Download citation
Download citation
link to html
The title centrosymmetric cluster octakis(4-iso­propyl­pyridine-N)-di-μ4-oxo-hexa-μ3-oxo-octa-μ2-oxo-deca­oxo­octa­molyb­denum(V)­dimolybdenum(VI), [Mo10O26(C8H11N)8], consists of ten Mo atoms connected together by bridging oxo groups. Pentavalent Mo atoms are linked into four Mo2V pairs by metal–metal single bonds with lengths of 2.5637 (6) and 2.6132 (6) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100017303/na1493sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100017303/na1493Isup2.hkl
Contains datablock I

CCDC reference: 162544

Comment top

The recent past has witnessed a growing interest in the coordination chemistry of polyoxomolybdates (Khan & Zubieta, 1995). A well known moiety in molybdenum(V) chemistry, the Mo2O42+ unit, in which the metal centres participate in a metal-metal bond with an average length of 2.5–2.6 Å, serves as the main building block in the formation of larger aggregates (Chae et al., 1993). Linkage of two, three, four or six units through oxygen donor ligands has resulted, for example, in the tetranuclear complex [Mo4O6(OC2H5)4Cl4(PMe3)2] (Limberg et al., 1997), the hexanuclear moiety [Mo6P4O24(OH)7]5-, which has been identified as the basic structural unit of the molybdenum phosphate (Et4N)6[Na14Mo24P17O97(OH)31].xH2O (Haushalter & Lai, 1989), the cyclic octanuclear [Mo82-O)8O82-OCH3)8] framework found in [(n-C4H9)4N]2[Mo8O16(OCH3)8(C2O4)] (Chen et al., 1988) or in [Mo8O16(OCH3)8py4] (py is pyridine, C5H5N; Modec, Brenčič, Rotar et al., 1998), and the dodecanuclear complex [Mo12O28(OCH3)2Cl2(3-MePy)8] (3-MePy is 3-methylpyridine, C6H7N; Modec et al., 2000), respectively. In this paper, we present the structure of the title complex, (I), which was obtained by the solvothermal reaction of (PyH)2[MoOCl5] with 4-isopropylpyridine in methanol. It belongs to a class of polynuclear oxomolybdenum(V,VI) compounds whose representatives are, for example, (NBu4)4[Mo10O28(SCH2CH2O)2(HOCH3)2]·2CH3OH (Liu et al., 1988), which consists of two Mo2V pairs and six MoVI sites, [Mo8(pz)6O18(pzH)6].2pzH (pzH is pyrazole, C3H4N2, and pz- is pyrazolate, C3H3N2-; Ehlert et al., 1993), which contains three Mo2V pairs and two MoVI sites, and [Mo5O11(OCH3)4py4]·CH3OH (Modec, Brenčič & Leban, 1998), which consists of two Mo2V pairs and one MoVI site. \sch

The structure of (I), illustrated in Fig. 1, is seen to consist of discrete centrosymmetric [Mo104-O)23-O)62-O)8O10(C8H11N)8] moieties. Among the ten Mo atoms, eight are grouped into four Mo2V pairs with short Mo—Mo distances [Mo1—Mo2 2.6132 (6) and Mo4—Mo5 2.5637 (6) Å] and two (Mo3 and its symmetry equivalent) are MoVI centres. The 26 O atoms are of four distinct types, with ten coordinated as terminal ligands at distances of 1.683 (3)–1.694 (3) Å. Eight doubly bridging O atoms are found at distances of 1.814 (3)–2.067 (3) Å, six adopt a triply bridging mode, with O—Mo distances spanning the range 1.964 (3)–2.261 (3) Å, and two (O7 and its symmetry equivalent) are µ4 ligands coordinated to Mo atoms, with unsymmetrical distances ranging from 1.988 (2) to 2.641 (3) Å.

A list of selected bond lengths and angles is given in Table 1. The hexavalent Mo atoms differ from their pentavalent counterparts by the coordination environment, [MoO6] geometry being achieved through ligation to one terminal, two doubly bridging, two triply bridging and one quadruply bridging O atom. Owing to the pronounced trans influence of the multiply bonded terminal oxygen, O3, the coordination geometry around Mo3 approaches the square-pyramidal limit, with a weakly interacting sixth ligand, O7. The MoV centres display an [MoO5N] pseudooctahedral geometry through coordination to oxo ligands and 4-isopropylpyridine, with two - an oxo group and the 4-isopropylpyridine - serving as terminal ligands. Nitrogen donor ligands are coordinated to Mo atoms at an average distance of 2.230 (3) Å. Fig. 2 shows how the polyhedra are assembled.

The same structure was determined previously for [Mo10O26L8] (L is 3-methylpyridine or 3,5-lutidine; Modec et al., 2000). The geometric parameters for all three compounds are nearly identical.

Related literature top

For related literature, see: Chae et al. (1993); Chen et al. (1988); Ehlert et al. (1993); Haushalter & Lai (1989); Khan & Zubieta (1995); Limberg et al. (1997); Liu et al. (1988); Modec et al. (2000); Modec, Brenčič & Leban (1998); Modec, Brenčič, Rotar, Golič & Prout (1998).

Experimental top

A solution of (PyH)2[MoOCl5] (428 mg, 0.95 mmol) in methanol (5 ml) and 4-isopropylpyridine (5 ml) was heated in a sealed glass tube in an autoclave at 403 K for 76 h. Red crystals were obtained in low yield. Analysis calculated (found): C 32.78 (32.49), H 3.78 (3.20), N 4.78 (4.90)%. IR data (nujol, cm-1): 1618 (versus), 1314 (m), 1250 (w), 1228 (m), 1212 (w), 1070 (m), 1058 (m), 1031 (s), 978 (versus), 958 (versus), 939 (s), 893 (w), 867 (w), 831 (m), 796 (w), 760 (s), 741 (s), 702 (versus), 669 (m), 651 (w), 618 (m), 582 (w), 544 (w), 517 (s), 419 (w), 400 (w), 362 (w), 349 (w), 335 (w), 311 (m), 266 (w).

Refinement top

Although the data were collected at 150 K, the C atoms of one aromatic ring, i.e. C11, C12, C13, C14 and C15, exhibited large values of their atomic displacement parameters. For some of the propyl C atoms, C16, C18 and C28 from another 4-isopropylpyridine ligand, disorder over two positions was suggested. Refinement with the aforementioned C atoms partially occupying two positions was not successful. The parameters of the disordered atoms are therefore subject to some systematic error. Consequently, a final difference Fourier map showed five relatively large electron-density peaks of 1.60, 1.58, 1.55, 1.32 and 1.23 e Å-3 at distances of 0.78, 0.46, 2.63, 0.36 and 0.86 Å from atoms H16, H56, H12, C16 and C28, respectively. H atoms were placed in calculated positions and were not refined.

Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997); cell refinement: DENZO; data reduction: DENZO; program(s) used to solve structure: SHELXS93 (Sheldrick, 1993); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: ORTEPIII (Burnett & Johnson, 1996).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. ATOMS (Dowty, 1993) representation of (I), showing the assembly of the polyhedra.
octakis(4-isopropylpyridine-N)-di-µ4-oxo-hexa-µ3-oxo-octa-µ2-oxo- decaoxooctamolybdenum(V)dimolybdenum(VI) top
Crystal data top
[Mo10O26(C8H11N)8]F(000) = 2312
Mr = 2344.82Dx = 1.926 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.794 (2) ÅCell parameters from 21096 reflections
b = 20.179 (4) Åθ = 2.1–29.6°
c = 17.843 (4) ŵ = 1.57 mm1
β = 107.78 (3)°T = 150 K
V = 4043.6 (14) Å3Block, red
Z = 20.11 × 0.11 × 0.11 mm
Data collection top
Nonius KappaCCD
diffractometer
9113 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 29.6°, θmin = 2.1°
ω scansh = 1616
21096 measured reflectionsk = 2828
11238 independent reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters not refined
S = 1.07Calculated w = 1/[σ2(Fo2) + (0.0282P)2 + 11.8693P]
where P = (Fo2 + 2Fc2)/3
11238 reflections(Δ/σ)max < 0.001
495 parametersΔρmax = 1.60 e Å3
0 restraintsΔρmin = 1.05 e Å3
Crystal data top
[Mo10O26(C8H11N)8]V = 4043.6 (14) Å3
Mr = 2344.82Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.794 (2) ŵ = 1.57 mm1
b = 20.179 (4) ÅT = 150 K
c = 17.843 (4) Å0.11 × 0.11 × 0.11 mm
β = 107.78 (3)°
Data collection top
Nonius KappaCCD
diffractometer
9113 reflections with I > 2σ(I)
21096 measured reflectionsRint = 0.030
11238 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.092H-atom parameters not refined
S = 1.07Δρmax = 1.60 e Å3
11238 reflectionsΔρmin = 1.05 e Å3
495 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 0 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating _R_factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.21520 (3)0.017636 (15)0.56135 (2)0.02110 (7)
Mo20.17724 (3)0.118866 (15)0.64185 (2)0.02119 (7)
Mo30.09055 (3)0.124177 (15)0.57777 (2)0.02172 (7)
Mo40.02931 (3)0.024460 (15)0.65442 (2)0.02126 (7)
Mo50.00831 (3)0.131414 (15)0.58817 (2)0.02206 (7)
O10.3330 (2)0.04686 (14)0.5365 (2)0.0290 (6)
O20.2826 (2)0.17490 (13)0.6401 (2)0.0283 (6)
O30.2056 (2)0.15137 (14)0.6076 (2)0.0305 (6)
O40.0432 (2)0.04328 (13)0.7495 (2)0.0283 (6)
O50.0838 (3)0.17666 (13)0.6668 (2)0.0295 (6)
O60.2586 (2)0.03601 (12)0.67381 (15)0.0246 (5)
O70.0944 (2)0.09015 (12)0.53219 (14)0.0217 (5)
O80.1359 (2)0.03081 (12)0.45453 (14)0.0216 (5)
O90.0856 (2)0.04401 (12)0.59760 (14)0.0215 (5)
O100.0336 (2)0.18227 (12)0.62305 (15)0.0256 (6)
O110.0219 (2)0.07023 (12)0.66257 (14)0.0213 (5)
O120.1181 (2)0.15454 (12)0.47812 (15)0.0236 (5)
O130.1319 (2)0.09842 (12)0.61167 (15)0.0247 (5)
N10.3270 (3)0.0723 (2)0.6064 (2)0.0322 (8)
C110.3999 (4)0.0969 (2)0.5687 (3)0.0471 (13)
H110.3938 (4)0.0820 (2)0.5183 (3)0.057*
C120.4858 (4)0.1451 (3)0.6045 (5)0.069 (2)
H120.5356 (4)0.1615 (3)0.5773 (5)0.083*
C130.4975 (5)0.1687 (3)0.6799 (5)0.068 (2)
C140.4188 (5)0.1447 (2)0.7139 (4)0.061 (2)
H140.4200 (5)0.1606 (2)0.7631 (4)0.073*
C150.3362 (4)0.0971 (2)0.6776 (3)0.0402 (11)
H150.2845 (4)0.0815 (2)0.7039 (3)0.048*
C160.5956 (6)0.2170 (3)0.7201 (7)0.142 (5)
H160.5894 (6)0.2164 (3)0.7736 (7)0.170*
C170.7168 (5)0.1849 (3)0.7342 (3)0.0573 (15)
H17A0.7232 (14)0.1470 (12)0.768 (2)0.086*
H17B0.7258 (15)0.1711 (19)0.6849 (4)0.086*
H17C0.7781 (5)0.2162 (7)0.759 (2)0.086*
C180.5774 (6)0.2799 (3)0.7033 (6)0.106 (3)
H18A0.638 (4)0.3057 (4)0.740 (2)0.158*
H18B0.580 (6)0.2879 (7)0.6508 (15)0.158*
H18C0.501 (3)0.2925 (8)0.707 (4)0.158*
N20.2156 (3)0.1359 (2)0.7696 (2)0.0243 (6)
C210.2061 (4)0.0863 (2)0.8171 (2)0.0302 (9)
H210.18670.04430.79570.036*
C220.2239 (4)0.0950 (2)0.8965 (2)0.0346 (9)
H220.21690.05920.92750.041*
C230.2523 (4)0.1573 (2)0.9303 (2)0.0313 (9)
C240.2607 (4)0.2083 (2)0.8802 (2)0.0303 (9)
H240.27870.25100.90000.036*
C250.2428 (3)0.1965 (2)0.8013 (2)0.0262 (8)
H250.24980.23150.76910.031*
C260.2718 (5)0.1699 (3)1.0170 (3)0.0459 (12)
H260.33920.20051.03430.055*
C270.1660 (5)0.2059 (4)1.0268 (3)0.067 (2)
H27A0.0972 (10)0.1777 (9)1.010 (3)0.101*
H27B0.152 (3)0.2453 (12)0.995 (2)0.101*
H27C0.1811 (17)0.218 (2)1.0811 (6)0.101*
C280.3062 (12)0.1097 (4)1.0664 (4)0.148 (5)
H28A0.364 (6)0.085 (3)1.050 (4)0.222*
H28B0.2371 (18)0.083 (2)1.061 (4)0.222*
H28C0.340 (8)0.1224 (4)1.1205 (8)0.222*
N40.1804 (3)0.0102 (2)0.6960 (2)0.0257 (7)
C410.1566 (4)0.0404 (2)0.7654 (2)0.0312 (9)
H410.07770.04480.79630.037*
C420.2451 (4)0.0657 (2)0.7934 (3)0.0360 (10)
H420.22490.08540.84290.043*
C430.3631 (4)0.0618 (2)0.7485 (2)0.0318 (9)
C440.3866 (4)0.0294 (2)0.6767 (3)0.0344 (9)
H440.46490.02470.64480.041*
C450.2952 (4)0.0041 (2)0.6524 (2)0.0311 (9)
H450.31330.01780.60430.037*
C460.4613 (4)0.0923 (2)0.7754 (3)0.0423 (11)
H460.53640.08610.73330.051*
C470.4418 (5)0.1664 (3)0.7888 (4)0.067 (2)
H47A0.369 (2)0.1739 (3)0.8299 (18)0.101*
H47B0.507 (2)0.1850 (5)0.804 (3)0.101*
H47C0.438 (4)0.1870 (4)0.7411 (8)0.101*
C480.4719 (6)0.0576 (4)0.8475 (4)0.077 (2)
H48A0.533 (3)0.0784 (17)0.8645 (18)0.115*
H48B0.3974 (15)0.060 (2)0.8887 (10)0.115*
H48C0.492 (5)0.0119 (7)0.8353 (9)0.115*
N50.1102 (3)0.2161 (2)0.5354 (2)0.0255 (7)
C510.2250 (4)0.2169 (2)0.5326 (2)0.0319 (9)
H510.25330.18300.55740.038*
C520.3032 (4)0.2657 (2)0.4945 (3)0.0357 (10)
H520.38190.26490.49500.043*
C530.2639 (4)0.3162 (2)0.4554 (2)0.0335 (9)
C540.1450 (4)0.3161 (2)0.4602 (3)0.0365 (10)
H540.11420.34980.43670.044*
C550.0717 (4)0.2658 (2)0.5000 (2)0.0328 (9)
H550.00820.26660.50240.039*
C560.3507 (4)0.3676 (2)0.4071 (3)0.0426 (11)
H560.31000.39250.37570.051*
C570.3868 (5)0.4161 (3)0.4604 (4)0.060 (2)
H57A0.444 (3)0.4466 (13)0.4291 (4)0.090*
H57B0.421 (3)0.3923 (3)0.4949 (17)0.090*
H57C0.3179 (8)0.4400 (15)0.4911 (18)0.090*
C580.4593 (5)0.3329 (3)0.3501 (3)0.0492 (12)
H58A0.5092 (18)0.3652 (3)0.3161 (15)0.074*
H58B0.4327 (5)0.3012 (13)0.3189 (16)0.074*
H58C0.5036 (19)0.3105 (16)0.3796 (3)0.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01987 (14)0.01959 (14)0.0205 (2)0.00070 (11)0.00123 (12)0.00346 (12)
Mo20.02293 (15)0.01794 (14)0.0196 (2)0.00133 (12)0.00185 (12)0.00286 (12)
Mo30.02350 (15)0.01799 (14)0.0211 (2)0.00219 (12)0.00307 (12)0.00226 (12)
Mo40.0244 (2)0.01790 (14)0.0197 (2)0.00129 (12)0.00404 (12)0.00212 (12)
Mo50.0267 (2)0.01634 (14)0.0207 (2)0.00026 (12)0.00363 (12)0.00063 (12)
O10.0237 (13)0.0330 (15)0.0281 (14)0.0019 (11)0.0048 (11)0.0070 (12)
O20.0295 (14)0.0256 (14)0.0270 (14)0.0060 (11)0.0044 (11)0.0022 (11)
O30.0288 (14)0.0288 (14)0.0322 (15)0.0058 (12)0.0069 (12)0.0047 (12)
O40.036 (2)0.0242 (13)0.0226 (13)0.0023 (11)0.0054 (12)0.0009 (11)
O50.038 (2)0.0222 (13)0.0253 (14)0.0036 (12)0.0060 (12)0.0012 (11)
O60.0249 (13)0.0217 (12)0.0226 (13)0.0010 (10)0.0004 (11)0.0019 (10)
O70.0235 (13)0.0195 (12)0.0203 (12)0.0015 (10)0.0041 (10)0.0022 (10)
O80.0225 (12)0.0195 (12)0.0207 (12)0.0003 (10)0.0031 (10)0.0026 (10)
O90.0226 (12)0.0176 (11)0.0215 (13)0.0012 (10)0.0028 (10)0.0017 (10)
O100.0319 (14)0.0183 (12)0.0235 (13)0.0006 (11)0.0039 (11)0.0019 (10)
O110.0224 (12)0.0180 (12)0.0210 (13)0.0010 (10)0.0027 (10)0.0023 (10)
O120.0236 (13)0.0199 (12)0.0243 (13)0.0040 (10)0.0030 (10)0.0012 (10)
O130.0288 (14)0.0200 (12)0.0246 (13)0.0048 (11)0.0072 (11)0.0033 (10)
N10.025 (2)0.026 (2)0.036 (2)0.0047 (13)0.0048 (14)0.0110 (15)
C110.030 (2)0.043 (3)0.059 (3)0.006 (2)0.000 (2)0.023 (2)
C120.026 (2)0.047 (3)0.120 (6)0.008 (2)0.003 (3)0.046 (4)
C130.036 (3)0.033 (3)0.103 (5)0.006 (2)0.025 (3)0.002 (3)
C140.041 (3)0.028 (2)0.086 (4)0.001 (2)0.021 (3)0.008 (3)
C150.036 (2)0.024 (2)0.046 (3)0.001 (2)0.009 (2)0.003 (2)
C160.037 (3)0.036 (3)0.290 (13)0.015 (3)0.044 (5)0.004 (5)
C170.038 (3)0.074 (4)0.049 (3)0.019 (3)0.003 (2)0.000 (3)
C180.051 (4)0.067 (5)0.187 (9)0.027 (3)0.019 (5)0.067 (5)
N20.0223 (15)0.025 (2)0.023 (2)0.0045 (12)0.0026 (13)0.0039 (13)
C210.038 (2)0.021 (2)0.027 (2)0.004 (2)0.004 (2)0.001 (2)
C220.040 (2)0.035 (2)0.028 (2)0.005 (2)0.009 (2)0.005 (2)
C230.032 (2)0.037 (2)0.024 (2)0.002 (2)0.008 (2)0.006 (2)
C240.032 (2)0.028 (2)0.031 (2)0.005 (2)0.010 (2)0.011 (2)
C250.025 (2)0.022 (2)0.030 (2)0.0048 (15)0.007 (2)0.004 (2)
C260.060 (3)0.052 (3)0.027 (2)0.003 (2)0.016 (2)0.004 (2)
C270.059 (4)0.095 (5)0.051 (3)0.004 (3)0.023 (3)0.023 (3)
C280.312 (15)0.100 (6)0.029 (3)0.084 (8)0.046 (6)0.015 (4)
N40.028 (2)0.022 (2)0.026 (2)0.0020 (13)0.0064 (13)0.0026 (13)
C410.024 (2)0.036 (2)0.030 (2)0.000 (2)0.003 (2)0.010 (2)
C420.030 (2)0.046 (3)0.029 (2)0.000 (2)0.004 (2)0.016 (2)
C430.030 (2)0.031 (2)0.035 (2)0.002 (2)0.013 (2)0.004 (2)
C440.025 (2)0.040 (2)0.033 (2)0.007 (2)0.001 (2)0.010 (2)
C450.028 (2)0.034 (2)0.029 (2)0.005 (2)0.006 (2)0.011 (2)
C460.029 (2)0.050 (3)0.047 (3)0.001 (2)0.011 (2)0.012 (2)
C470.046 (3)0.057 (4)0.098 (5)0.008 (3)0.020 (3)0.031 (3)
C480.055 (4)0.118 (6)0.067 (4)0.020 (4)0.035 (3)0.016 (4)
N50.033 (2)0.0193 (15)0.024 (2)0.0007 (13)0.0078 (14)0.0008 (12)
C510.044 (2)0.024 (2)0.032 (2)0.006 (2)0.018 (2)0.004 (2)
C520.039 (2)0.031 (2)0.040 (2)0.008 (2)0.016 (2)0.009 (2)
C530.041 (2)0.024 (2)0.033 (2)0.006 (2)0.009 (2)0.005 (2)
C540.043 (2)0.022 (2)0.042 (3)0.004 (2)0.009 (2)0.009 (2)
C550.035 (2)0.023 (2)0.038 (2)0.003 (2)0.008 (2)0.001 (2)
C560.041 (2)0.033 (2)0.049 (3)0.005 (2)0.005 (2)0.017 (2)
C570.055 (3)0.033 (3)0.082 (4)0.014 (2)0.004 (3)0.004 (3)
C580.051 (3)0.050 (3)0.042 (3)0.000 (2)0.008 (2)0.017 (2)
Geometric parameters (Å, º) top
Mo1—O11.689 (3)N1—C151.338 (6)
Mo1—O61.949 (3)N1—C111.338 (6)
Mo1—O71.997 (2)C11—C121.409 (7)
Mo1—O82.091 (2)C12—C131.393 (10)
Mo1—O92.215 (3)C13—C141.344 (9)
Mo1—N12.243 (3)C13—C161.516 (7)
Mo1—Mo22.6132 (6)C14—C151.381 (6)
Mo2—O21.687 (3)C16—C181.307 (10)
Mo2—O61.926 (3)C16—C171.520 (9)
Mo2—O71.988 (2)N2—C211.338 (5)
Mo2—O102.067 (3)N2—C251.345 (5)
Mo2—O112.207 (3)C21—C221.378 (6)
Mo2—N22.210 (3)C22—C231.390 (6)
Mo2—Mo33.0147 (9)C23—C241.386 (6)
Mo3—O31.693 (3)C23—C261.516 (6)
Mo3—O121.814 (3)C24—C251.379 (5)
Mo3—O101.857 (3)C26—C281.482 (9)
Mo3—O8i1.995 (2)C26—C271.499 (8)
Mo3—O112.002 (2)N4—C411.332 (5)
Mo3—O72.641 (3)N4—C451.344 (5)
Mo4—O41.694 (3)C41—C421.384 (6)
Mo4—O131.926 (3)C42—C431.380 (6)
Mo4—O91.964 (3)C43—C441.388 (6)
Mo4—O111.996 (2)C43—C461.513 (6)
Mo4—N42.241 (3)C44—C451.378 (6)
Mo4—O8i2.261 (3)C46—C481.503 (8)
Mo4—Mo52.5637 (6)C46—C471.520 (7)
Mo5—O51.683 (3)N5—C551.337 (5)
Mo5—O131.944 (3)N5—C511.340 (5)
Mo5—O91.969 (2)N5—Mo52.226 (3)
Mo5—O12i2.056 (3)C51—C521.378 (6)
Mo5—N52.226 (3)C52—C531.392 (6)
Mo5—O7i2.277 (3)C53—C541.379 (6)
O7—Mo5i2.277 (3)C53—C561.525 (6)
O8—Mo3i1.995 (2)C54—C551.381 (6)
O8—Mo4i2.261 (3)C56—C571.512 (8)
O12—Mo5i2.056 (3)C56—C581.540 (7)
O1—Mo1—O6103.00 (12)O13—Mo5—O994.40 (10)
O1—Mo1—O7104.74 (12)O5—Mo5—O12i95.20 (12)
O6—Mo1—O794.09 (10)O13—Mo5—O12i158.20 (10)
O1—Mo1—O895.66 (11)O9—Mo5—O12i84.05 (10)
O6—Mo1—O8158.60 (10)O5—Mo5—N592.32 (13)
O7—Mo1—O891.17 (10)O13—Mo5—N583.59 (11)
O1—Mo1—O9165.79 (12)O9—Mo5—N5159.74 (11)
O6—Mo1—O978.12 (10)O12i—Mo5—N590.38 (11)
O7—Mo1—O989.24 (10)O5—Mo5—O7i168.09 (11)
O8—Mo1—O981.22 (10)O13—Mo5—O7i80.53 (10)
O1—Mo1—N186.32 (14)O9—Mo5—O7i81.50 (10)
O6—Mo1—N181.03 (12)O12i—Mo5—O7i77.73 (9)
O7—Mo1—N1168.72 (12)N5—Mo5—O7i78.28 (10)
O8—Mo1—N189.91 (11)O5—Mo5—Mo4101.21 (9)
O9—Mo1—N179.83 (11)O13—Mo5—Mo448.21 (7)
O1—Mo1—Mo299.44 (9)O9—Mo5—Mo449.24 (7)
O6—Mo1—Mo247.21 (7)O12i—Mo5—Mo4133.18 (7)
O7—Mo1—Mo248.87 (7)N5—Mo5—Mo4131.79 (9)
O8—Mo1—Mo2139.68 (7)O7i—Mo5—Mo490.56 (6)
O9—Mo1—Mo291.67 (7)Mo2—O6—Mo184.82 (10)
N1—Mo1—Mo2128.04 (9)Mo2—O7—Mo181.96 (9)
O2—Mo2—O6106.50 (12)Mo2—O7—Mo5i141.43 (13)
O2—Mo2—O7108.68 (12)Mo1—O7—Mo5i130.21 (12)
O6—Mo2—O795.11 (10)Mo3i—O8—Mo1135.28 (13)
O2—Mo2—O1098.84 (12)Mo3i—O8—Mo4i100.82 (10)
O6—Mo2—O10153.56 (11)Mo1—O8—Mo4i121.97 (11)
O7—Mo2—O1083.61 (10)Mo4—O9—Mo581.37 (10)
O2—Mo2—O11162.70 (11)Mo4—O9—Mo1133.18 (12)
O6—Mo2—O1185.91 (10)Mo5—O9—Mo1145.17 (13)
O7—Mo2—O1181.48 (10)Mo3—O10—Mo2100.26 (11)
O10—Mo2—O1167.75 (10)Mo4—O11—Mo3110.48 (11)
O2—Mo2—N289.71 (12)Mo4—O11—Mo2131.42 (12)
O6—Mo2—N284.44 (11)Mo3—O11—Mo291.36 (10)
O7—Mo2—N2160.82 (11)Mo3—O12—Mo5i122.12 (13)
O10—Mo2—N288.32 (11)Mo4—O13—Mo582.98 (10)
O11—Mo2—N279.36 (10)C15—N1—C11117.4 (4)
O2—Mo2—Mo1105.25 (10)C15—N1—Mo1120.7 (3)
O6—Mo2—Mo147.97 (8)C11—N1—Mo1121.2 (3)
O7—Mo2—Mo149.17 (7)N1—C11—C12120.8 (6)
O10—Mo2—Mo1131.62 (7)C13—C12—C11121.3 (6)
O11—Mo2—Mo191.99 (7)C14—C13—C12115.8 (5)
N2—Mo2—Mo1132.27 (8)C14—C13—C16123.4 (8)
O2—Mo2—Mo3131.39 (9)C12—C13—C16120.8 (8)
O6—Mo2—Mo3120.87 (8)C13—C14—C15121.5 (6)
O7—Mo2—Mo359.61 (8)N1—C15—C14123.2 (5)
O10—Mo2—Mo337.32 (7)C18—C16—C13118.0 (6)
O11—Mo2—Mo341.59 (6)C18—C16—C17122.2 (7)
N2—Mo2—Mo3104.26 (9)C13—C16—C17110.3 (6)
Mo1—Mo2—Mo398.90 (2)C21—N2—C25117.9 (3)
O3—Mo3—O12106.13 (13)C21—N2—Mo2120.5 (3)
O3—Mo3—O10105.07 (13)C25—N2—Mo2121.5 (3)
O12—Mo3—O1095.42 (12)N2—C21—C22122.7 (4)
O3—Mo3—O8i103.10 (12)C21—C22—C23120.1 (4)
O12—Mo3—O8i94.81 (11)C24—C23—C22116.5 (4)
O10—Mo3—O8i145.91 (11)C24—C23—C26121.1 (4)
O3—Mo3—O11110.38 (12)C22—C23—C26122.4 (4)
O12—Mo3—O11143.48 (11)C25—C24—C23120.8 (4)
O10—Mo3—O1176.24 (11)N2—C25—C24121.9 (4)
O8i—Mo3—O1176.24 (10)C28—C26—C27114.4 (6)
O3—Mo3—Mo2137.71 (10)C28—C26—C23113.5 (5)
O12—Mo3—Mo2103.70 (9)C27—C26—C23109.1 (4)
O10—Mo3—Mo242.42 (8)C41—N4—C45117.9 (3)
O8i—Mo3—Mo2103.51 (7)C41—N4—Mo4119.2 (3)
O11—Mo3—Mo247.05 (7)C45—N4—Mo4122.8 (3)
O4—Mo4—O13106.68 (12)N4—C41—C42122.4 (4)
O4—Mo4—O9104.78 (12)C43—C42—C41120.5 (4)
O13—Mo4—O995.10 (11)C42—C43—C44116.4 (4)
O4—Mo4—O1195.32 (12)C42—C43—C46121.8 (4)
O13—Mo4—O11155.53 (11)C44—C43—C46121.8 (4)
O9—Mo4—O1189.37 (10)C45—C44—C43120.6 (4)
O4—Mo4—N487.00 (13)N4—C45—C44122.1 (4)
O13—Mo4—N484.58 (11)C48—C46—C43110.7 (4)
O9—Mo4—N4167.73 (11)C48—C46—C47111.9 (5)
O11—Mo4—N486.04 (11)C43—C46—C47110.9 (4)
O4—Mo4—O8i161.84 (11)C55—N5—C51117.2 (3)
O13—Mo4—O8i85.67 (10)C55—N5—Mo5121.1 (3)
O9—Mo4—O8i86.88 (10)C51—N5—Mo5121.5 (3)
O11—Mo4—O8i70.54 (9)N5—C51—C52123.0 (4)
N4—Mo4—O8i80.87 (10)C51—C52—C53119.7 (4)
O4—Mo4—Mo599.65 (9)C54—C53—C52117.1 (4)
O13—Mo4—Mo548.81 (8)C54—C53—C56122.0 (4)
O9—Mo4—Mo549.39 (7)C52—C53—C56120.8 (4)
O11—Mo4—Mo5138.47 (7)C55—C54—C53119.9 (4)
N4—Mo4—Mo5133.01 (8)N5—C55—C54123.1 (4)
O8i—Mo4—Mo598.51 (6)C57—C56—C53110.7 (4)
O5—Mo5—O13105.93 (13)C57—C56—C58111.9 (4)
O5—Mo5—O9107.55 (12)C53—C56—C58110.0 (4)
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Mo10O26(C8H11N)8]
Mr2344.82
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)11.794 (2), 20.179 (4), 17.843 (4)
β (°) 107.78 (3)
V3)4043.6 (14)
Z2
Radiation typeMo Kα
µ (mm1)1.57
Crystal size (mm)0.11 × 0.11 × 0.11
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
21096, 11238, 9113
Rint0.030
(sin θ/λ)max1)0.694
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.092, 1.07
No. of reflections11238
No. of parameters495
H-atom treatmentH-atom parameters not refined
Calculated w = 1/[σ2(Fo2) + (0.0282P)2 + 11.8693P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.60, 1.05

Computer programs: DENZO (Otwinowski & Minor, 1997), DENZO, SHELXS93 (Sheldrick, 1993), SHELXL93 (Sheldrick, 1993), ORTEPIII (Burnett & Johnson, 1996).

Selected geometric parameters (Å, º) top
Mo1—O11.689 (3)Mo3—O8i1.995 (2)
Mo1—O61.949 (3)Mo3—O112.002 (2)
Mo1—O71.997 (2)Mo3—O72.641 (3)
Mo1—O82.091 (2)Mo4—O41.694 (3)
Mo1—O92.215 (3)Mo4—O131.926 (3)
Mo1—N12.243 (3)Mo4—O91.964 (3)
Mo1—Mo22.6132 (6)Mo4—O111.996 (2)
Mo2—O21.687 (3)Mo4—N42.241 (3)
Mo2—O61.926 (3)Mo4—O8i2.261 (3)
Mo2—O71.988 (2)Mo4—Mo52.5637 (6)
Mo2—O102.067 (3)Mo5—O51.683 (3)
Mo2—O112.207 (3)Mo5—O131.944 (3)
Mo2—N22.210 (3)Mo5—O91.969 (2)
Mo2—Mo33.0147 (9)Mo5—O12i2.056 (3)
Mo3—O31.693 (3)Mo5—N52.226 (3)
Mo3—O121.814 (3)Mo5—O7i2.277 (3)
Mo3—O101.857 (3)
O1—Mo1—O6103.00 (12)O10—Mo3—O8i145.91 (11)
O1—Mo1—O7104.74 (12)O3—Mo3—O11110.38 (12)
O6—Mo1—O794.09 (10)O12—Mo3—O11143.48 (11)
O1—Mo1—O895.66 (11)O10—Mo3—O1176.24 (11)
O6—Mo1—O8158.60 (10)O8i—Mo3—O1176.24 (10)
O7—Mo1—O891.17 (10)O4—Mo4—O13106.68 (12)
O1—Mo1—O9165.79 (12)O4—Mo4—O9104.78 (12)
O6—Mo1—O978.12 (10)O13—Mo4—O995.10 (11)
O7—Mo1—O989.24 (10)O4—Mo4—O1195.32 (12)
O8—Mo1—O981.22 (10)O13—Mo4—O11155.53 (11)
O1—Mo1—N186.32 (14)O9—Mo4—O1189.37 (10)
O6—Mo1—N181.03 (12)O4—Mo4—N487.00 (13)
O7—Mo1—N1168.72 (12)O13—Mo4—N484.58 (11)
O8—Mo1—N189.91 (11)O9—Mo4—N4167.73 (11)
O9—Mo1—N179.83 (11)O11—Mo4—N486.04 (11)
O2—Mo2—O6106.50 (12)O4—Mo4—O8i161.84 (11)
O2—Mo2—O7108.68 (12)O13—Mo4—O8i85.67 (10)
O6—Mo2—O795.11 (10)O9—Mo4—O8i86.88 (10)
O2—Mo2—O1098.84 (12)O11—Mo4—O8i70.54 (9)
O6—Mo2—O10153.56 (11)N4—Mo4—O8i80.87 (10)
O7—Mo2—O1083.61 (10)O5—Mo5—O13105.93 (13)
O2—Mo2—O11162.70 (11)O5—Mo5—O9107.55 (12)
O6—Mo2—O1185.91 (10)O13—Mo5—O994.40 (10)
O7—Mo2—O1181.48 (10)O5—Mo5—O12i95.20 (12)
O10—Mo2—O1167.75 (10)O13—Mo5—O12i158.20 (10)
O2—Mo2—N289.71 (12)O9—Mo5—O12i84.05 (10)
O6—Mo2—N284.44 (11)O5—Mo5—N592.32 (13)
O7—Mo2—N2160.82 (11)O13—Mo5—N583.59 (11)
O10—Mo2—N288.32 (11)O9—Mo5—N5159.74 (11)
O11—Mo2—N279.36 (10)O12i—Mo5—N590.38 (11)
O3—Mo3—O12106.13 (13)O5—Mo5—O7i168.09 (11)
O3—Mo3—O10105.07 (13)O13—Mo5—O7i80.53 (10)
O12—Mo3—O1095.42 (12)O9—Mo5—O7i81.50 (10)
O3—Mo3—O8i103.10 (12)O12i—Mo5—O7i77.73 (9)
O12—Mo3—O8i94.81 (11)N5—Mo5—O7i78.28 (10)
Symmetry code: (i) x, y, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds