Download citation
Download citation
link to html
10-(4-Fluoro­phenyl)-3,3,6,6,9-penta­methyl-3,4,6,7,9,10-hexa­hydro­acridine-1,8(2H,5H)-dione, C24H28FNO2, (I), crystallizes with two crystallographically independent mol­ecules (which differ slightly in conformation), while 10-(4-fluoro­phenyl)-9-propyl-3,3,6,6-tetra­methyl-3,4,6,7,9,10-hexa­hydro­acridine-1,8(2H,5H)-dione, C26H32FNO2, (II), crystallizes with one mol­ecule per asymmetric unit. In both structures, the central ring in the acridine moiety is in a sofa conformation, while the outer rings adopt intermediate half-chair/sofa conformations. The central pyridine ring is orthogonal to the substituted phenyl ring. In both structures, the packing of the crystal is stabilized by C—H...O intermolecular hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101005662/na1517sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101005662/na1517Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101005662/na1517IIsup3.hkl
Contains datablock II

CCDC references: 169936; 169937

Comment top

Acridine and its derivatives exhibit a wide spectrum of biological activities, such as antibacterial (Acheson et al., 1956), mutagenic and antitumour (Talacki et al., 1974), and antiamoebic (Prasad Krishna et al., 1984). The potency of acridines as antiviral and antibacterial agents is due to their ability to bind DNA by intercalation (Neidle, 1979; Nandi et al., 1990). Substitutions at C9 and N10 make the central ring of acridine buckled along the C9···N10 direction, with a dihedral angle formed by the two halves ranging from 7 to 13°. These values are smaller than those found in the present work. This buckling was postulated as the cause of their biological properties by Glusker et al. (1972). In acridine-1,8-diones, the electron delocalization is along a stretch of nine non-H atoms (O1 C1—C13C14—N10—C11C12—C8O2) which facilitate the exhibition of fluorescence and laser activity (Selladurai et al., 1990). The effectiveness of this laser activity can be controlled by the substituents at the 9- and 10-positions of the acridine chromophore. The decahydroacridine-1,8-diones act as photo-sensitizers (Timpe et al., 1993). Acridinediones have also been found to act as laser dyes, acting at around 475–495 nm (Murugan et al., 1998). The present study of the title compounds, (I) and (II), is a part of a series of investigations on the crystal structures of acridinedione derivatives. \sch

Compound (I) has two molecules in the asymmetric unit, designated (Ia) and (Ib). Fig. 1 shows the molecular structure and the atom-labelling scheme for both (Ia) and (Ib). Compound (II) has one molecule per asymmetric unit and Fig. 2 shows the molecular structure and atom-labelling scheme for (II).

The bond lengths CO and Csp2—F in both structures are comparable with the values found in the literature (Allen et al., 1987). The average CO [1.224 (3) Å in (Ia), 1.233 (3) Å in (Ib) and 1.228 (3) Å in (II)] and N—C [1.417 (3) Å in (Ia), 1.418 (2) Å in (Ib) and 1.415 (3) Å in (II)] bond lengths agree well with the values in several related structures (Jeyakanthan et al., 2000; Gunasekaran et al., 1996; Britto-Arias et al., 1996). Selected geometric parameters are given in Tables 1 and 3.

The acridine moiety is folded about the line passing through atoms C9 and N10, and the dihedral angle between the two halves is 27.4 (1)° in (Ia), 18.8 (1)° in (Ib) and 21.5 (1)° in (II). These values compare well with those reported in similar acridine derivatives (Gunasekaran et al., 1996; Sivaraman et al., 1994, 1996). The dihedral angle between the outer rings A and C of the acridine moiety is 18.0 (1)° in (Ia), 9.1 (1)° in (Ib) and 15.0 (1)° in (II) and this shows considerable buckling of the acridine nucleus.

The phenyl ring D in both structures is orthogonal to the central ring B, forming a dihedral angle of 88.3 (1)° in (Ia), 87.1 (1)° in (Ib) and 87.5 (1)° in (II). The valence angles around the N atom in both structures sum to 359.8 (2)° in (Ia), 359.0 (2)° in (Ib) and 358.9 (2)° in (II), and these values are indicative of sp2 hybridization of the nitrogen.

The C25A and C25B methyls in (I) and the C25 propyl in (II) are axial, as indicated by the angles formed by the C9—C25 and C9—H9 bonds with the plane through O1/C1/C13/C14/C11/C12/C8/O2 [C9A—C25A 88.1, C9A—H9A 21, C9B—C25B 77.6 and C9B—H9B 30° in (I), and C9—C25 79.7 and C9—H9 18° in (II)]. The deviation of atoms O1 and O2 from the mean planes passing through rings A and C are 0.144 (3) and 0.175 (2) Å in (Ia), 0.022 (2) and 0.098 (2) Å in (Ib) and 0.018 (2) and 0.101 (2) Å in (II), respectively.

The puckering amplitudes (Cremer & Pople, 1975) of the rings in the acridine moiety (Table 5) agree well with those of related structures (Gunasekaran et al., 1997; Jeyakanthan et al., 2000). The conformations of the rings of the acridine moiety in both structures are defined by the asymmetry parameters (Nardelli, 1983a), also given in Table 5.

In addition to the normal van der Waals interactions, the packing of the crystals in both structures is stabilized by C—H···O intermolecular hydrogen bonds. In (I), an intermolecular C—H···O hydrogen bond joins the molecules in a chain along the b direction. In (II), four C—H···O interactions occur with H···O distances less than the sum of the van der Waals radii (Bondi, 1964) (Table 4). In this structure, the acridine molecules are stacked in a head-to-head manner (Dauter et al., 1976) and are alternately parallel to each other. This type of stacking is also found in acridinedione (Sivaraman et al., 1996) and 9-amino acridine structures (Talacki et al., 1974).

Experimental top

The title compounds were synthesized as follows. A mixture of 2,2'-ethylidenebis(5,5-dimethylcyclohexane-1,3-dione) (2 g, 6.5 mmol) and 4-fluoroaniline (0.63 ml, 6.5 mmol) for compound (I), and a mixture of 2,2'-butylidenebis(5,5-dimethylcyclohexane-1,3-dione) (2 g, 6.0 mmol) and 4-fluoroaniline (0.60 ml, 6.0 mmol) for compound (II), were taken as starting materials. The reaction mixtures were refluxed in acetic acid (25 ml) for 7 h, after which time they were concentrated and poured onto ice. The yellow solids obtained were filtered and dried to afford the title compounds in yields of 1.8 g (72.3%) for (I) and 1.75 g (71.3%) for (II). The compounds were dissolved in a mixture of chloroform and methanol (2:1). Slow evaporation of the solvent at room temperature produced crystals of (I) and (II) suitable for X-ray analysis.

Refinement top

Please provide brief details of H-atom refinement.

Computing details top

Data collection: SMART (Siemens, 1996) for (I); CAD-4 Software (Enraf-Nonius, 1989) for (II). Cell refinement: SAINT (Siemens, 1996) for (I); CAD-4 Software for (II). Data reduction: SAINT for (I); SDP (Frenz, 1985) for (II). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1983b, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of the two independent molecules of (I) with the atom-labelling scheme and 30% probability displacement ellipsoids. H atoms are displayed as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecular structure of (II) with the atom-labelling scheme and 30% probability displacement ellipsoids. H atoms are displayed as small spheres of arbitrary radii.
(I) 10-(4-Fluorophenyl)-3,3,6,6,9-pentamethyl-3,4,6,7,9,10-hexahydroacridine- 1,8(2H,5H)-dione top
Crystal data top
C24H28FNO2F(000) = 1632
Mr = 381.47Dx = 1.167 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 17.1481 (2) ÅCell parameters from 8324 reflections
b = 17.3909 (1) Åθ = 1.3–28.3°
c = 15.8023 (3) ŵ = 0.08 mm1
β = 112.849 (1)°T = 293 K
V = 4342.79 (10) Å3Block, pale yellow
Z = 80.48 × 0.38 × 0.28 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
10547 independent reflections
Radiation source: fine-focus sealed tube4439 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
Detector resolution: 8.33 pixels mm-1θmax = 28.3°, θmin = 1.3°
ω scansh = 2222
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
k = 2320
Tmin = 0.963, Tmax = 0.978l = 2021
29750 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.188H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0504P)2 + 0.0465P]
where P = (Fo2 + 2Fc2)/3
10547 reflections(Δ/σ)max = 0.001
505 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C24H28FNO2V = 4342.79 (10) Å3
Mr = 381.47Z = 8
Monoclinic, P21/cMo Kα radiation
a = 17.1481 (2) ŵ = 0.08 mm1
b = 17.3909 (1) ÅT = 293 K
c = 15.8023 (3) Å0.48 × 0.38 × 0.28 mm
β = 112.849 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
10547 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
4439 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.978Rint = 0.075
29750 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.188H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.72 e Å3
10547 reflectionsΔρmin = 0.27 e Å3
505 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F1A0.13594 (12)0.48518 (11)0.62816 (10)0.1049 (6)
O1A0.04953 (16)0.19049 (14)0.05127 (15)0.1204 (9)
O2A0.21222 (15)0.32224 (12)0.06847 (14)0.1017 (8)
C1A0.0312 (2)0.20976 (19)0.1306 (2)0.0937 (10)
C2A0.0707 (3)0.1713 (2)0.1906 (2)0.1371 (17)
H2A10.12560.15120.15110.164*
H2A20.03560.12780.22120.164*
C3A0.0820 (2)0.2205 (2)0.2609 (2)0.0919 (10)
C4A0.00306 (19)0.26358 (17)0.31629 (18)0.0843 (9)
H4A10.03380.23000.36410.101*
H4A20.01790.30680.34590.101*
C5A0.25277 (15)0.39325 (13)0.33123 (15)0.0542 (6)
H5A10.28640.35380.37280.065*
H5A20.24100.43290.36780.065*
C6A0.30431 (15)0.42835 (12)0.28041 (15)0.0508 (6)
C7A0.30978 (17)0.36812 (13)0.21246 (17)0.0638 (7)
H7A10.34000.38980.17740.077*
H7A20.34180.32430.24630.077*
C8A0.22443 (19)0.34141 (14)0.14764 (18)0.0669 (7)
C9A0.06903 (19)0.31306 (17)0.11792 (17)0.0757 (8)
H9A0.07360.27760.07180.091*
N10A0.10945 (12)0.34586 (10)0.30430 (12)0.0529 (5)
C11A0.17107 (15)0.35877 (12)0.26816 (15)0.0489 (6)
C12A0.15673 (16)0.33728 (13)0.18143 (15)0.0580 (6)
C13A0.02875 (17)0.27178 (15)0.17348 (17)0.0693 (7)
C14A0.04458 (16)0.29298 (14)0.26059 (16)0.0615 (7)
C15A0.1479 (3)0.2855 (3)0.2019 (3)0.171 (2)
H15A0.20010.26160.16340.257*
H15B0.12440.31270.16440.257*
H15C0.15840.32100.24280.257*
C16A0.1222 (2)0.1842 (2)0.3200 (2)0.1227 (14)
H16A0.17250.15730.28190.184*
H16B0.13660.22330.35420.184*
H16C0.08320.14860.36170.184*
C17A0.26336 (18)0.50188 (13)0.23096 (18)0.0704 (7)
H17A0.26070.53880.27490.106*
H17B0.20720.49080.18770.106*
H17C0.29630.52240.19910.106*
C18A0.39378 (16)0.44616 (14)0.35001 (18)0.0683 (7)
H18A0.39090.48410.39280.102*
H18B0.42740.46550.31830.102*
H18C0.41910.40010.38250.102*
C19A0.11745 (14)0.38134 (13)0.39024 (14)0.0485 (5)
C20A0.08155 (16)0.45255 (13)0.38764 (16)0.0578 (6)
H20A0.05270.47680.33170.069*
C21A0.08855 (17)0.48780 (15)0.46870 (19)0.0686 (7)
H21A0.06490.53600.46820.082*
C22A0.13082 (18)0.45028 (17)0.54920 (17)0.0669 (7)
C23A0.16696 (18)0.38007 (17)0.55324 (17)0.0709 (7)
H23A0.19560.35600.60940.085*
C24A0.16023 (16)0.34540 (14)0.47259 (15)0.0588 (6)
H24A0.18470.29750.47380.071*
C25A0.0171 (2)0.3831 (2)0.0690 (2)0.1142 (12)
H25A0.03800.36670.02770.171*
H25B0.04520.40870.03490.171*
H25C0.01170.41780.11350.171*
F1B0.27680 (11)0.57834 (10)0.45252 (9)0.0968 (6)
O1B0.41827 (13)0.50994 (11)1.11475 (11)0.0866 (6)
O2B0.57048 (15)0.74826 (11)1.09019 (11)0.0950 (7)
C1B0.38697 (17)0.50616 (15)1.03059 (17)0.0636 (7)
C2B0.34041 (19)0.43501 (15)0.98335 (17)0.0740 (8)
H2B10.31270.41261.02060.089*
H2B20.38120.39790.97970.089*
C3B0.27400 (18)0.44897 (14)0.88664 (17)0.0667 (7)
C4B0.31815 (16)0.49122 (14)0.83246 (15)0.0623 (7)
H4B10.35580.45570.81960.075*
H4B20.27580.50780.77410.075*
C5B0.47969 (16)0.71803 (12)0.80993 (15)0.0569 (6)
H5B10.43330.72810.75170.068*
H5B20.52110.68700.79750.068*
C6B0.52057 (17)0.79446 (12)0.85185 (15)0.0592 (7)
C7B0.58246 (18)0.77902 (14)0.94911 (15)0.0678 (7)
H7B10.62880.74810.94710.081*
H7B20.60580.82750.97830.081*
C8B0.54295 (18)0.73831 (13)1.00602 (15)0.0650 (7)
C9B0.43613 (17)0.64231 (14)1.01983 (15)0.0601 (7)
H9B0.48200.62911.07830.072*
N10B0.38747 (12)0.61528 (10)0.82829 (11)0.0480 (5)
C11B0.44670 (15)0.67302 (11)0.87033 (14)0.0467 (5)
C12B0.47461 (16)0.68423 (12)0.96164 (14)0.0526 (6)
C13B0.39633 (15)0.56911 (13)0.97379 (14)0.0528 (6)
C14B0.36831 (14)0.56006 (12)0.88194 (14)0.0479 (5)
C18B0.5680 (2)0.82851 (15)0.79618 (17)0.0864 (9)
H18D0.52880.83820.73450.130*
H18E0.61040.79290.79530.130*
H18F0.59450.87590.82380.130*
C17B0.4532 (2)0.85122 (16)0.8533 (2)0.0985 (11)
H17D0.41350.86020.79170.148*
H17E0.47960.89890.88010.148*
H17F0.42410.83030.88910.148*
C16B0.2403 (2)0.37132 (17)0.84113 (19)0.0974 (11)
H16D0.21250.34520.87520.146*
H16E0.28650.34050.84050.146*
H16F0.20070.37960.77930.146*
C15B0.20056 (19)0.49684 (19)0.8898 (2)0.0939 (10)
H15D0.17360.46970.92390.141*
H15E0.16030.50570.82840.141*
H15F0.22160.54520.91900.141*
C19B0.35848 (14)0.60444 (12)0.72964 (13)0.0444 (5)
C20B0.28648 (15)0.64148 (14)0.67204 (15)0.0587 (6)
H20B0.25660.67270.69680.070*
C21B0.25804 (16)0.63282 (14)0.57779 (15)0.0632 (7)
H21B0.20950.65780.53860.076*
C22B0.30327 (17)0.58668 (14)0.54457 (14)0.0590 (6)
C23B0.37488 (17)0.54952 (14)0.59984 (16)0.0617 (7)
H23B0.40460.51870.57450.074*
C24B0.40297 (15)0.55817 (13)0.69396 (15)0.0541 (6)
H24B0.45150.53290.73270.065*
C25B0.3734 (2)0.69308 (18)1.0408 (2)0.0953 (10)
H25D0.40140.73911.07120.143*
H25E0.35180.66571.07980.143*
H25F0.32750.70640.98450.143*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F1A0.1169 (15)0.1396 (15)0.0615 (10)0.0050 (11)0.0383 (10)0.0366 (10)
O1A0.135 (2)0.142 (2)0.0807 (15)0.0678 (16)0.0380 (15)0.0541 (14)
O2A0.141 (2)0.1099 (16)0.0813 (14)0.0488 (14)0.0735 (15)0.0463 (12)
C1A0.099 (3)0.106 (2)0.070 (2)0.0447 (19)0.0257 (18)0.0282 (18)
C2A0.159 (4)0.144 (3)0.103 (3)0.099 (3)0.045 (3)0.034 (3)
C3A0.083 (2)0.119 (3)0.081 (2)0.056 (2)0.0391 (19)0.031 (2)
C4A0.088 (2)0.098 (2)0.0657 (18)0.0433 (17)0.0293 (16)0.0102 (15)
C5A0.0563 (16)0.0584 (14)0.0478 (13)0.0097 (11)0.0201 (12)0.0057 (11)
C6A0.0588 (16)0.0428 (12)0.0557 (14)0.0031 (10)0.0277 (12)0.0013 (10)
C7A0.077 (2)0.0546 (15)0.0741 (17)0.0004 (12)0.0444 (16)0.0023 (13)
C8A0.099 (2)0.0546 (15)0.0617 (16)0.0160 (14)0.0474 (16)0.0139 (13)
C9A0.086 (2)0.094 (2)0.0487 (14)0.0264 (16)0.0277 (15)0.0183 (14)
N10A0.0590 (13)0.0580 (12)0.0439 (11)0.0181 (9)0.0223 (10)0.0102 (9)
C11A0.0584 (16)0.0432 (12)0.0460 (13)0.0073 (10)0.0212 (12)0.0042 (10)
C12A0.0715 (18)0.0561 (14)0.0473 (14)0.0129 (12)0.0239 (13)0.0098 (11)
C13A0.0723 (19)0.0778 (18)0.0526 (15)0.0292 (14)0.0187 (14)0.0161 (13)
C14A0.0632 (18)0.0643 (15)0.0547 (15)0.0226 (12)0.0204 (13)0.0095 (12)
C15A0.076 (3)0.273 (6)0.157 (4)0.014 (3)0.037 (3)0.052 (4)
C16A0.111 (3)0.150 (3)0.100 (3)0.074 (3)0.033 (2)0.000 (2)
C17A0.088 (2)0.0474 (14)0.0771 (18)0.0021 (13)0.0332 (16)0.0060 (12)
C18A0.0593 (18)0.0695 (17)0.0786 (18)0.0120 (13)0.0294 (15)0.0049 (13)
C19A0.0488 (14)0.0555 (14)0.0430 (13)0.0156 (11)0.0198 (11)0.0067 (11)
C20A0.0604 (17)0.0611 (16)0.0510 (14)0.0033 (12)0.0207 (12)0.0011 (12)
C21A0.070 (2)0.0701 (17)0.0712 (18)0.0016 (13)0.0336 (15)0.0112 (15)
C22A0.0676 (19)0.092 (2)0.0433 (15)0.0150 (15)0.0241 (14)0.0197 (14)
C23A0.075 (2)0.089 (2)0.0415 (14)0.0057 (15)0.0147 (13)0.0001 (13)
C24A0.0673 (18)0.0616 (15)0.0463 (14)0.0017 (12)0.0208 (12)0.0021 (12)
C25A0.105 (3)0.142 (3)0.067 (2)0.016 (2)0.0017 (19)0.028 (2)
F1B0.1103 (14)0.1356 (15)0.0318 (8)0.0088 (10)0.0137 (8)0.0114 (8)
O1B0.1111 (17)0.1052 (15)0.0386 (10)0.0094 (12)0.0237 (10)0.0162 (10)
O2B0.144 (2)0.0862 (13)0.0374 (10)0.0312 (12)0.0164 (11)0.0117 (9)
C1B0.0719 (19)0.0762 (18)0.0438 (14)0.0047 (14)0.0235 (13)0.0115 (13)
C2B0.092 (2)0.0739 (18)0.0566 (16)0.0041 (15)0.0296 (15)0.0171 (14)
C3B0.078 (2)0.0675 (17)0.0534 (15)0.0088 (14)0.0246 (14)0.0093 (12)
C4B0.0757 (19)0.0657 (16)0.0450 (14)0.0076 (13)0.0229 (13)0.0012 (12)
C5B0.0747 (18)0.0518 (14)0.0410 (13)0.0033 (12)0.0190 (12)0.0021 (11)
C6B0.091 (2)0.0393 (12)0.0399 (12)0.0007 (12)0.0181 (13)0.0006 (10)
C7B0.090 (2)0.0517 (14)0.0502 (15)0.0103 (13)0.0148 (14)0.0018 (12)
C8B0.094 (2)0.0509 (14)0.0365 (13)0.0011 (13)0.0106 (13)0.0034 (11)
C9B0.0791 (19)0.0675 (16)0.0326 (12)0.0049 (13)0.0205 (12)0.0020 (11)
N10B0.0597 (13)0.0527 (11)0.0295 (9)0.0005 (9)0.0149 (9)0.0008 (8)
C11B0.0604 (16)0.0431 (12)0.0352 (11)0.0092 (10)0.0173 (11)0.0004 (9)
C12B0.0720 (17)0.0487 (13)0.0334 (12)0.0074 (11)0.0163 (11)0.0011 (10)
C13B0.0636 (17)0.0578 (14)0.0376 (12)0.0067 (11)0.0205 (11)0.0050 (10)
C14B0.0534 (15)0.0531 (13)0.0380 (12)0.0053 (10)0.0184 (11)0.0037 (10)
C18B0.133 (3)0.0632 (17)0.0612 (17)0.0259 (16)0.0363 (18)0.0025 (13)
C17B0.130 (3)0.0608 (18)0.098 (2)0.0314 (17)0.036 (2)0.0069 (16)
C16B0.122 (3)0.085 (2)0.076 (2)0.0336 (18)0.0287 (19)0.0098 (16)
C15B0.072 (2)0.115 (2)0.098 (2)0.0006 (18)0.0368 (19)0.0146 (19)
C19B0.0498 (14)0.0487 (12)0.0312 (11)0.0006 (10)0.0120 (10)0.0019 (9)
C20B0.0589 (17)0.0733 (16)0.0422 (13)0.0160 (12)0.0177 (12)0.0002 (12)
C21B0.0594 (17)0.0784 (17)0.0414 (13)0.0129 (13)0.0084 (12)0.0072 (12)
C22B0.0685 (18)0.0746 (16)0.0287 (12)0.0044 (13)0.0133 (12)0.0066 (11)
C23B0.0670 (18)0.0733 (17)0.0449 (14)0.0083 (13)0.0219 (13)0.0144 (12)
C24B0.0575 (16)0.0590 (14)0.0410 (13)0.0105 (11)0.0139 (11)0.0033 (11)
C25B0.119 (3)0.103 (2)0.079 (2)0.0127 (19)0.055 (2)0.0173 (17)
Geometric parameters (Å, º) top
F1A—C22A1.359 (3)F1B—C22B1.353 (2)
O1A—C1A1.216 (3)O1B—C1B1.227 (3)
O2A—C8A1.232 (3)O2B—C8B1.239 (2)
C1A—C13A1.462 (4)C1B—C13B1.464 (3)
C1A—C2A1.517 (4)C1B—C2B1.504 (4)
C2A—C3A1.475 (4)C2B—C3B1.530 (3)
C2A—H2A10.9700C2B—H2B10.9700
C2A—H2A20.9700C2B—H2B20.9700
C3A—C4A1.496 (4)C3B—C15B1.526 (4)
C3A—C16A1.499 (4)C3B—C4B1.533 (3)
C3A—C15A1.615 (6)C3B—C16B1.534 (4)
C4A—C14A1.504 (3)C4B—C14B1.504 (3)
C4A—H4A10.9700C4B—H4B10.9700
C4A—H4A20.9700C4B—H4B20.9700
C5A—C11A1.494 (3)C5B—C11B1.504 (3)
C5A—C6A1.533 (3)C5B—C6B1.529 (3)
C5A—H5A10.9700C5B—H5B10.9700
C5A—H5A20.9700C5B—H5B20.9700
C6A—C17A1.521 (3)C6B—C7B1.515 (3)
C6A—C7A1.529 (3)C6B—C17B1.527 (4)
C6A—C18A1.533 (3)C6B—C18B1.530 (3)
C7A—C8A1.498 (4)C7B—C8B1.497 (3)
C7A—H7A10.9700C7B—H7B10.9700
C7A—H7A20.9700C7B—H7B20.9700
C8A—C12A1.456 (3)C8B—C12B1.453 (3)
C9A—C13A1.495 (3)C9B—C13B1.493 (3)
C9A—C12A1.508 (3)C9B—C12B1.511 (3)
C9A—C25A1.529 (4)C9B—C25B1.524 (4)
C9A—H9A0.9800C9B—H9B0.9800
N10A—C11A1.401 (3)N10B—C11B1.399 (3)
N10A—C14A1.401 (3)N10B—C14B1.402 (2)
N10A—C19A1.449 (3)N10B—C19B1.453 (2)
C11A—C12A1.348 (3)C11B—C12B1.346 (3)
C13A—C14A1.347 (3)C13B—C14B1.349 (3)
C15A—H15A0.9600C18B—H18D0.9600
C15A—H15B0.9600C18B—H18E0.9600
C15A—H15C0.9600C18B—H18F0.9600
C16A—H16A0.9600C17B—H17D0.9600
C16A—H16B0.9600C17B—H17E0.9600
C16A—H16C0.9600C17B—H17F0.9600
C17A—H17A0.9600C16B—H16D0.9600
C17A—H17B0.9600C16B—H16E0.9600
C17A—H17C0.9600C16B—H16F0.9600
C18A—H18A0.9600C15B—H15D0.9600
C18A—H18B0.9600C15B—H15E0.9600
C18A—H18C0.9600C15B—H15F0.9600
C19A—C24A1.371 (3)C19B—C24B1.372 (3)
C19A—C20A1.377 (3)C19B—C20B1.377 (3)
C20A—C21A1.383 (3)C20B—C21B1.384 (3)
C20A—H20A0.9300C20B—H20B0.9300
C21A—C22A1.361 (4)C21B—C22B1.355 (3)
C21A—H21A0.9300C21B—H21B0.9300
C22A—C23A1.359 (4)C22B—C23B1.362 (3)
C23A—C24A1.374 (3)C23B—C24B1.382 (3)
C23A—H23A0.9300C23B—H23B0.9300
C24A—H24A0.9300C24B—H24B0.9300
C25A—H25A0.9600C25B—H25D0.9600
C25A—H25B0.9600C25B—H25E0.9600
C25A—H25C0.9600C25B—H25F0.9600
O1A—C1A—C13A122.3 (3)O1B—C1B—C13B121.2 (2)
O1A—C1A—C2A121.6 (3)O1B—C1B—C2B120.4 (2)
C13A—C1A—C2A116.1 (2)C13B—C1B—C2B118.3 (2)
C3A—C2A—C1A115.8 (3)C1B—C2B—C3B114.3 (2)
C3A—C2A—H2A1108.3C1B—C2B—H2B1108.7
C1A—C2A—H2A1108.3C3B—C2B—H2B1108.7
C3A—C2A—H2A2108.3C1B—C2B—H2B2108.7
C1A—C2A—H2A2108.3C3B—C2B—H2B2108.7
H2A1—C2A—H2A2107.4H2B1—C2B—H2B2107.6
C2A—C3A—C4A112.2 (3)C15B—C3B—C2B111.0 (2)
C2A—C3A—C16A116.8 (3)C15B—C3B—C4B110.4 (2)
C4A—C3A—C16A112.2 (2)C2B—C3B—C4B107.3 (2)
C2A—C3A—C15A103.8 (3)C15B—C3B—C16B109.3 (3)
C4A—C3A—C15A105.0 (3)C2B—C3B—C16B109.1 (2)
C16A—C3A—C15A105.5 (3)C4B—C3B—C16B109.8 (2)
C3A—C4A—C14A113.7 (2)C14B—C4B—C3B113.46 (19)
C3A—C4A—H4A1108.8C14B—C4B—H4B1108.9
C14A—C4A—H4A1108.8C3B—C4B—H4B1108.9
C3A—C4A—H4A2108.8C14B—C4B—H4B2108.9
C14A—C4A—H4A2108.8C3B—C4B—H4B2108.9
H4A1—C4A—H4A2107.7H4B1—C4B—H4B2107.7
C11A—C5A—C6A113.11 (18)C11B—C5B—C6B113.56 (17)
C11A—C5A—H5A1109.0C11B—C5B—H5B1108.9
C6A—C5A—H5A1109.0C6B—C5B—H5B1108.9
C11A—C5A—H5A2109.0C11B—C5B—H5B2108.9
C6A—C5A—H5A2109.0C6B—C5B—H5B2108.9
H5A1—C5A—H5A2107.8H5B1—C5B—H5B2107.7
C17A—C6A—C7A110.93 (19)C7B—C6B—C17B109.6 (2)
C17A—C6A—C18A109.43 (19)C7B—C6B—C5B107.96 (18)
C7A—C6A—C18A108.98 (19)C17B—C6B—C5B110.3 (2)
C17A—C6A—C5A111.03 (19)C7B—C6B—C18B109.4 (2)
C7A—C6A—C5A107.47 (17)C17B—C6B—C18B109.5 (2)
C18A—C6A—C5A108.95 (18)C5B—C6B—C18B110.12 (18)
C8A—C7A—C6A112.5 (2)C8B—C7B—C6B113.0 (2)
C8A—C7A—H7A1109.1C8B—C7B—H7B1109.0
C6A—C7A—H7A1109.1C6B—C7B—H7B1109.0
C8A—C7A—H7A2109.1C8B—C7B—H7B2109.0
C6A—C7A—H7A2109.1C6B—C7B—H7B2109.0
H7A1—C7A—H7A2107.8H7B1—C7B—H7B2107.8
O2A—C8A—C12A120.9 (3)O2B—C8B—C12B120.5 (2)
O2A—C8A—C7A121.0 (2)O2B—C8B—C7B120.4 (2)
C12A—C8A—C7A118.1 (2)C12B—C8B—C7B118.98 (19)
C13A—C9A—C12A108.2 (2)C13B—C9B—C12B109.86 (17)
C13A—C9A—C25A111.7 (3)C13B—C9B—C25B111.8 (2)
C12A—C9A—C25A110.4 (2)C12B—C9B—C25B111.4 (2)
C13A—C9A—H9A108.9C13B—C9B—H9B107.9
C12A—C9A—H9A108.9C12B—C9B—H9B107.9
C25A—C9A—H9A108.9C25B—C9B—H9B107.9
C11A—N10A—C14A118.98 (18)C11B—N10B—C14B120.13 (16)
C11A—N10A—C19A120.14 (17)C11B—N10B—C19B119.04 (17)
C14A—N10A—C19A120.64 (17)C14B—N10B—C19B119.81 (17)
C12A—C11A—N10A120.1 (2)C12B—C11B—N10B120.21 (19)
C12A—C11A—C5A122.9 (2)C12B—C11B—C5B122.7 (2)
N10A—C11A—C5A116.93 (18)N10B—C11B—C5B117.05 (17)
C11A—C12A—C8A120.2 (2)C11B—C12B—C8B119.7 (2)
C11A—C12A—C9A119.7 (2)C11B—C12B—C9B121.7 (2)
C8A—C12A—C9A120.1 (2)C8B—C12B—C9B118.65 (19)
C14A—C13A—C1A120.1 (2)C14B—C13B—C1B119.6 (2)
C14A—C13A—C9A120.9 (2)C14B—C13B—C9B121.9 (2)
C1A—C13A—C9A119.0 (2)C1B—C13B—C9B118.49 (19)
C13A—C14A—N10A119.3 (2)C13B—C14B—N10B120.1 (2)
C13A—C14A—C4A124.4 (2)C13B—C14B—C4B123.0 (2)
N10A—C14A—C4A116.25 (19)N10B—C14B—C4B116.87 (17)
C3A—C15A—H15A109.5C6B—C18B—H18D109.5
C3A—C15A—H15B109.5C6B—C18B—H18E109.5
H15A—C15A—H15B109.5H18D—C18B—H18E109.5
C3A—C15A—H15C109.5C6B—C18B—H18F109.5
H15A—C15A—H15C109.5H18D—C18B—H18F109.5
H15B—C15A—H15C109.5H18E—C18B—H18F109.5
C3A—C16A—H16A109.5C6B—C17B—H17D109.5
C3A—C16A—H16B109.5C6B—C17B—H17E109.5
H16A—C16A—H16B109.5H17D—C17B—H17E109.5
C3A—C16A—H16C109.5C6B—C17B—H17F109.5
H16A—C16A—H16C109.5H17D—C17B—H17F109.5
H16B—C16A—H16C109.5H17E—C17B—H17F109.5
C6A—C17A—H17A109.5C3B—C16B—H16D109.5
C6A—C17A—H17B109.5C3B—C16B—H16E109.5
H17A—C17A—H17B109.5H16D—C16B—H16E109.5
C6A—C17A—H17C109.5C3B—C16B—H16F109.5
H17A—C17A—H17C109.5H16D—C16B—H16F109.5
H17B—C17A—H17C109.5H16E—C16B—H16F109.5
C6A—C18A—H18A109.5C3B—C15B—H15D109.5
C6A—C18A—H18B109.5C3B—C15B—H15E109.5
H18A—C18A—H18B109.5H15D—C15B—H15E109.5
C6A—C18A—H18C109.5C3B—C15B—H15F109.5
H18A—C18A—H18C109.5H15D—C15B—H15F109.5
H18B—C18A—H18C109.5H15E—C15B—H15F109.5
C24A—C19A—C20A120.4 (2)C24B—C19B—C20B120.13 (19)
C24A—C19A—N10A121.1 (2)C24B—C19B—N10B120.26 (19)
C20A—C19A—N10A118.5 (2)C20B—C19B—N10B119.60 (19)
C19A—C20A—C21A119.6 (2)C19B—C20B—C21B120.8 (2)
C19A—C20A—H20A120.2C19B—C20B—H20B119.6
C21A—C20A—H20A120.2C21B—C20B—H20B119.6
C22A—C21A—C20A118.5 (2)C22B—C21B—C20B117.8 (2)
C22A—C21A—H21A120.8C22B—C21B—H21B121.1
C20A—C21A—H21A120.8C20B—C21B—H21B121.1
F1A—C22A—C23A119.5 (3)F1B—C22B—C21B118.4 (2)
F1A—C22A—C21A117.7 (3)F1B—C22B—C23B118.8 (2)
C23A—C22A—C21A122.8 (2)C21B—C22B—C23B122.8 (2)
C22A—C23A—C24A118.6 (2)C22B—C23B—C24B119.3 (2)
C22A—C23A—H23A120.7C22B—C23B—H23B120.4
C24A—C23A—H23A120.7C24B—C23B—H23B120.4
C19A—C24A—C23A120.1 (2)C19B—C24B—C23B119.3 (2)
C19A—C24A—H24A119.9C19B—C24B—H24B120.4
C23A—C24A—H24A119.9C23B—C24B—H24B120.4
C9A—C25A—H25A109.5C9B—C25B—H25D109.5
C9A—C25A—H25B109.5C9B—C25B—H25E109.5
H25A—C25A—H25B109.5H25D—C25B—H25E109.5
C9A—C25A—H25C109.5C9B—C25B—H25F109.5
H25A—C25A—H25C109.5H25D—C25B—H25F109.5
H25B—C25A—H25C109.5H25E—C25B—H25F109.5
O1A—C1A—C2A—C3A148.3 (4)O1B—C1B—C2B—C3B154.3 (2)
C13A—C1A—C2A—C3A30.8 (5)C13B—C1B—C2B—C3B27.8 (3)
C1A—C2A—C3A—C4A49.5 (5)C1B—C2B—C3B—C15B67.5 (3)
C1A—C2A—C3A—C16A179.0 (3)C1B—C2B—C3B—C4B53.2 (3)
C1A—C2A—C3A—C15A63.4 (4)C1B—C2B—C3B—C16B172.1 (2)
C2A—C3A—C4A—C14A39.4 (4)C15B—C3B—C4B—C14B71.2 (3)
C16A—C3A—C4A—C14A173.2 (3)C2B—C3B—C4B—C14B49.9 (3)
C15A—C3A—C4A—C14A72.7 (3)C16B—C3B—C4B—C14B168.3 (2)
C11A—C5A—C6A—C17A71.5 (2)C11B—C5B—C6B—C7B49.1 (3)
C11A—C5A—C6A—C7A50.0 (3)C11B—C5B—C6B—C17B70.6 (3)
C11A—C5A—C6A—C18A167.92 (19)C11B—C5B—C6B—C18B168.5 (2)
C17A—C6A—C7A—C8A65.3 (3)C17B—C6B—C7B—C8B65.7 (3)
C18A—C6A—C7A—C8A174.19 (19)C5B—C6B—C7B—C8B54.4 (3)
C5A—C6A—C7A—C8A56.3 (3)C18B—C6B—C7B—C8B174.2 (2)
C6A—C7A—C8A—O2A147.7 (2)C6B—C7B—C8B—O2B150.6 (2)
C6A—C7A—C8A—C12A33.5 (3)C6B—C7B—C8B—C12B32.3 (3)
C14A—N10A—C11A—C12A17.3 (3)C14B—N10B—C11B—C12B11.6 (3)
C19A—N10A—C11A—C12A168.4 (2)C19B—N10B—C11B—C12B179.98 (19)
C14A—N10A—C11A—C5A159.9 (2)C14B—N10B—C11B—C5B165.59 (19)
C19A—N10A—C11A—C5A14.4 (3)C19B—N10B—C11B—C5B2.8 (3)
C6A—C5A—C11A—C12A21.0 (3)C6B—C5B—C11B—C12B21.4 (3)
C6A—C5A—C11A—N10A161.89 (19)C6B—C5B—C11B—N10B161.5 (2)
N10A—C11A—C12A—C8A172.0 (2)N10B—C11B—C12B—C8B173.1 (2)
C5A—C11A—C12A—C8A5.0 (4)C5B—C11B—C12B—C8B3.9 (3)
N10A—C11A—C12A—C9A11.3 (3)N10B—C11B—C12B—C9B7.4 (3)
C5A—C11A—C12A—C9A171.7 (2)C5B—C11B—C12B—C9B175.6 (2)
O2A—C8A—C12A—C11A179.7 (2)O2B—C8B—C12B—C11B178.6 (2)
C7A—C8A—C12A—C11A1.5 (3)C7B—C8B—C12B—C11B1.6 (3)
O2A—C8A—C12A—C9A3.1 (4)O2B—C8B—C12B—C9B1.8 (4)
C7A—C8A—C12A—C9A178.1 (2)C7B—C8B—C12B—C9B178.9 (2)
C13A—C9A—C12A—C11A35.1 (3)C13B—C9B—C12B—C11B24.4 (3)
C25A—C9A—C12A—C11A87.3 (3)C25B—C9B—C12B—C11B100.0 (3)
C13A—C9A—C12A—C8A148.2 (2)C13B—C9B—C12B—C8B156.1 (2)
C25A—C9A—C12A—C8A89.3 (3)C25B—C9B—C12B—C8B79.5 (3)
O1A—C1A—C13A—C14A177.5 (3)O1B—C1B—C13B—C14B173.6 (2)
C2A—C1A—C13A—C14A1.6 (5)C2B—C1B—C13B—C14B4.3 (4)
O1A—C1A—C13A—C9A0.0 (5)O1B—C1B—C13B—C9B7.1 (4)
C2A—C1A—C13A—C9A179.1 (3)C2B—C1B—C13B—C9B175.0 (2)
C12A—C9A—C13A—C14A34.8 (4)C12B—C9B—C13B—C14B25.6 (3)
C25A—C9A—C13A—C14A86.9 (3)C25B—C9B—C13B—C14B98.6 (3)
C12A—C9A—C13A—C1A147.8 (3)C12B—C9B—C13B—C1B155.1 (2)
C25A—C9A—C13A—C1A90.6 (3)C25B—C9B—C13B—C1B80.7 (3)
C1A—C13A—C14A—N10A172.3 (3)C1B—C13B—C14B—N10B171.0 (2)
C9A—C13A—C14A—N10A10.2 (4)C9B—C13B—C14B—N10B9.7 (3)
C1A—C13A—C14A—C4A7.6 (5)C1B—C13B—C14B—C4B7.4 (4)
C9A—C13A—C14A—C4A169.8 (3)C9B—C13B—C14B—C4B171.9 (2)
C11A—N10A—C14A—C13A18.0 (4)C11B—N10B—C14B—C13B10.5 (3)
C19A—N10A—C14A—C13A167.7 (2)C19B—N10B—C14B—C13B178.8 (2)
C11A—N10A—C14A—C4A162.0 (2)C11B—N10B—C14B—C4B167.9 (2)
C19A—N10A—C14A—C4A12.3 (3)C19B—N10B—C14B—C4B0.4 (3)
C3A—C4A—C14A—C13A11.9 (5)C3B—C4B—C14B—C13B21.6 (3)
C3A—C4A—C14A—N10A168.1 (3)C3B—C4B—C14B—N10B160.0 (2)
C11A—N10A—C19A—C24A89.3 (3)C11B—N10B—C19B—C24B86.5 (3)
C14A—N10A—C19A—C24A85.0 (3)C14B—N10B—C19B—C24B81.9 (3)
C11A—N10A—C19A—C20A90.3 (3)C11B—N10B—C19B—C20B92.8 (3)
C14A—N10A—C19A—C20A95.5 (3)C14B—N10B—C19B—C20B98.7 (2)
C24A—C19A—C20A—C21A0.2 (4)C24B—C19B—C20B—C21B0.1 (4)
N10A—C19A—C20A—C21A179.8 (2)N10B—C19B—C20B—C21B179.3 (2)
C19A—C20A—C21A—C22A0.3 (4)C19B—C20B—C21B—C22B0.2 (4)
C20A—C21A—C22A—F1A179.0 (2)C20B—C21B—C22B—F1B179.2 (2)
C20A—C21A—C22A—C23A0.6 (4)C20B—C21B—C22B—C23B0.4 (4)
F1A—C22A—C23A—C24A179.3 (2)F1B—C22B—C23B—C24B179.4 (2)
C21A—C22A—C23A—C24A0.3 (4)C21B—C22B—C23B—C24B0.6 (4)
C20A—C19A—C24A—C23A0.5 (4)C20B—C19B—C24B—C23B0.3 (3)
N10A—C19A—C24A—C23A179.9 (2)N10B—C19B—C24B—C23B179.1 (2)
C22A—C23A—C24A—C19A0.3 (4)C22B—C23B—C24B—C19B0.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9A—H9A···O1A0.982.512.850 (4)100
C9A—H9A···O2A0.982.522.856 (5)100
C9B—H9B···O1B0.982.512.828 (4)98
C9B—H9B···O2B0.982.532.819 (3)97
C24A—H24A···O2Ai0.932.503.247 (3)138
Symmetry code: (i) x, y+1/2, z+1/2.
(II) 10-(4-fluorophenyl)-9-propyl-3,3,6,6-tetramethyl-3,4,6,7,9,10- hexahydroacridine-1,8(2H,5H)-dione top
Crystal data top
C26H32FNO2F(000) = 1760
Mr = 409.53Dx = 1.184 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54180 Å
a = 27.454 (1) ÅCell parameters from 25 reflections
b = 12.2738 (10) Åθ = 12.5–18.0°
c = 16.2792 (10) ŵ = 0.63 mm1
β = 123.118 (10)°T = 293 K
V = 4594.4 (5) Å3Block, pale yellow
Z = 80.20 × 0.18 × 0.16 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.053
Radiation source: fine-focus sealed tubeθmax = 72.7°, θmin = 3.9°
Graphite monochromatorh = 034
ω/2θ scansk = 015
4454 measured reflectionsl = 2016
4374 independent reflections3 standard reflections every 200 reflections
3087 reflections with I > 2σ(I) intensity decay: <1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.196 w = 1/[σ2(Fo2) + (0.0504P)2 + 0.0465P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
4374 reflectionsΔρmax = 0.17 e Å3
272 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00046 (13)
Crystal data top
C26H32FNO2V = 4594.4 (5) Å3
Mr = 409.53Z = 8
Monoclinic, C2/cCu Kα radiation
a = 27.454 (1) ŵ = 0.63 mm1
b = 12.2738 (10) ÅT = 293 K
c = 16.2792 (10) Å0.20 × 0.18 × 0.16 mm
β = 123.118 (10)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.053
4454 measured reflections3 standard reflections every 200 reflections
4374 independent reflections intensity decay: <1%
3087 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.196H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.17 e Å3
4374 reflectionsΔρmin = 0.17 e Å3
272 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.00474 (8)0.66354 (13)0.14003 (19)0.1566 (9)
O10.23797 (7)0.02710 (13)0.51580 (11)0.0882 (5)
O20.25392 (7)0.03973 (14)0.23311 (11)0.0843 (5)
C10.20570 (8)0.10666 (16)0.48565 (14)0.0621 (5)
C20.19344 (9)0.16913 (17)0.55147 (14)0.0658 (5)
H2A0.22410.22230.58800.079*
H2B0.19420.11930.59840.079*
C30.13527 (9)0.22761 (16)0.49688 (14)0.0627 (5)
C40.13309 (9)0.29930 (15)0.41763 (14)0.0613 (5)
H4A0.09390.32730.37500.074*
H4B0.15890.36100.44900.074*
C50.15461 (9)0.32023 (15)0.13792 (14)0.0628 (5)
H5A0.18010.38280.16730.075*
H5B0.11500.34700.09810.075*
C60.16966 (9)0.26095 (16)0.07125 (14)0.0637 (5)
C70.22652 (9)0.20004 (19)0.13549 (15)0.0705 (5)
H7A0.23500.15870.09400.085*
H7B0.25760.25240.17200.085*
C80.22509 (8)0.12410 (16)0.20596 (14)0.0624 (5)
C90.19083 (8)0.08003 (14)0.31875 (14)0.0598 (5)
H90.22990.04850.35870.072*
N100.13451 (7)0.28682 (11)0.26690 (11)0.0546 (4)
C110.16033 (7)0.24963 (14)0.21787 (12)0.0533 (4)
C120.19015 (8)0.15430 (14)0.24492 (12)0.0549 (4)
C130.18043 (8)0.14522 (14)0.38568 (13)0.0549 (4)
C140.15026 (7)0.23991 (14)0.35640 (13)0.0531 (4)
C150.08592 (10)0.14393 (19)0.45133 (18)0.0790 (6)
H15A0.08940.09800.40700.118*
H15B0.04920.18110.41620.118*
H15C0.08820.10020.50220.118*
C160.12988 (12)0.3003 (2)0.56749 (18)0.0864 (7)
H16A0.09290.33660.53270.130*
H16B0.16050.35360.59530.130*
H16C0.13290.25660.61900.130*
C170.12170 (10)0.18051 (19)0.00377 (15)0.0780 (6)
H17A0.13190.14440.03710.117*
H17B0.08580.21910.03660.117*
H17C0.11730.12750.04260.117*
C180.17534 (14)0.3461 (2)0.00786 (19)0.0927 (8)
H18A0.20520.39740.04950.139*
H18B0.13900.38370.03210.139*
H18C0.18530.31040.03350.139*
C190.10109 (8)0.38656 (14)0.23467 (13)0.0546 (4)
C200.04193 (9)0.38052 (17)0.16834 (19)0.0833 (7)
H200.02400.31320.14510.100*
C210.00942 (10)0.4745 (2)0.1365 (3)0.1083 (10)
H210.03060.47180.09170.130*
C220.03712 (11)0.57131 (18)0.1719 (2)0.0931 (8)
C230.09522 (10)0.57980 (15)0.23732 (17)0.0732 (6)
H230.11270.64760.26000.088*
C240.12802 (8)0.48571 (14)0.26964 (14)0.0600 (5)
H240.16800.48930.31470.072*
C250.14722 (11)0.01493 (16)0.27060 (18)0.0757 (6)
H25A0.15760.05780.23230.091*
H25B0.15120.06160.32210.091*
C260.08473 (11)0.01783 (19)0.2055 (2)0.0889 (7)
H26A0.07970.05870.15030.107*
H26B0.07490.06570.24180.107*
C270.04316 (16)0.0778 (3)0.1670 (3)0.1358 (13)
H27A0.00400.05160.12520.204*
H27B0.04680.11710.22100.204*
H27C0.05220.12510.13020.204*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.1171 (13)0.0653 (10)0.229 (2)0.0436 (9)0.0566 (14)0.0379 (12)
O10.1021 (11)0.0873 (11)0.0796 (10)0.0452 (9)0.0524 (9)0.0350 (9)
O20.0903 (10)0.0870 (11)0.0814 (10)0.0338 (9)0.0507 (8)0.0091 (8)
C10.0611 (10)0.0588 (10)0.0640 (11)0.0100 (8)0.0326 (9)0.0141 (9)
C20.0725 (11)0.0663 (12)0.0574 (10)0.0040 (9)0.0348 (9)0.0078 (9)
C30.0753 (12)0.0569 (10)0.0652 (11)0.0039 (9)0.0443 (10)0.0044 (9)
C40.0748 (11)0.0481 (9)0.0658 (11)0.0064 (8)0.0415 (10)0.0033 (8)
C50.0821 (12)0.0466 (9)0.0607 (10)0.0030 (9)0.0397 (9)0.0020 (8)
C60.0796 (12)0.0560 (10)0.0552 (10)0.0081 (9)0.0365 (9)0.0017 (8)
C70.0732 (12)0.0778 (14)0.0679 (12)0.0054 (10)0.0432 (10)0.0060 (10)
C80.0605 (10)0.0637 (11)0.0578 (10)0.0033 (9)0.0289 (8)0.0047 (9)
C90.0671 (10)0.0493 (9)0.0652 (11)0.0146 (8)0.0375 (9)0.0095 (8)
N100.0669 (8)0.0413 (7)0.0582 (8)0.0097 (6)0.0359 (7)0.0076 (6)
C110.0582 (9)0.0447 (8)0.0535 (9)0.0025 (7)0.0282 (8)0.0024 (7)
C120.0594 (9)0.0483 (9)0.0547 (9)0.0030 (7)0.0296 (8)0.0001 (7)
C130.0592 (9)0.0471 (9)0.0585 (10)0.0074 (7)0.0322 (8)0.0067 (7)
C140.0578 (9)0.0448 (8)0.0562 (9)0.0024 (7)0.0307 (8)0.0054 (7)
C150.0758 (13)0.0759 (14)0.0966 (16)0.0005 (11)0.0543 (12)0.0088 (12)
C160.1130 (18)0.0837 (16)0.0808 (15)0.0173 (14)0.0645 (14)0.0047 (12)
C170.0829 (13)0.0711 (13)0.0606 (11)0.0057 (11)0.0269 (10)0.0089 (10)
C180.133 (2)0.0789 (16)0.0850 (15)0.0073 (15)0.0719 (16)0.0074 (13)
C190.0603 (9)0.0414 (9)0.0598 (9)0.0047 (7)0.0313 (8)0.0068 (7)
C200.0619 (11)0.0513 (11)0.1052 (16)0.0032 (9)0.0253 (11)0.0030 (11)
C210.0601 (12)0.0714 (15)0.143 (2)0.0112 (11)0.0227 (14)0.0191 (16)
C220.0816 (15)0.0511 (12)0.125 (2)0.0230 (11)0.0423 (15)0.0244 (13)
C230.0885 (14)0.0399 (9)0.0858 (14)0.0019 (9)0.0441 (12)0.0048 (9)
C240.0631 (10)0.0472 (9)0.0636 (10)0.0010 (8)0.0307 (8)0.0022 (8)
C250.1057 (16)0.0433 (10)0.0900 (15)0.0019 (10)0.0611 (14)0.0009 (10)
C260.0950 (17)0.0615 (13)0.1085 (19)0.0149 (12)0.0544 (15)0.0122 (13)
C270.130 (3)0.096 (2)0.196 (4)0.046 (2)0.099 (3)0.048 (2)
Geometric parameters (Å, º) top
F1—C221.355 (2)C13—C141.354 (2)
O1—C11.227 (2)C15—H15A0.9600
O2—C81.230 (2)C15—H15B0.9600
C1—C131.456 (2)C15—H15C0.9600
C1—C21.498 (3)C16—H16A0.9600
C2—C31.518 (3)C16—H16B0.9600
C2—H2A0.9700C16—H16C0.9600
C2—H2B0.9700C17—H17A0.9600
C3—C161.525 (3)C17—H17B0.9600
C3—C151.530 (3)C17—H17C0.9600
C3—C41.536 (2)C18—H18A0.9600
C4—C141.503 (2)C18—H18B0.9600
C4—H4A0.9700C18—H18C0.9600
C4—H4B0.9700C19—C241.375 (2)
C5—C111.499 (2)C19—C201.376 (3)
C5—C61.539 (3)C20—C211.375 (3)
C5—H5A0.9700C20—H200.9300
C5—H5B0.9700C21—C221.358 (3)
C6—C71.519 (3)C21—H210.9300
C6—C171.528 (3)C22—C231.354 (3)
C6—C181.536 (3)C23—C241.380 (3)
C7—C81.496 (3)C23—H230.9300
C7—H7A0.9700C24—H240.9300
C7—H7B0.9700C25—C261.497 (3)
C8—C121.457 (3)C25—H25A0.9700
C9—C131.499 (2)C25—H25B0.9700
C9—C121.501 (2)C26—C271.513 (3)
C9—C251.543 (3)C26—H26A0.9700
C9—H90.9800C26—H26B0.9700
N10—C141.398 (2)C27—H27A0.9600
N10—C111.402 (2)C27—H27B0.9600
N10—C191.446 (2)C27—H27C0.9600
C11—C121.356 (2)
O1—C1—C13120.36 (18)N10—C14—C4117.45 (14)
O1—C1—C2121.10 (17)C3—C15—H15A109.5
C13—C1—C2118.48 (16)C3—C15—H15B109.5
C1—C2—C3113.51 (16)H15A—C15—H15B109.5
C1—C2—H2A108.9C3—C15—H15C109.5
C3—C2—H2A108.9H15A—C15—H15C109.5
C1—C2—H2B108.9H15B—C15—H15C109.5
C3—C2—H2B108.9C3—C16—H16A109.5
H2A—C2—H2B107.7C3—C16—H16B109.5
C2—C3—C16109.85 (18)H16A—C16—H16B109.5
C2—C3—C15109.63 (17)C3—C16—H16C109.5
C16—C3—C15109.45 (17)H16A—C16—H16C109.5
C2—C3—C4107.98 (15)H16B—C16—H16C109.5
C16—C3—C4108.82 (16)C6—C17—H17A109.5
C15—C3—C4111.09 (17)C6—C17—H17B109.5
C14—C4—C3113.38 (15)H17A—C17—H17B109.5
C14—C4—H4A108.9C6—C17—H17C109.5
C3—C4—H4A108.9H17A—C17—H17C109.5
C14—C4—H4B108.9H17B—C17—H17C109.5
C3—C4—H4B108.9C6—C18—H18A109.5
H4A—C4—H4B107.7C6—C18—H18B109.5
C11—C5—C6113.45 (15)H18A—C18—H18B109.5
C11—C5—H5A108.9C6—C18—H18C109.5
C6—C5—H5A108.9H18A—C18—H18C109.5
C11—C5—H5B108.9H18B—C18—H18C109.5
C6—C5—H5B108.9C24—C19—C20120.62 (17)
H5A—C5—H5B107.7C24—C19—N10120.53 (16)
C7—C6—C17109.57 (17)C20—C19—N10118.84 (16)
C7—C6—C18110.77 (19)C21—C20—C19119.7 (2)
C17—C6—C18108.70 (18)C21—C20—H20120.1
C7—C6—C5108.55 (15)C19—C20—H20120.1
C17—C6—C5110.75 (17)C22—C21—C20118.4 (2)
C18—C6—C5108.49 (17)C22—C21—H21120.8
C8—C7—C6112.80 (16)C20—C21—H21120.8
C8—C7—H7A109.0C23—C22—F1118.8 (2)
C6—C7—H7A109.0C23—C22—C21123.2 (2)
C8—C7—H7B109.0F1—C22—C21118.1 (2)
C6—C7—H7B109.0C22—C23—C24118.61 (19)
H7A—C7—H7B107.8C22—C23—H23120.7
O2—C8—C12120.33 (18)C24—C23—H23120.7
O2—C8—C7121.29 (18)C19—C24—C23119.44 (18)
C12—C8—C7118.34 (17)C19—C24—H24120.3
C13—C9—C12109.51 (14)C23—C24—H24120.3
C13—C9—C25111.65 (16)C26—C25—C9115.32 (17)
C12—C9—C25112.68 (16)C26—C25—H25A108.4
C13—C9—H9107.6C9—C25—H25A108.4
C12—C9—H9107.6C26—C25—H25B108.4
C25—C9—H9107.6C9—C25—H25B108.4
C14—N10—C11119.65 (14)H25A—C25—H25B107.5
C14—N10—C19120.07 (14)C25—C26—C27113.5 (2)
C11—N10—C19119.14 (14)C25—C26—H26A108.9
C12—C11—N10119.94 (16)C27—C26—H26A108.9
C12—C11—C5122.63 (17)C25—C26—H26B108.9
N10—C11—C5117.41 (15)C27—C26—H26B108.9
C11—C12—C8120.14 (16)H26A—C26—H26B107.7
C11—C12—C9121.70 (16)C26—C27—H27A109.5
C8—C12—C9118.09 (15)C26—C27—H27B109.5
C14—C13—C1119.95 (17)H27A—C27—H27B109.5
C14—C13—C9121.65 (16)C26—C27—H27C109.5
C1—C13—C9118.35 (15)H27A—C27—H27C109.5
C13—C14—N10120.16 (16)H27B—C27—H27C109.5
C13—C14—C4122.39 (16)
O1—C1—C2—C3153.64 (19)C2—C1—C13—C144.8 (3)
C13—C1—C2—C329.0 (3)O1—C1—C13—C95.0 (3)
C1—C2—C3—C16172.76 (17)C2—C1—C13—C9177.60 (17)
C1—C2—C3—C1566.9 (2)C12—C9—C13—C1426.8 (2)
C1—C2—C3—C454.2 (2)C25—C9—C13—C1498.7 (2)
C2—C3—C4—C1448.9 (2)C12—C9—C13—C1150.80 (16)
C16—C3—C4—C14168.09 (17)C25—C9—C13—C183.7 (2)
C15—C3—C4—C1471.4 (2)C1—C13—C14—N10169.03 (16)
C11—C5—C6—C747.3 (2)C9—C13—C14—N108.5 (3)
C11—C5—C6—C1773.1 (2)C1—C13—C14—C410.2 (3)
C11—C5—C6—C18167.72 (18)C9—C13—C14—C4172.34 (17)
C17—C6—C7—C865.9 (2)C11—N10—C14—C1313.8 (3)
C18—C6—C7—C8174.17 (17)C19—N10—C14—C13178.52 (16)
C5—C6—C7—C855.2 (2)C11—N10—C14—C4165.39 (15)
C6—C7—C8—O2149.49 (19)C19—N10—C14—C42.3 (2)
C6—C7—C8—C1232.7 (2)C3—C4—C14—C1318.3 (3)
C14—N10—C11—C1214.5 (3)C3—C4—C14—N10162.53 (16)
C19—N10—C11—C12177.74 (16)C14—N10—C19—C2481.4 (2)
C14—N10—C11—C5164.06 (16)C11—N10—C19—C2486.3 (2)
C19—N10—C11—C53.7 (2)C14—N10—C19—C2098.7 (2)
C6—C5—C11—C1216.6 (3)C11—N10—C19—C2093.6 (2)
C6—C5—C11—N10164.88 (15)C24—C19—C20—C210.2 (4)
N10—C11—C12—C8169.75 (16)N10—C19—C20—C21179.7 (2)
C5—C11—C12—C88.7 (3)C19—C20—C21—C220.1 (5)
N10—C11—C12—C97.1 (3)C20—C21—C22—C230.2 (5)
C5—C11—C12—C9174.39 (16)C20—C21—C22—F1179.9 (3)
O2—C8—C12—C11177.26 (18)F1—C22—C23—C24180.0 (2)
C7—C8—C12—C110.6 (3)C21—C22—C23—C240.1 (4)
O2—C8—C12—C90.3 (3)C20—C19—C24—C230.3 (3)
C7—C8—C12—C9177.53 (16)N10—C19—C24—C23179.62 (17)
C13—C9—C12—C1126.0 (2)C22—C23—C24—C190.2 (3)
C25—C9—C12—C1198.9 (2)C13—C9—C25—C2662.7 (2)
C13—C9—C12—C8150.88 (16)C12—C9—C25—C2661.1 (2)
C25—C9—C12—C884.2 (2)C9—C25—C26—C27175.0 (2)
O1—C1—C13—C14172.58 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O10.982.462.802 (2)100
C9—H9···O20.982.472.798 (4)99
C5—H5A···O2i0.972.533.494 (2)171
C24—H24···O1ii0.932.563.423 (3)155
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC24H28FNO2C26H32FNO2
Mr381.47409.53
Crystal system, space groupMonoclinic, P21/cMonoclinic, C2/c
Temperature (K)293293
a, b, c (Å)17.1481 (2), 17.3909 (1), 15.8023 (3)27.454 (1), 12.2738 (10), 16.2792 (10)
β (°) 112.849 (1) 123.118 (10)
V3)4342.79 (10)4594.4 (5)
Z88
Radiation typeMo KαCu Kα
µ (mm1)0.080.63
Crystal size (mm)0.48 × 0.38 × 0.280.20 × 0.18 × 0.16
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Enraf-Nonius CAD-4
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.963, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
29750, 10547, 4439 4454, 4374, 3087
Rint0.0750.053
(sin θ/λ)max1)0.6670.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.188, 1.02 0.051, 0.196, 1.10
No. of reflections105474374
No. of parameters505272
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.72, 0.270.17, 0.17

Computer programs: SMART (Siemens, 1996), CAD-4 Software (Enraf-Nonius, 1989), SAINT (Siemens, 1996), CAD-4 Software, SAINT, SDP (Frenz, 1985), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ZORTEP (Zsolnai, 1997), SHELXL97 and PARST (Nardelli, 1983b, 1995).

Selected geometric parameters (Å, º) for (I) top
F1A—C22A1.359 (3)F1B—C22B1.353 (2)
O1A—C1A1.216 (3)O1B—C1B1.227 (3)
O2A—C8A1.232 (3)O2B—C8B1.239 (2)
N10A—C11A1.401 (3)N10B—C11B1.399 (3)
N10A—C14A1.401 (3)N10B—C14B1.402 (2)
N10A—C19A1.449 (3)N10B—C19B1.453 (2)
C11A—N10A—C14A118.98 (18)C11B—N10B—C14B120.13 (16)
C11A—N10A—C19A120.14 (17)C11B—N10B—C19B119.04 (17)
C14A—N10A—C19A120.64 (17)C14B—N10B—C19B119.81 (17)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C9A—H9A···O1A0.982.512.850 (4)100
C9A—H9A···O2A0.982.522.856 (5)100
C9B—H9B···O1B0.982.512.828 (4)98
C9B—H9B···O2B0.982.532.819 (3)97
C24A—H24A···O2Ai0.932.503.247 (3)138
Symmetry code: (i) x, y+1/2, z+1/2.
Selected geometric parameters (Å, º) for (II) top
F1—C221.355 (2)N10—C141.398 (2)
O1—C11.227 (2)N10—C111.402 (2)
O2—C81.230 (2)N10—C191.446 (2)
C14—N10—C11119.65 (14)C11—N10—C19119.14 (14)
C14—N10—C19120.07 (14)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O10.982.462.802 (2)100
C9—H9···O20.982.472.798 (4)99
C5—H5A···O2i0.972.533.494 (2)171
C24—H24···O1ii0.932.563.423 (3)155
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1.
Puckering (Å) and asymmetry parameters (Å) of the ring systems in (I) and (II) top
Ring and moleculeTotal puckering amplitudeAsymmetry parametersConformation
A (Ia)0.395 (4)ΔCs(C3A) = 0.072 (2)Half-chair/sofa
ΔC2(C3A-C2A) = 0.039 (1)
A (Ib)0.482 (3)ΔCs(C3B) = 0.022 (1)Half-chair/Sofa
ΔC2(C3B-C2B) = 0.099 (1)
A (II)0.485 (2)ΔCs(C3) = 0.039 (1)Half-chair/Sofa
ΔC2(C3-C2) = 0.089 (1)
B (Ia)0.370 (3)ΔCs(N10A) = 0.005 (1)Sofa
B (Ib)0.255 (3)ΔCs(N10B) = 0.007 (1)Sofa
B (II)0.281 (2)ΔCs(N10) = 0.005 (1)Sofa
C (Ia)0.488 (2)ΔCs(C6A) = 0.049 (1)Half-chair/Sofa
ΔC2(C7A-C6A) = 0.076 (1)
C (Ib)0.469 (3)ΔCs(C6B) = 0.042 (2)Half-chair/Sofa
ΔC2(C7B-C6B) = 0.077 (1)
C (II)0.477 (2)ΔCs(C6) = 0.062 (1)Half-chair/Sofa
ΔC2(C7-C6) = 0.067 (1)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds