428 (4)
C17—C181.369 (4)C67—C681.367 (4)
C17—C221.404 (4)C67—C721.404 (4)
C18—C191.405 (4)C68—C691.406 (4)
C19—N201.331 (4)C69—N701.331 (4)
C19—C261.496 (4)C69—C761.494 (4)
N20—C211.366 (4)N70—C711.364 (4)
C21—C221.410 (4)C71—C721.414 (4)
C21—C241.435 (4)C71—C741.435 (4)
C23—C241.406 (4)C73—C741.411 (4)
O1—Cu1—N180.99 (9)O51—Cu51—N5180.77 (9)
O1—Cu1—N2088.68 (9)O51—Cu51—N7088.05 (9)
N1—Cu1—N20164.30 (9)N51—Cu51—N70164.41 (9)
O1—Cu1—N1199.84 (9)O51—Cu51—N61101.03 (9)
N1—Cu1—N11114.33 (9)N51—Cu51—N61113.83 (9)
N20—Cu1—N1178.95 (9)N70—Cu51—N6178.85 (9)
O1—Cu1—Cl1161.53 (7)O51—Cu51—Cl51159.83 (7)
N1—Cu1—Cl194.83 (7)N51—Cu51—Cl5194.72 (7)
N20—Cu1—Cl191.24 (7)N70—Cu51—Cl5192.06 (7)
N11—Cu1—Cl198.27 (6)N61—Cu51—Cl5198.78 (6)
C1—O1—Cu1117.69 (18)C51—O51—Cu51117.88 (19)
C2—N1—C10120.5 (3)C52—N51—C60120.8 (3)
C2—N1—Cu1113.83 (19)C52—N51—Cu51113.27 (19)
C10—N1—Cu1125.0 (2)C60—N51—Cu51125.5 (2)
O2—C1—O1125.4 (3)O52—C51—O51125.5 (3)
O2—C1—C2120.7 (3)O52—C51—C52120.3 (3)
O1—C1—C2113.9 (2)O51—C51—C52114.2 (3)
N1—C2—C3122.0 (3)N51—C52—C53121.7 (3)
N1—C2—C1112.8 (2)N51—C52—C51113.0 (3)
C3—C2—C1125.2 (3)C53—C52—C51125.2 (3)
C4—C3—C2124.5 (3)C54—C53—C58118.9 (3)
C4—C3—C8118.6 (3)C54—C53—C52124.0 (3)
C2—C3—C8116.9 (3)C58—C53—C52117.1 (3)
C5—C4—C3119.9 (3)C55—C54—C53119.9 (3)
C4—C5—C6121.2 (3)C54—C55—C56120.6 (3)
C7—C6—C5120.7 (3)C57—C56—C55121.2 (3)
C6—C7—C8120.1 (3)C56—C57—C58119.9 (3)
C9—C8—C7121.8 (3)C59—C58—C53118.8 (3)
C9—C8—C3118.7 (3)C59—C58—C57121.8 (3)
C7—C8—C3119.5 (3)C53—C58—C57119.4 (3)
C10—C9—C8120.1 (3)C60—C59—C58120.4 (3)
C9—C10—N1121.7 (3)N51—C60—C59121.2 (3)
C12—N11—C24118.6 (2)C62—N61—C74118.3 (2)
C12—N11—Cu1131.60 (19)C62—N61—Cu51131.70 (19)
C24—N11—Cu1109.65 (17)C74—N61—Cu51109.84 (18)
N11—C12—C13121.4 (3)N61—C62—C63121.4 (3)
N11—C12—C25117.4 (2)N61—C62—C75117.5 (3)
C13—C12—C25121.2 (3)C63—C62—C75121.2 (3)
C14—C13—C12120.4 (3)C64—C63—C62120.4 (3)
C13—C14—C23119.4 (3)C63—C64—C73120.0 (3)
C16—C15—C23121.0 (3)C66—C65—C73121.0 (3)
C15—C16—C22121.2 (3)C65—C66—C72121.5 (3)
C18—C17—C22120.2 (3)C68—C67—C72120.1 (3)
C17—C18—C19120.1 (3)C67—C68—C69120.0 (3)
N20—C19—C18120.7 (3)N70—C69—C68120.9 (3)
N20—C19—C26117.4 (3)N70—C69—C76117.6 (3)
C18—C19—C26121.8 (3)C68—C69—C76121.5 (3)
C19—N20—C21120.2 (2)C69—N70—C71119.9 (2)
C19—N20—Cu1124.3 (2)C69—N70—Cu51124.4 (2)
C21—N20—Cu1115.52 (18)C71—N70—Cu51115.66 (18)
N20—C21—C22121.8 (3)N70—C71—C72121.9 (3)
N20—C21—C24118.4 (2)N70—C71—C74118.5 (2)
C22—C21—C24119.8 (3)C72—C71—C74119.6 (3)
C17—C22—C21117.1 (3)C67—C72—C71117.1 (3)
C17—C22—C16123.8 (3)C67—C72—C66123.9 (3)
C21—C22—C16119.1 (3)C71—C72—C66119.0 (3)
C24—C23—C14117.4 (3)C64—C73—C74116.6 (3)
C24—C23—C15119.1 (3)C64—C73—C65124.1 (3)
C14—C23—C15123.5 (3)C74—C73—C65119.3 (3)
N11—C24—C23122.9 (3)N61—C74—C73123.3 (3)
N11—C24—C21117.4 (2)N61—C74—C71117.1 (2)
C23—C24—C21119.7 (3)C73—C74—C71119.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O20.952.242.890 (4)124
C54—H54···O520.952.222.866 (4)124
C10—H10···Cl10.952.723.233 (3)114
C60—H60···Cl510.952.763.264 (3)114
C25—H253···O2i0.982.463.424 (4)169
C15—H15···O52ii0.952.473.409 (4)172
Symmetry codes: (i) x+2, y, z+1; (ii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[CuCl(C12H6NO2)(C14H12N2)]
Mr479.41
Crystal system, space groupMonoclinic, P21/n
Temperature (K)180
a, b, c (Å)11.855 (1), 15.955 (1), 22.391 (1)
β (°) 103.77 (1)
V3)4113.5 (5)
Z8
Radiation typeMo Kα
µ (mm1)1.22
Crystal size (mm)0.25 × 0.23 × 0.20
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14915, 7291, 5404
Rint0.040
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.118, 1.05
No. of reflections7291
No. of parameters564
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.63

Computer programs: KappaCCD Server Software (Nonius, 1998), SCALEPACK in HKL (Otwinowski & Minor, 1997), SCALEPACK in HKL, SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), CAMERON (Watkin et al., 1996), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Cu1—O11.950 (2)Cu51—O511.948 (2)
Cu1—N12.010 (2)Cu51—N512.026 (2)
Cu1—N202.028 (2)Cu51—N702.030 (2)
Cu1—N112.231 (2)Cu51—N612.228 (2)
Cu1—Cl12.2752 (9)Cu51—Cl512.2701 (9)
O1—C11.273 (3)O51—C511.271 (4)
N1—C21.327 (4)N51—C521.330 (4)
C1—O21.222 (3)C51—O521.220 (4)
C1—C21.539 (4)C51—C521.530 (4)
O1—Cu1—N180.99 (9)O51—Cu51—N5180.77 (9)
O1—Cu1—N2088.68 (9)O51—Cu51—N7088.05 (9)
N1—Cu1—N20164.30 (9)N51—Cu51—N70164.41 (9)
O1—Cu1—N1199.84 (9)O51—Cu51—N61101.03 (9)
N1—Cu1—N11114.33 (9)N51—Cu51—N61113.83 (9)
N20—Cu1—N1178.95 (9)N70—Cu51—N6178.85 (9)
O1—Cu1—Cl1161.53 (7)O51—Cu51—Cl51159.83 (7)
N1—Cu1—Cl194.83 (7)N51—Cu51—Cl5194.72 (7)
N20—Cu1—Cl191.24 (7)N70—Cu51—Cl5192.06 (7)
N11—Cu1—Cl198.27 (6)N61—Cu51—Cl5198.78 (6)
C1—O1—Cu1117.69 (18)C51—O51—Cu51117.88 (19)
C2—N1—Cu1113.83 (19)C52—N51—Cu51113.27 (19)
C10—N1—Cu1125.0 (2)C60—N51—Cu51125.5 (2)
O2—C1—O1125.4 (3)O52—C51—O51125.5 (3)
O2—C1—C2120.7 (3)O52—C51—C52120.3 (3)
O1—C1—C2113.9 (2)O51—C51—C52114.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O20.952.242.890 (4)124
C54—H54···O520.952.222.866 (4)124
C10—H10···Cl10.952.723.233 (3)114
C60—H60···Cl510.952.763.264 (3)114
C25—H253···O2i0.982.463.424 (4)169
C15—H15···O52ii0.952.473.409 (4)172
Symmetry codes: (i) x+2, y, z+1; (ii) x+3/2, y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds