Download citation
Download citation
link to html
Methyl rearrangement in the solid state of 2,4-di­methoxy-6-(4-nitro­anilino)-1,3,5-triazine reveals three different products: (II), C11H11N5O4·H2O, (III), C12H13N5O4, and (IV), C12H13N5O4. (II) crystallizes with a mol­ecule of water and (IV) crystallizes in two polymorphic forms. The conformation of the mol­ecules is expressed by the torsion about the bond joining the triazine and the aniline moieties. The two moieties are almost coplanar in (II) due to an intramolecular hydrogen bond between a triazine-N atom and a phenyl-H atom. The methyl groups of the triazine exert severe steric repulsion in the other two compounds, affecting not only the conformation but also the exocyclic bond angles.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100004303/na1458sup1.cif
Contains datablocks II, III, IV, V, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100004303/na1458IIsup2.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100004303/na1458IIIsup3.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100004303/na1458IVsup4.hkl
Contains datablock IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100004303/na1458Vsup5.hkl
Contains datablock V

CCDC references: 147644; 147645; 147646; 147647

Comment top

Methoxy-s-triazines and their thio-analogues tend to undergo methyl rearrangement either in the liquid state or in the solid-tate (Paolini et al., 1968; Tosato, 1982, 1984; Kaftory & Handelsman-Benory, 1994; Handelsman-Benory et al., 1995, 2000; Greenberg et al., 2000). In the course of a study on the alkyl rearrangement of four derivatives of 2-anilino-4,6-dialkoxy-1,3,5-triazines, it was found that while three of the compounds undergo rearrangement in the liquid state, the fourth, (I), undergoes methyl rearrangement in the solid state (see scheme. The crystal structures and the thermal behaviours of these compounds are described elsewhere (Taycher et al., 2000). Based on the crystal structure of 2,4-dimethoxy-6-(4-nitroanilino)-1,3,5-triazine, it was concluded that the rearrangement is not topochemically controlled. As a result of the rearrangement, a mixture of products are produced, of which three were analyzed by 1H NMR and by single-crystal structure determination. One of the products, (II), crystallizes with a molecule of water, which is hydrogen bonded to the amino hydrogen atom. A second product (IV) crystallizes in two polymorphic forms. The crystal structures of all four compounds, (II)-(IV), are shown in Figures 1–4. \sch

Comparison of bond lengths and angles of the s-triazine moiety is given in Table 5. Some differences of bond angles should be noted. The endocyclic bond angles at the carbon atoms (C1, C2, C3) in the two polymorphs [(IV) and (V)] are significantly smaller than the endocyclic bond angles at the nitrogen atoms (N1, N2, N3); 114.8 (2)–116.9 (2)° compared with 123.1 (2)–124.7 (2)°. In compounds (II) and (III), however, only the N1—C3—N3 bond angle is significantly smaller [115.6 (3), 115.5 (2)°]. Similar differences between the endocyclic bond angles are found in all s-triazine moieties whenever the carbonyl carbon atom is bonded to two N—CH3 groups (Greenberg et al., 2000; Thaladi et al., 1998; Handelsman-Benory et al., 1995).

Selected intermolecular hydrogen-bond geometries are given in Tables 1–4. Weak C—H···O and C—H···N hydrogen bonds have only little effect on the conformation of the molecules but they determine the packing of molecules in the unit cell of each of the compounds. The intramolecular hydrogen bond in (II), N2···H5 [2.32 (4) Å], forces the triazine and the aniline moieties to be almost coplanar [the C2—N4—C4—C5 torsion angle is 21.5 (8)°]. The molecules pack in layers where the water molecules, through hydrogen bonds, form the glue between neighbour molecules in the layer.

Severe steric effect determines the conformation in regards with the torsion angles N2—C2—N4—C4, and C2—N4—C4—C5 and in regards with the external ring bond angles at C2. The only difference between compounds (II) and (III) is the substituent on N4, a hydrogen atom and a methyl group, respectively. The presence of the smaller H atom is not followed by a rotation of the aniline moiety about C2—N4, thus the produced torsion angle is only −1.8 (8)°, the torsion angle about N4—C4 bond is 21.5 (8)°. This conformation is also stabilized by the hydrogen bond discussed above. Replacing the hydrogen atom by a CH3 group causes an increase of the rotation of the aniline moiety, thus the torsion angle about C2—N4 bond increases to −131.2 (2)°, and the torsion about N4—C4 bond increases to 36.0 (3)°. As a result, the two moieties are perpendicular to each other and the close proximity of the two methyl groups C11 and C12 is avoided.

One of the two degrees of freedom available in (II) and (III) to overcome steric repulsion is lost in (IV) due to the replacement of the single to double bond of C2N4. Partial relief of the steric repulsion is achieved by rotation of the phenyl ring about N4—C4 bond [71.1 (2) and −64.7 (2)° in polymorphs (IV) and (V), respectively], and also by a small rotation about the double bond [8.5 (2) and −18.3 (2)° in (IV) and (V), respectively] which indicates that there is some π-delocalization along the chain joining the triazine to the phenyl. Moreover, the N2—C2—N4 bond angle opens up to 128.5 (2)°, N3—C2—N4 bond angle closes to 116.6 (2)° in both polymorphs. Similar differences between the exocyclic bond angles is found to a lesser extent (124.8, 118.2°) in N-methylthio-N'-(2,6-dimethylphenyl)-2,6-dimethyl-1,4- quinonedi-imine (Klerks et al., 1981) and to a higher extent (134.1, 113.9°) when the N—CH3 is replaced by N—C-(CH3)2 (Al-Talib et al., 1985).

Experimental top

The title compounds were obtained by heating 2-(4'-nitroanilino)-4,6-dimethyoxy-1,3,5-triazine to 493 K. Crystals of (II) and (IV) were obtained from MeOH solution, crystals of (III) from CHCl3 solution and crystals of (V) from MeOH/EtOH solution.

Refinement top

No attempt has been made to find the absolute structure of (II). Hydrogen atoms were treated by a mixture of independent (H atoms of the water molecule) and by constrained refinement. Crystals of (III) were unstable and poorly diffracted, therefore the data was not collected to completeness, and the Rint was greater than expected.

Computing details top

Data collection: Philips PW 1110/20 (Philips, 1973) for (II); COLLECT (Nonius, 1998) for (III), (IV), (V). Cell refinement: Philips PW 1110/20 for (II); DENZO (Otwinowski & Minor, 1997) for (III), (IV), (V). Data reduction: PROCN (Philips, 1973) for (II); DENZO for (III), (IV), (V). For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: ORTEPII (Johnson, 1976) and TEXSAN (Molecular Structure Corporation, 1995) for (II); TEXSAN for (III), (IV), (V). For all compounds, software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
Figure 1. ORTEP-3 (Johnson, 1976; Farrugia, 1998) drawing of (II) showing atomic numbering. Ellipsoids of atomic displacement for non-hydrogen atoms are drawn at the 50% probability level. H atoms are drawn as small circles of arbitrary radius.

Figure 2. ORTEP-3 (Johnson, 1976; Farrugia, 1998) drawing of (III) showing atomic numbering. Ellipsoids are drawn as in Figure 1.

Figure 3. ORTEP-3 (Johnson, 1976; Farrugia, 1998) drawing of (IV) showing atomic numbering. Ellipsoids are drawn as in Figure 1.

Figure 4. ORTEP-3 (Johnson, 1976; Farrugia, 1998) drawing of (V) showing atomic numbering. Ellipsoids are drawn as in Figure 1.

Table 1. Comparison of bond lengths and bond angles of the s-triazine moiety.

Table 5. Selected intermolecular hydrogen bond geometries.
(II) top
Crystal data top
C11H11N5O4·H2OF(000) = 616
Mr = 295.26Dx = 1.470 Mg m3
Orthorhombic, P_21_21_21Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 18.170 (4) Åθ = 3.2–19.7°
b = 10.530 (3) ŵ = 0.12 mm1
c = 6.972 (2) ÅT = 293 K
V = 1334.0 (6) Å3Prism, pale yellow
Z = 40.80 × 0.50 × 0.40 mm
Data collection top
Philips PW 1100
diffractometer
Rint = 0.000
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.2°
Graphite monochromatorh = 021
ω/2θ scansk = 012
1339 measured reflectionsl = 08
1339 independent reflections3 standard reflections every 120 min reflections
1152 reflections with I > 2σ(I) intensity decay: 2.1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0499P)2 + 0.9787P]
where P = (Fo2 + 2Fc2)/3
S = 1.19(Δ/σ)max = 0.030
1339 reflectionsΔρmax = 0.20 e Å3
205 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.024 (3)
Crystal data top
C11H11N5O4·H2OV = 1334.0 (6) Å3
Mr = 295.26Z = 4
Orthorhombic, P_21_21_21Mo Kα radiation
a = 18.170 (4) ŵ = 0.12 mm1
b = 10.530 (3) ÅT = 293 K
c = 6.972 (2) Å0.80 × 0.50 × 0.40 mm
Data collection top
Philips PW 1100
diffractometer
Rint = 0.000
1339 measured reflections3 standard reflections every 120 min reflections
1339 independent reflections intensity decay: 2.1%
1152 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.19Δρmax = 0.20 e Å3
1339 reflectionsΔρmin = 0.20 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.78975 (17)0.3631 (3)0.1258 (7)0.0577 (11)
O20.54559 (15)0.2910 (3)0.1905 (6)0.0533 (10)
O31.02148 (19)0.3010 (4)0.1898 (8)0.0930 (16)
O40.9512 (2)0.4611 (4)0.1494 (8)0.0876 (15)
O50.60984 (19)0.2423 (4)0.3599 (7)0.0629 (12)
N10.66752 (18)0.3310 (3)0.1619 (6)0.0372 (9)
N20.75229 (17)0.1604 (3)0.1721 (6)0.0348 (9)
N30.62488 (16)0.1245 (3)0.2113 (6)0.0335 (9)
N40.70773 (18)0.0424 (3)0.2157 (6)0.0353 (9)
N50.9609 (2)0.3478 (4)0.1737 (7)0.0580 (12)
C10.7403 (2)0.2863 (4)0.1523 (7)0.0384 (11)
C20.6969 (2)0.0845 (4)0.2002 (6)0.0296 (9)
C30.6085 (2)0.2528 (4)0.1892 (7)0.0348 (10)
C40.7747 (2)0.1104 (4)0.2001 (6)0.0318 (10)
C50.8446 (2)0.0583 (4)0.2259 (7)0.0372 (10)
H50.85020.02810.25010.045*
C60.9055 (2)0.1370 (4)0.2148 (7)0.0411 (11)
H60.95240.10350.23080.049*
C70.8966 (2)0.2643 (4)0.1804 (7)0.0385 (10)
C80.8276 (2)0.3176 (4)0.1545 (8)0.0433 (12)
H80.82240.40430.13240.052*
C90.7672 (2)0.2396 (4)0.1621 (7)0.0373 (10)
H90.72060.27350.14150.045*
C100.6534 (3)0.4680 (4)0.1406 (10)0.0593 (15)
H10A0.67940.49950.03060.089*
H10B0.66990.51180.25330.089*
H10C0.60150.48190.12380.089*
C110.5629 (2)0.0363 (4)0.2329 (9)0.0518 (14)
H11A0.51760.08340.23620.078*
H11B0.56830.01060.35010.078*
H11C0.56210.02150.12640.078*
H1N40.674 (2)0.089 (4)0.241 (7)0.037 (13)*
H1O50.621 (3)0.277 (6)0.463 (9)0.07 (2)*
H2O50.559 (5)0.243 (8)0.358 (12)0.16 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0364 (17)0.0297 (15)0.107 (3)0.0058 (14)0.008 (2)0.004 (2)
O20.0268 (15)0.0418 (17)0.091 (3)0.0082 (13)0.0015 (17)0.003 (2)
O30.040 (2)0.089 (3)0.150 (5)0.021 (2)0.013 (3)0.025 (4)
O40.061 (2)0.049 (2)0.153 (4)0.0231 (19)0.012 (3)0.005 (3)
O50.0311 (18)0.057 (2)0.100 (3)0.0003 (16)0.000 (2)0.019 (3)
N10.0311 (18)0.0258 (17)0.055 (2)0.0055 (14)0.0010 (18)0.0007 (18)
N20.0284 (17)0.0260 (16)0.050 (2)0.0006 (14)0.0022 (18)0.0006 (18)
N30.0219 (15)0.0284 (17)0.050 (2)0.0025 (13)0.0016 (16)0.0004 (19)
N40.0227 (16)0.0262 (17)0.057 (2)0.0005 (14)0.0027 (18)0.002 (2)
N50.036 (2)0.065 (3)0.072 (3)0.020 (2)0.003 (2)0.002 (3)
C10.033 (2)0.030 (2)0.052 (3)0.0016 (19)0.002 (2)0.006 (2)
C20.0254 (17)0.0270 (19)0.037 (2)0.0002 (16)0.0032 (19)0.0017 (19)
C30.032 (2)0.029 (2)0.044 (2)0.0021 (18)0.003 (2)0.004 (2)
C40.0281 (19)0.031 (2)0.036 (2)0.0040 (17)0.0032 (19)0.004 (2)
C50.032 (2)0.029 (2)0.051 (3)0.0024 (18)0.004 (2)0.002 (2)
C60.027 (2)0.049 (3)0.047 (3)0.0002 (19)0.001 (2)0.003 (3)
C70.030 (2)0.042 (2)0.043 (2)0.0116 (19)0.003 (2)0.003 (2)
C80.042 (2)0.033 (2)0.055 (3)0.0043 (19)0.006 (2)0.002 (2)
C90.029 (2)0.032 (2)0.051 (3)0.0019 (17)0.001 (2)0.001 (2)
C100.047 (3)0.025 (2)0.105 (5)0.003 (2)0.005 (3)0.005 (3)
C110.028 (2)0.037 (2)0.091 (4)0.0060 (18)0.000 (2)0.008 (3)
Geometric parameters (Å, º) top
O1—C11.223 (5)N5—C71.462 (5)
O2—C31.212 (5)C4—C91.393 (6)
O3—N51.210 (6)C4—C51.395 (6)
O4—N51.218 (6)C5—C61.385 (6)
O5—H1O50.83 (6)C5—H50.9300
O5—H2O50.93 (8)C6—C71.372 (7)
N1—C31.365 (5)C6—H60.9300
N1—C11.404 (5)C7—C81.386 (6)
N1—C101.473 (5)C8—C91.372 (6)
N2—C21.300 (5)C8—H80.9300
N2—C11.351 (5)C9—H90.9300
N3—C21.377 (5)C10—H10A0.9600
N3—C31.391 (5)C10—H10B0.9600
N3—C111.468 (5)C10—H10C0.9600
N4—C21.355 (5)C11—H11A0.9600
N4—C41.416 (5)C11—H11B0.9600
N4—H1N40.80 (4)C11—H11C0.9600
H1O5—O5—H2O5104 (6)C6—C5—H5120.5
C3—N1—C1122.9 (3)C4—C5—H5120.5
C3—N1—C10117.9 (3)C7—C6—C5120.1 (4)
C1—N1—C10119.2 (4)C7—C6—H6120.0
C2—N2—C1119.5 (3)C5—C6—H6120.0
C2—N3—C3119.6 (3)C6—C7—C8121.7 (4)
C2—N3—C11122.8 (3)C6—C7—N5120.0 (4)
C3—N3—C11117.5 (3)C8—C7—N5118.4 (4)
C2—N4—C4128.2 (4)C9—C8—C7118.4 (4)
C2—N4—H1N4121 (3)C9—C8—H8120.8
C4—N4—H1N4111 (3)C7—C8—H8120.8
O3—N5—O4122.9 (4)C8—C9—C4121.0 (4)
O3—N5—C7118.6 (4)C8—C9—H9119.5
O4—N5—C7118.5 (4)C4—C9—H9119.5
O1—C1—N2123.0 (4)N1—C10—H10A109.5
O1—C1—N1118.5 (4)N1—C10—H10B109.5
N2—C1—N1118.4 (4)H10A—C10—H10B109.5
N2—C2—N4120.4 (4)N1—C10—H10C109.5
N2—C2—N3123.8 (3)H10A—C10—H10C109.5
N4—C2—N3115.8 (4)H10B—C10—H10C109.5
O2—C3—N1122.8 (4)N3—C11—H11A109.5
O2—C3—N3121.6 (4)N3—C11—H11B109.5
N1—C3—N3115.6 (3)H11A—C11—H11B109.5
C9—C4—C5119.8 (4)N3—C11—H11C109.5
C9—C4—N4115.2 (3)H11A—C11—H11C109.5
C5—C4—N4125.0 (3)H11B—C11—H11C109.5
C6—C5—C4119.0 (4)
C2—N2—C1—O1179.9 (5)C11—N3—C3—O21.1 (8)
C2—N2—C1—N10.3 (7)C2—N3—C3—N11.5 (7)
C3—N1—C1—O1179.4 (5)C11—N3—C3—N1177.5 (4)
C10—N1—C1—O10.2 (8)C2—N4—C4—C9160.6 (5)
C3—N1—C1—N20.4 (7)C2—N4—C4—C521.5 (8)
C10—N1—C1—N2180.0 (5)C9—C4—C5—C60.6 (7)
C1—N2—C2—N4178.4 (5)N4—C4—C5—C6177.2 (4)
C1—N2—C2—N30.1 (7)C4—C5—C6—C70.5 (7)
C4—N4—C2—N21.8 (8)C5—C6—C7—C80.5 (8)
C4—N4—C2—N3176.6 (4)C5—C6—C7—N5178.4 (5)
C3—N3—C2—N20.9 (7)O3—N5—C7—C63.5 (8)
C11—N3—C2—N2176.6 (5)O4—N5—C7—C6177.5 (6)
C3—N3—C2—N4177.5 (4)O3—N5—C7—C8177.5 (6)
C11—N3—C2—N41.7 (7)O4—N5—C7—C81.4 (8)
C1—N1—C3—O2177.2 (5)C6—C7—C8—C90.6 (8)
C10—N1—C3—O22.3 (7)N5—C7—C8—C9179.5 (5)
C1—N1—C3—N31.3 (7)C7—C8—C9—C41.7 (8)
C10—N1—C3—N3179.1 (5)C5—C4—C9—C81.8 (8)
C2—N3—C3—O2177.1 (4)N4—C4—C9—C8176.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H1N4···O50.81 (5)2.16 (5)2.933 (5)162 (5)
O5—H2O5···O2i0.92 (11)1.96 (11)2.867 (5)166 (10)
O5—H1O5···O1ii0.83 (6)2.18 (6)2.895 (6)145 (5)
O9—H9···O50.93 (5)2.55 (5)3.175 (6)125 (4)
C5—H5···N20.93 (5)2.32 (4)2.874 (5)117 (4)
C6—H6···O4iii0.93 (5)2.45 (5)3.333 (6)158 (4)
C8—H8···O1iv0.93 (5)2.52 (5)3.438 (6)169 (4)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+3/2, y, z+1/2; (iii) x+2, y+1/2, z+1/2; (iv) x, y1, z.
(III) top
Crystal data top
C12H13N5O4F(000) = 608
Mr = 291.27Dx = 1.495 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ybcCell parameters from 15151 reflections
a = 11.3330 (12) Åθ = 2.2–27.5°
b = 16.0250 (14) ŵ = 0.12 mm1
c = 7.1620 (7) ÅT = 293 K
β = 95.587 (5)°Prism, pale yellow
V = 1294.5 (2) Å30.40 × 0.18 × 0.10 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
1216 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.115
Graphite monochromatorθmax = 27.6°, θmin = 2.2°
phi scanh = 014
16754 measured reflectionsk = 020
2776 independent reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048All H-atom parameters refined
wR(F2) = 0.141 w = 1/[σ2(Fo2) + (0.0927P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.73(Δ/σ)max < 0.001
2776 reflectionsΔρmax = 0.19 e Å3
243 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.040 (6)
Crystal data top
C12H13N5O4V = 1294.5 (2) Å3
Mr = 291.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.3330 (12) ŵ = 0.12 mm1
b = 16.0250 (14) ÅT = 293 K
c = 7.1620 (7) Å0.40 × 0.18 × 0.10 mm
β = 95.587 (5)°
Data collection top
Nonius KappaCCD
diffractometer
1216 reflections with I > 2σ(I)
16754 measured reflectionsRint = 0.115
2776 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.141All H-atom parameters refined
S = 0.73Δρmax = 0.19 e Å3
2776 reflectionsΔρmin = 0.20 e Å3
243 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.08281 (17)0.37408 (11)0.7172 (3)0.0739 (6)
O20.11797 (15)0.13533 (12)0.5758 (3)0.0681 (6)
O30.36497 (18)0.12662 (12)0.1907 (3)0.0749 (6)
O40.4256 (2)0.20089 (12)0.4296 (3)0.0851 (7)
N10.02049 (17)0.25642 (12)0.6440 (3)0.0452 (5)
N20.17820 (17)0.25231 (12)0.7828 (3)0.0450 (5)
N30.07128 (16)0.12819 (11)0.7127 (3)0.0448 (5)
N40.27060 (17)0.12495 (12)0.8331 (3)0.0469 (5)
N50.38699 (19)0.13619 (14)0.3597 (4)0.0554 (6)
C10.0819 (2)0.29840 (15)0.7175 (3)0.0473 (6)
C20.1728 (2)0.17107 (14)0.7743 (3)0.0408 (6)
C30.0293 (2)0.17154 (15)0.6385 (3)0.0467 (6)
C40.3068 (2)0.05973 (14)0.7139 (3)0.0427 (6)
C50.2938 (2)0.07099 (15)0.5228 (4)0.0469 (6)
C60.3218 (2)0.00644 (15)0.4054 (4)0.0484 (7)
C70.3643 (2)0.06716 (14)0.4848 (3)0.0432 (6)
C80.3815 (2)0.07856 (16)0.6750 (4)0.0514 (7)
C90.3523 (2)0.01390 (16)0.7914 (4)0.0525 (7)
C100.1269 (3)0.3047 (2)0.5811 (5)0.0645 (9)
C110.0564 (3)0.03802 (17)0.7479 (5)0.0590 (8)
C120.3655 (3)0.1676 (2)0.9503 (5)0.0636 (9)
H50.266 (2)0.1269 (16)0.471 (3)0.057 (7)*
H60.310 (2)0.0144 (14)0.283 (4)0.053 (8)*
H80.411 (2)0.1327 (16)0.727 (3)0.062 (7)*
H90.358 (2)0.0271 (17)0.931 (4)0.081 (9)*
H1010.100 (3)0.356 (2)0.510 (5)0.106 (11)*
H1020.185 (5)0.273 (3)0.546 (7)0.18 (2)*
H1030.150 (4)0.341 (3)0.668 (6)0.143 (18)*
H1110.026 (3)0.0301 (18)0.771 (4)0.089 (10)*
H1120.099 (3)0.026 (2)0.870 (5)0.106 (13)*
H1130.085 (3)0.0064 (18)0.642 (5)0.089 (10)*
H1210.398 (3)0.2053 (19)0.881 (5)0.088 (12)*
H1220.425 (3)0.126 (2)0.997 (4)0.102 (11)*
H1230.341 (3)0.194 (2)1.064 (6)0.131 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0752 (14)0.0388 (11)0.1032 (17)0.0023 (9)0.0141 (11)0.0062 (10)
O20.0438 (11)0.0661 (12)0.0920 (16)0.0100 (10)0.0057 (10)0.0098 (10)
O30.0897 (16)0.0787 (14)0.0561 (13)0.0127 (11)0.0054 (11)0.0114 (11)
O40.1127 (18)0.0559 (13)0.0856 (16)0.0348 (12)0.0042 (13)0.0015 (11)
N10.0404 (12)0.0439 (12)0.0505 (13)0.0058 (9)0.0003 (9)0.0035 (10)
N20.0439 (12)0.0413 (11)0.0491 (12)0.0035 (9)0.0015 (9)0.0067 (9)
N30.0397 (12)0.0392 (11)0.0555 (13)0.0039 (9)0.0042 (9)0.0027 (9)
N40.0407 (12)0.0507 (12)0.0476 (12)0.0055 (10)0.0041 (9)0.0076 (10)
N50.0525 (14)0.0497 (13)0.0642 (16)0.0067 (11)0.0061 (11)0.0057 (12)
C10.0508 (16)0.0438 (15)0.0473 (15)0.0007 (12)0.0047 (12)0.0021 (12)
C20.0385 (14)0.0453 (14)0.0385 (14)0.0021 (11)0.0029 (11)0.0043 (11)
C30.0404 (15)0.0526 (15)0.0473 (15)0.0034 (12)0.0060 (12)0.0048 (12)
C40.0397 (14)0.0423 (14)0.0457 (15)0.0023 (11)0.0019 (11)0.0021 (11)
C50.0472 (15)0.0420 (14)0.0510 (16)0.0034 (12)0.0029 (12)0.0027 (12)
C60.0503 (16)0.0519 (16)0.0427 (17)0.0027 (12)0.0039 (12)0.0015 (13)
C70.0383 (14)0.0410 (13)0.0500 (15)0.0021 (10)0.0030 (11)0.0031 (11)
C80.0456 (16)0.0482 (15)0.0596 (18)0.0082 (12)0.0001 (13)0.0060 (13)
C90.0560 (17)0.0526 (16)0.0474 (16)0.0086 (12)0.0026 (13)0.0003 (13)
C100.058 (2)0.0604 (19)0.073 (2)0.0151 (16)0.0050 (17)0.0042 (17)
C110.057 (2)0.0439 (16)0.077 (2)0.0081 (13)0.0113 (17)0.0001 (15)
C120.0498 (19)0.077 (2)0.061 (2)0.0046 (17)0.0120 (16)0.0182 (18)
Geometric parameters (Å, º) top
O1—C11.213 (3)C5—C61.389 (3)
O2—C31.209 (3)C5—H51.01 (2)
O3—N51.222 (3)C6—C71.376 (3)
O4—N51.214 (3)C6—H60.88 (2)
N1—C31.364 (3)C7—C81.369 (3)
N1—C11.399 (3)C8—C91.389 (3)
N1—C101.467 (3)C8—H80.99 (3)
N2—C21.304 (3)C9—H91.01 (3)
N2—C11.362 (3)C10—H1011.04 (4)
N3—C21.375 (3)C10—H1020.85 (5)
N3—C31.395 (3)C10—H1030.90 (5)
N3—C111.479 (3)C11—H1110.97 (3)
N4—C21.364 (3)C11—H1120.98 (4)
N4—C41.435 (3)C11—H1130.99 (3)
N4—C121.467 (3)C12—H1210.89 (3)
N5—C71.462 (3)C12—H1220.98 (3)
C4—C51.374 (3)C12—H1230.98 (4)
C4—C91.382 (3)
C3—N1—C1123.1 (2)C7—C6—H6123.3 (16)
C3—N1—C10117.5 (2)C5—C6—H6118.1 (16)
C1—N1—C10119.3 (2)C8—C7—C6122.4 (2)
C2—N2—C1119.5 (2)C8—C7—N5119.5 (2)
C2—N3—C3120.0 (2)C6—C7—N5118.1 (2)
C2—N3—C11122.6 (2)C7—C8—C9118.5 (2)
C3—N3—C11116.7 (2)C7—C8—H8120.1 (14)
C2—N4—C4118.80 (19)C9—C8—H8121.3 (14)
C2—N4—C12116.9 (2)C4—C9—C8119.8 (3)
C4—N4—C12116.3 (2)C4—C9—H9123.9 (15)
O4—N5—O3123.1 (2)C8—C9—H9115.9 (15)
O4—N5—C7118.1 (2)N1—C10—H101107.2 (19)
O3—N5—C7118.8 (2)N1—C10—H102111 (3)
O1—C1—N2122.4 (2)H101—C10—H102127 (4)
O1—C1—N1119.1 (2)N1—C10—H103114 (3)
N2—C1—N1118.4 (2)H101—C10—H10387 (3)
N2—C2—N4119.5 (2)H102—C10—H103109 (4)
N2—C2—N3123.2 (2)N3—C11—H111106.5 (18)
N4—C2—N3117.2 (2)N3—C11—H112106.6 (19)
O2—C3—N1123.0 (2)H111—C11—H112103 (3)
O2—C3—N3121.4 (2)N3—C11—H113108.5 (17)
N1—C3—N3115.5 (2)H111—C11—H113117 (2)
C5—C4—C9120.8 (2)H112—C11—H113115 (3)
C5—C4—N4119.2 (2)N4—C12—H121109 (2)
C9—C4—N4120.0 (2)N4—C12—H122108.9 (19)
C4—C5—C6119.8 (2)H121—C12—H122110 (3)
C4—C5—H5118.9 (14)N4—C12—H123115 (2)
C6—C5—H5121.3 (14)H121—C12—H123110 (3)
C7—C6—C5118.6 (3)H122—C12—H123104 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i1.01 (2)2.62 (2)3.204 (3)117 (2)
C5—H5···N3i1.01 (2)2.51 (2)3.500 (3)168 (2)
C9—H9···O3ii1.02 (3)2.45 (3)3.374 (3)151 (2)
C10—H101···O2iii0.97 (3)2.58 (3)3.087 (3)112 (2)
C12—H123···N3iv0.98 (4)2.68 (4)3.579 (4)153 (3)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y, z+1; (iii) x, y1/2, z+3/2; (iv) x, y+1/2, z+1/2.
(IV) 2-(4'-nitrophenylimino)-1,3,5-trimethyl-1,3,5-triazine-4,6,-dione top
Crystal data top
C12H13N5O4Z = 2
Mr = 291.27F(000) = 304
Triclinic, P1Dx = 1.445 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71093 Å
a = 8.253 (6) ÅCell parameters from 25 reflections
b = 8.493 (3) Åθ = 2.5–16.6°
c = 10.084 (2) ŵ = 0.11 mm1
α = 78.79°T = 293 K
β = 88.52°Plate, pale yellow
γ = 74.95°0.9 × 0.45 × 0.1 mm
V = 669.3 (6) Å3
Data collection top
Philips PW 1100
diffractometer
Rint = 0.068
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.1°
Graphite monochromatorh = 99
ω/2θ scansk = 910
2494 measured reflectionsl = 011
2349 independent reflections3 standard reflections every 120 min min
1806 reflections with I > 2σ(I) intensity decay: 2.4%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: difference Fourier map
wR(F2) = 0.144All H-atom parameters refined
S = 0.91 w = 1/[σ2(Fo2) + (0.0885P)2 + 0.2017P]
where P = (Fo2 + 2Fc2)/3
2349 reflections(Δ/σ)max = 0.011
242 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C12H13N5O4γ = 74.95°
Mr = 291.27V = 669.3 (6) Å3
Triclinic, P1Z = 2
a = 8.253 (6) ÅMo Kα radiation
b = 8.493 (3) ŵ = 0.11 mm1
c = 10.084 (2) ÅT = 293 K
α = 78.79°0.9 × 0.45 × 0.1 mm
β = 88.52°
Data collection top
Philips PW 1100
diffractometer
Rint = 0.068
2494 measured reflections3 standard reflections every 120 min min
2349 independent reflections intensity decay: 2.4%
1806 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.144All H-atom parameters refined
S = 0.91Δρmax = 0.24 e Å3
2349 reflectionsΔρmin = 0.25 e Å3
242 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2041 (2)0.03085 (18)0.10070 (18)0.0649 (5)
O20.28833 (19)0.54925 (18)0.04935 (16)0.0576 (4)
O30.6043 (3)0.0763 (3)0.6994 (2)0.0991 (7)
O40.7843 (2)0.1975 (3)0.5373 (2)0.0852 (6)
N10.2571 (2)0.2852 (2)0.08282 (17)0.0463 (4)
N20.0088 (2)0.23124 (19)0.18234 (17)0.0452 (4)
N30.0641 (2)0.49373 (19)0.16930 (16)0.0443 (4)
N40.1612 (2)0.4446 (2)0.29049 (18)0.0529 (5)
N50.6431 (3)0.1652 (3)0.5889 (2)0.0643 (6)
C10.1604 (3)0.1725 (2)0.1215 (2)0.0462 (5)
C20.0375 (2)0.3867 (2)0.22033 (19)0.0422 (5)
C30.2081 (2)0.4500 (2)0.09606 (19)0.0424 (5)
C40.2752 (3)0.3656 (3)0.3637 (2)0.0468 (5)
C50.2292 (3)0.2499 (3)0.4837 (2)0.0543 (6)
C60.3488 (3)0.1846 (3)0.5591 (2)0.0568 (6)
C70.5143 (3)0.2354 (3)0.5129 (2)0.0487 (5)
C80.5634 (3)0.3523 (3)0.3965 (2)0.0550 (6)
C90.4453 (3)0.4195 (3)0.3222 (2)0.0568 (6)
C100.1086 (4)0.1228 (3)0.1970 (3)0.0607 (6)
C110.0211 (4)0.6619 (3)0.2030 (3)0.0582 (6)
C120.4186 (3)0.2265 (3)0.0171 (3)0.0618 (6)
H50.116 (3)0.216 (3)0.512 (2)0.059 (6)*
H60.322 (3)0.109 (3)0.635 (3)0.066 (7)*
H80.678 (3)0.385 (3)0.368 (3)0.070 (7)*
H90.478 (3)0.505 (4)0.242 (3)0.076 (8)*
H1010.088 (4)0.063 (4)0.123 (3)0.102 (10)*
H1020.223 (4)0.194 (4)0.184 (3)0.082 (9)*
H1030.093 (3)0.053 (4)0.282 (3)0.075 (8)*
H1110.095 (4)0.723 (4)0.172 (3)0.094 (10)*
H1120.094 (4)0.721 (4)0.163 (3)0.098 (10)*
H1130.026 (4)0.641 (4)0.303 (4)0.099 (10)*
H1210.487 (4)0.122 (5)0.071 (4)0.105 (11)*
H1220.481 (4)0.308 (4)0.003 (3)0.098 (10)*
H1230.401 (4)0.209 (4)0.069 (4)0.102 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0702 (10)0.0404 (8)0.0865 (12)0.0141 (7)0.0127 (9)0.0200 (8)
O20.0582 (9)0.0497 (8)0.0684 (10)0.0242 (7)0.0111 (7)0.0074 (7)
O30.1157 (17)0.1218 (18)0.0681 (13)0.0642 (15)0.0160 (12)0.0051 (12)
O40.0597 (11)0.1067 (16)0.1006 (15)0.0372 (11)0.0201 (10)0.0286 (12)
N10.0468 (9)0.0426 (9)0.0506 (10)0.0135 (7)0.0060 (7)0.0100 (7)
N20.0515 (10)0.0400 (9)0.0501 (10)0.0203 (7)0.0073 (7)0.0120 (7)
N30.0484 (9)0.0384 (9)0.0506 (10)0.0165 (7)0.0043 (7)0.0128 (7)
N40.0543 (10)0.0546 (10)0.0574 (11)0.0213 (8)0.0132 (8)0.0205 (8)
N50.0720 (14)0.0709 (13)0.0616 (13)0.0326 (11)0.0211 (11)0.0241 (11)
C10.0504 (11)0.0403 (11)0.0488 (11)0.0134 (9)0.0012 (9)0.0083 (8)
C20.0467 (10)0.0410 (10)0.0418 (10)0.0153 (8)0.0003 (8)0.0099 (8)
C30.0441 (10)0.0403 (10)0.0426 (10)0.0127 (8)0.0039 (8)0.0046 (8)
C40.0496 (11)0.0486 (11)0.0485 (11)0.0174 (9)0.0090 (9)0.0192 (9)
C50.0450 (12)0.0606 (13)0.0568 (13)0.0120 (10)0.0030 (10)0.0119 (10)
C60.0651 (14)0.0579 (13)0.0455 (12)0.0162 (11)0.0008 (10)0.0052 (10)
C70.0516 (12)0.0544 (12)0.0467 (11)0.0204 (10)0.0111 (9)0.0178 (9)
C80.0448 (12)0.0655 (14)0.0560 (13)0.0154 (10)0.0003 (10)0.0136 (11)
C90.0552 (13)0.0636 (14)0.0501 (13)0.0174 (11)0.0016 (10)0.0044 (11)
C100.0702 (17)0.0532 (14)0.0729 (17)0.0344 (13)0.0192 (13)0.0231 (13)
C110.0668 (16)0.0454 (12)0.0710 (17)0.0219 (11)0.0083 (13)0.0228 (11)
C120.0519 (13)0.0576 (15)0.0753 (18)0.0114 (11)0.0165 (12)0.0174 (13)
Geometric parameters (Å, º) top
O1—C11.221 (2)N3—C21.409 (3)
O2—C31.221 (2)N3—C111.483 (3)
O3—N51.216 (3)N4—C21.274 (3)
O4—N51.231 (3)N4—C41.406 (3)
N1—C31.384 (3)N5—C71.478 (3)
N1—C11.393 (3)C4—C51.394 (3)
N1—C121.484 (3)C4—C91.406 (3)
N2—C11.395 (3)C5—C61.393 (3)
N2—C21.401 (2)C6—C71.385 (3)
N2—C101.487 (3)C7—C81.375 (3)
N3—C31.388 (3)C8—C91.386 (3)
C3—N1—C1124.02 (17)N4—C2—N2128.54 (18)
C3—N1—C12118.21 (17)N4—C2—N3116.58 (17)
C1—N1—C12117.69 (18)N2—C2—N3114.84 (16)
C1—N2—C2123.14 (16)O2—C3—N1122.25 (18)
C1—N2—C10115.77 (17)O2—C3—N3122.23 (18)
C2—N2—C10120.97 (17)N1—C3—N3115.50 (16)
C3—N3—C2124.68 (16)C5—C4—N4122.34 (19)
C3—N3—C11117.18 (17)C5—C4—C9118.84 (19)
C2—N3—C11118.02 (17)N4—C4—C9118.4 (2)
C2—N4—C4130.02 (18)C6—C5—C4120.6 (2)
O3—N5—O4122.8 (2)C7—C6—C5119.1 (2)
O3—N5—C7118.5 (2)C8—C7—C6121.3 (2)
O4—N5—C7118.7 (2)C8—C7—N5118.3 (2)
O1—C1—N2121.64 (18)C6—C7—N5120.3 (2)
O1—C1—N1121.83 (19)C7—C8—C9119.7 (2)
N2—C1—N1116.51 (17)C8—C9—C4120.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O4i0.94 (2)2.72 (3)3.624 (4)163 (2)
C12—H121···O3ii0.98 (3)2.62 (4)3.529 (3)153 (3)
C12—H122···O2iii0.95 (4)2.50 (4)3.426 (4)163 (3)
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) x+1, y+1, z.
(V) 2-(4'-nitrophenylimino)-1,3,5-trimethyl-1,3,5-triazine-4,6,-dione top
Crystal data top
C12H13N5O4F(000) = 608
Mr = 291.27Dx = 1.473 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ybcCell parameters from 4397 reflections
a = 11.1270 (6) Åθ = 1.0–25.4°
b = 9.1950 (9) ŵ = 0.11 mm1
c = 13.0940 (11) ÅT = 293 K
β = 101.264 (5)°Cube, pale yellow
V = 1313.88 (18) Å30.25 × 0.25 × 0.20 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
1739 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 25.4°, θmin = 1.9°
phi scanh = 013
7133 measured reflectionsk = 011
2404 independent reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050All H-atom parameters refined
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0636P)2 + 0.3001P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2404 reflectionsΔρmax = 0.19 e Å3
243 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.016 (4)
Crystal data top
C12H13N5O4V = 1313.88 (18) Å3
Mr = 291.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.1270 (6) ŵ = 0.11 mm1
b = 9.1950 (9) ÅT = 293 K
c = 13.0940 (11) Å0.25 × 0.25 × 0.20 mm
β = 101.264 (5)°
Data collection top
Nonius KappaCCD
diffractometer
1739 reflections with I > 2σ(I)
7133 measured reflectionsRint = 0.035
2404 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.142All H-atom parameters refined
S = 1.05Δρmax = 0.19 e Å3
2404 reflectionsΔρmin = 0.16 e Å3
243 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.17723 (18)0.3667 (2)0.54611 (15)0.0837 (6)
O20.50592 (14)0.65544 (19)0.65163 (13)0.0662 (5)
O30.02820 (19)0.6423 (3)0.14645 (15)0.0953 (7)
O40.1423 (2)0.4526 (3)0.13815 (17)0.1060 (8)
N10.34684 (16)0.50221 (19)0.59971 (13)0.0499 (5)
N20.23395 (16)0.5199 (2)0.42872 (13)0.0520 (5)
N30.39908 (14)0.67631 (19)0.48649 (13)0.0460 (5)
N40.30495 (15)0.6909 (2)0.31697 (14)0.0530 (5)
N50.1031 (2)0.5582 (3)0.09866 (17)0.0699 (7)
C10.2480 (2)0.4572 (3)0.52613 (18)0.0550 (6)
C20.30940 (17)0.6280 (2)0.40360 (17)0.0446 (5)
C30.42251 (18)0.6142 (2)0.58353 (17)0.0479 (5)
C40.24684 (18)0.6488 (2)0.21708 (16)0.0475 (5)
C50.2826 (2)0.5246 (3)0.1702 (2)0.0612 (7)
C60.2346 (2)0.4938 (3)0.0680 (2)0.0627 (7)
C70.15078 (19)0.5877 (3)0.01162 (17)0.0522 (6)
C80.1117 (2)0.7097 (3)0.05584 (18)0.0546 (6)
C90.1611 (2)0.7414 (3)0.15849 (18)0.0529 (6)
C100.1216 (3)0.4781 (5)0.3542 (3)0.0846 (11)
C110.4765 (3)0.7988 (3)0.4680 (2)0.0615 (7)
C120.3638 (3)0.4393 (4)0.7049 (2)0.0715 (8)
H50.340 (3)0.462 (3)0.209 (2)0.082 (8)*
H60.256 (3)0.412 (3)0.033 (2)0.092 (10)*
H80.049 (2)0.768 (3)0.018 (2)0.071 (7)*
H90.136 (2)0.833 (3)0.1891 (19)0.065 (7)*
H1010.062 (4)0.443 (5)0.391 (4)0.173 (19)*
H1020.148 (3)0.409 (4)0.314 (3)0.109 (14)*
H1030.093 (3)0.558 (4)0.313 (3)0.116 (13)*
H1110.510 (3)0.782 (4)0.408 (3)0.112 (12)*
H1120.539 (3)0.817 (4)0.536 (3)0.120 (11)*
H1130.426 (3)0.888 (4)0.447 (3)0.114 (12)*
H1210.298 (4)0.380 (5)0.707 (3)0.145 (16)*
H1220.356 (4)0.520 (5)0.758 (3)0.150 (16)*
H1230.438 (3)0.399 (4)0.723 (3)0.117 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0977 (14)0.0841 (14)0.0648 (12)0.0418 (11)0.0048 (10)0.0142 (10)
O20.0609 (10)0.0734 (11)0.0533 (10)0.0043 (8)0.0162 (8)0.0060 (9)
O30.0811 (13)0.148 (2)0.0479 (11)0.0086 (14)0.0085 (10)0.0071 (13)
O40.137 (2)0.1195 (19)0.0654 (14)0.0160 (15)0.0293 (13)0.0373 (13)
N10.0581 (10)0.0493 (10)0.0387 (10)0.0000 (8)0.0008 (8)0.0028 (8)
N20.0525 (10)0.0593 (12)0.0403 (11)0.0169 (9)0.0005 (8)0.0007 (9)
N30.0442 (9)0.0487 (10)0.0408 (10)0.0064 (8)0.0023 (7)0.0024 (8)
N40.0531 (10)0.0596 (11)0.0424 (11)0.0093 (9)0.0001 (8)0.0041 (9)
N50.0642 (13)0.1011 (18)0.0455 (13)0.0279 (13)0.0135 (11)0.0084 (13)
C10.0626 (14)0.0551 (14)0.0447 (14)0.0097 (11)0.0040 (10)0.0008 (11)
C20.0414 (10)0.0467 (12)0.0430 (13)0.0032 (9)0.0018 (9)0.0012 (10)
C30.0470 (11)0.0474 (12)0.0444 (13)0.0060 (9)0.0032 (9)0.0048 (10)
C40.0439 (10)0.0551 (13)0.0411 (12)0.0091 (9)0.0022 (9)0.0033 (10)
C50.0575 (14)0.0559 (15)0.0631 (17)0.0026 (11)0.0058 (12)0.0005 (12)
C60.0621 (15)0.0622 (15)0.0627 (17)0.0025 (12)0.0094 (12)0.0116 (13)
C70.0479 (12)0.0715 (15)0.0367 (12)0.0140 (11)0.0070 (9)0.0023 (11)
C80.0461 (12)0.0744 (16)0.0419 (13)0.0015 (11)0.0052 (10)0.0070 (12)
C90.0518 (12)0.0599 (14)0.0464 (13)0.0043 (11)0.0081 (10)0.0009 (11)
C100.077 (2)0.114 (3)0.0532 (18)0.050 (2)0.0122 (15)0.009 (2)
C110.0600 (14)0.0588 (16)0.0627 (17)0.0197 (12)0.0043 (13)0.0025 (13)
C120.085 (2)0.080 (2)0.0450 (15)0.0042 (17)0.0023 (14)0.0147 (15)
Geometric parameters (Å, º) top
O1—C11.209 (3)C5—C61.371 (4)
O2—C31.215 (2)C5—H50.93 (3)
O3—N51.217 (3)C6—C71.375 (4)
O4—N51.220 (3)C6—H60.94 (3)
N1—C31.373 (3)C7—C81.372 (3)
N1—C11.377 (3)C8—C91.380 (3)
N1—C121.471 (3)C8—H80.94 (3)
N2—C11.381 (3)C9—H91.00 (2)
N2—C21.381 (3)C10—H1010.95 (5)
N2—C101.478 (3)C10—H1020.91 (4)
N3—C31.371 (3)C10—H1030.93 (4)
N3—C21.396 (3)C11—H1110.95 (4)
N3—C111.466 (3)C11—H1121.03 (4)
N4—C21.265 (3)C11—H1131.00 (4)
N4—C41.396 (3)C12—H1210.91 (4)
N5—C71.463 (3)C12—H1221.03 (5)
C4—C51.391 (3)C12—H1230.89 (4)
C4—C91.392 (3)
C3—N1—C1123.22 (18)C5—C6—H6123.6 (19)
C3—N1—C12118.0 (2)C7—C6—H6117.1 (19)
C1—N1—C12118.4 (2)C8—C7—C6121.6 (2)
C1—N2—C2123.78 (18)C8—C7—N5119.0 (2)
C1—N2—C10115.4 (2)C6—C7—N5119.3 (2)
C2—N2—C10120.3 (2)C7—C8—C9119.0 (2)
C3—N3—C2124.47 (18)C7—C8—H8120.2 (16)
C3—N3—C11117.49 (18)C9—C8—H8120.7 (16)
C2—N3—C11118.01 (19)C8—C9—C4120.5 (2)
C2—N4—C4130.05 (19)C8—C9—H9118.6 (14)
O3—N5—O4123.6 (2)C4—C9—H9120.9 (14)
O3—N5—C7118.0 (3)N2—C10—H101110 (3)
O4—N5—C7118.4 (3)N2—C10—H102104 (2)
O1—C1—N1121.4 (2)H101—C10—H102113 (4)
O1—C1—N2121.8 (2)N2—C10—H103109 (2)
N1—C1—N2116.87 (19)H101—C10—H103112 (4)
N4—C2—N2128.53 (19)H102—C10—H103109 (3)
N4—C2—N3116.64 (18)N3—C11—H111111 (2)
N2—C2—N3114.79 (18)N3—C11—H112107.3 (19)
O2—C3—N3122.0 (2)H111—C11—H112116 (3)
O2—C3—N1121.6 (2)N3—C11—H113111 (2)
N3—C3—N1116.37 (17)H111—C11—H113102 (3)
C5—C4—C9118.9 (2)H112—C11—H113110 (3)
C5—C4—N4121.4 (2)N1—C12—H121108 (3)
C9—C4—N4119.3 (2)N1—C12—H122110 (2)
C6—C5—C4120.7 (2)H121—C12—H122103 (3)
C6—C5—H5119.9 (18)N1—C12—H123111 (2)
C4—C5—H5119.5 (18)H121—C12—H123117 (3)
C5—C6—C7119.2 (3)H122—C12—H123108 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.93 (3)2.49 (3)3.402 (3)165 (2)
C6—H6···O1ii0.94 (3)2.72 (3)3.377 (3)128 (2)
C8—H8···O1iii0.94 (2)2.65 (2)3.539 (3)157 (2)
C9—H9···O3iv1.00 (3)2.67 (3)3.366 (3)127 (2)
C10—H102···O3v0.91 (4)2.68 (3)3.104 (4)109 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z1/2; (iii) x, y+1/2, z+1/2; (iv) x, y+3/2, z+1/2; (v) x, y+1, z.

Experimental details

(II)(III)(IV)(V)
Crystal data
Chemical formulaC11H11N5O4·H2OC12H13N5O4C12H13N5O4C12H13N5O4
Mr295.26291.27291.27291.27
Crystal system, space groupOrthorhombic, P_21_21_21Monoclinic, P21/cTriclinic, P1Monoclinic, P21/c
Temperature (K)293293293293
a, b, c (Å)18.170 (4), 10.530 (3), 6.972 (2)11.3330 (12), 16.0250 (14), 7.1620 (7)8.253 (6), 8.493 (3), 10.084 (2)11.1270 (6), 9.1950 (9), 13.0940 (11)
α, β, γ (°)90, 90, 9090, 95.587 (5), 9078.79, 88.52, 74.9590, 101.264 (5), 90
V3)1334.0 (6)1294.5 (2)669.3 (6)1313.88 (18)
Z4424
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.120.120.110.11
Crystal size (mm)0.80 × 0.50 × 0.400.40 × 0.18 × 0.100.9 × 0.45 × 0.10.25 × 0.25 × 0.20
Data collection
DiffractometerPhilips PW 1100
diffractometer
Nonius KappaCCD
diffractometer
Philips PW 1100
diffractometer
Nonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
1339, 1339, 1152 16754, 2776, 1216 2494, 2349, 1806 7133, 2404, 1739
Rint0.0000.1150.0680.035
(sin θ/λ)max1)0.5950.6510.5950.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.130, 1.19 0.048, 0.141, 0.73 0.048, 0.144, 0.91 0.050, 0.142, 1.05
No. of reflections1339277623492404
No. of parameters205243242243
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementAll H-atom parameters refinedAll H-atom parameters refinedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.20, 0.200.19, 0.200.24, 0.250.19, 0.16

Computer programs: Philips PW 1110/20 (Philips, 1973), COLLECT (Nonius, 1998), Philips PW 1110/20, DENZO (Otwinowski & Minor, 1997), PROCN (Philips, 1973), DENZO, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976) and TEXSAN (Molecular Structure Corporation, 1995), TEXSAN, SHELXL97.

Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N4—H1N4···O50.81 (5)2.16 (5)2.933 (5)162 (5)
O5—H2O5···O2i0.92 (11)1.96 (11)2.867 (5)166 (10)
O5—H1O5···O1ii0.83 (6)2.18 (6)2.895 (6)145 (5)
O9—H9···O50.93 (5)2.55 (5)3.175 (6)125 (4)
C5—H5···N20.93 (5)2.32 (4)2.874 (5)117 (4)
C6—H6···O4iii0.93 (5)2.45 (5)3.333 (6)158 (4)
C8—H8···O1iv0.93 (5)2.52 (5)3.438 (6)169 (4)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+3/2, y, z+1/2; (iii) x+2, y+1/2, z+1/2; (iv) x, y1, z.
Comparison of bond lengths and bond angles of the s-triazine moiety. top
(II)(III)(IV)(V)
O1-C11.223 (5)1.213 (3)1.221 (2)1.209 (3)
O2-C31.212 (5)1.209 (3)1.221 (2)1.215 (2)
N1-C31.365 (5)1.364 (3)1.384 (3)1.373 (3)
N1-C11.404 (5)1.399 (3)1.393 (3)1.377 (3)
N2-C21.300 (5)1.304 (3)1.401 (2)1.381 (3)
N2-C11.351 (5)1.362 (3)1.395 (3)1.381 (3)
N3-C21.377 (5)1.375 (3)1.409 (3)1.396 (3)
N3-C31.391 (5)1.395 (3)1.388 (3)1.371 (3)
N4-C21.355 (5)1.364 (3)1.274 (3)1.265 (3)
N4-C41.416 (5)1.435 (3)1.406 (3)1.396 (3)
C3-N1-C1122.9 (3)123.1 (2)124.02 (17)123.22 (18)
C2-N2-C1119.5 (4)119.5 (2)123.14 (16)123.78 (18)
C2-N3-C3119.6 (3)120.0 (2)124.68 (16)124.47 (18)
N2-C1-N1118.4 (4)118.4 (2)116.51 (17)116.87 (19)
N2-C2-N3123.8 (3)123.2 (2)114.84 (16)114.79 (18)
N1-C3-N3115.6 (3)115.5 (2)115.50 (16)116.37 (17)
C2-N4-C4128.2 (4)118.8 (2)130.02 (18)130.05 (19)
N2-C2-N4120.4 (4)119.5 (2)128.54 (18)128.53 (19)
N4-C2-N3115.8 (4)117.2 (2)116.58 (17)116.64 (18)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i1.01 (2)2.62 (2)3.204 (3)117 (2)
C5—H5···N3i1.01 (2)2.51 (2)3.500 (3)168 (2)
C9—H9···O3ii1.02 (3)2.45 (3)3.374 (3)151 (2)
C10—H101···O2iii0.97 (3)2.58 (3)3.087 (3)112 (2)
C12—H123···N3iv0.98 (4)2.68 (4)3.579 (4)153 (3)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y, z+1; (iii) x, y1/2, z+3/2; (iv) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (IV) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O4i0.94 (2)2.72 (3)3.624 (4)163 (2)
C12—H121···O3ii0.98 (3)2.62 (4)3.529 (3)153 (3)
C12—H122···O2iii0.95 (4)2.50 (4)3.426 (4)163 (3)
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) for (V) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.93 (3)2.49 (3)3.402 (3)165 (2)
C6—H6···O1ii0.94 (3)2.72 (3)3.377 (3)128 (2)
C8—H8···O1iii0.94 (2)2.65 (2)3.539 (3)157 (2)
C9—H9···O3iv1.00 (3)2.67 (3)3.366 (3)127 (2)
C10—H102···O3v0.91 (4)2.68 (3)3.104 (4)109 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z1/2; (iii) x, y+1/2, z+1/2; (iv) x, y+3/2, z+1/2; (v) x, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds