Download citation
Download citation
link to html
The two sulfido-bridged dirhenium complexes bis(μ-4-methoxy­phenyl­sulfido-S)bis­(tetra­carbonyl­rhenium), [Re2(C7H7­OS)2­(CO)8], and bis(μ-naphthyl­sulfido-S)bis[tricarbonyl(dicyclohexylphosphane)rhenium], [Re2­(C12­H23P)2(C10H7S)2­(CO)6], show different geometries of the common Re2S2 core. The 4-methoxy­phenyl derivative has crystallographic \overline 1 symmetry and the naphthyl derivative has C2 symmetry. This results from intramolecular repulsion due to different substitution patterns at the Re and S atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199015152/na1446sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199015152/na1446Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199015152/na1446IIsup3.hkl
Contains datablock II

CCDC references: 142739; 142740

Comment top

Recently we reported new synthetic routes to hydrido sulfido bridged dirhenium complexes (Egold et al., 1999). In this context the new twice sulfido bridged complexes Re2(µ-SR)2(CO)8, (I) (R = 4-methoxyphenyl), and Re2(µ-SR')2(CO)6(PHCy2)2, (II) (R' = naphthyl; Cy = cyclohexyl), were also prepared. These two compounds differ markedly in their molecular geometries.

In (I) each Re atom is octahedrally coordinated by two axially and two equatorially positioned carbonyl groups and the two bridging sulfur atoms. The CO groups show ecliptic arrangement with torsion angles C4—Re···Rei—C3i and C2—Re···Rei—C1i (i = −1 − x,1 − y,-z) of 0.4 (3) and 1.3 (3)°, respectively. The geometric centre of the molecule lies on a crystallographic inversion centre. Consequently the Re2S2 core is planar and the methoxyphenyl groups attached to the µ-S atoms adopt anti positions. The two Re—S bond lengths of 2.524 (1) and 2.518 (1) Å differ only slightly, but they are significantly elongated compared to those of 2.471 (3) or 2.478 (3) Å, respectively, found in the hydrido sulfido bridged complexes Re2(µ-H)(µ-SR)(CO)8 (R = phenyl or naphthyl), (Egold et al., 1999). The related acetonitrile substituted complex Re2(µ-StBu)2(CO)6(CH3CN)2 (Eremenko et al., 1992) exhibits Re—S bond lengths of 2.522 (2) and 2.534 (2) Å. The enclosed ring angles of (I) are Re—S—Re 98.47 (4) and S—Re—S 81.53 (4)° and the non-bonding Re···Re separation is 3.819 (1) Å. The basic structural elements of (I), the planar M2S2 ring and the anti position of the R residues at the sulfido bridges, are also valid for the above mentioned rhenium acetonitril complex, for the complex Re2(µ-SR)2(CO)8 (R = CS2Re(CO)4) (Thiele et al., 1974) as well as for the two manganese compounds Mn2(µ-S-phenyl)2(CO)8 (Onaka & Katukawa, 1996) and Mn2(µ-S-tolyl)2(CO)8 (Chen et al., 1996).

In contrast to this, the core structure of (II) is entirely different showing a folded Re2S2 ring with a Re2S/SRe2 dihedral angle of 137.8 (1)° and naphthyl residues at both bridging S atoms in syn position. The coordination of Re by the two µ-S atoms, three CO groups and one axially attached PHCy2 ligand is slightly distorted octahedral. These latter terminal ligands show largely ecliptic arrangement with torsion angles 6.4 (7)° for C3—Re···Reii—C1ii, 9.2 (1)° for P1—Re···Reii—P1ii and 10.3 (7)° for C2—Re···Reii—C2ii (ii = −x, y, 0.5 − z). The phosphido ligands at the rhenium atoms are in syn position too, and a crystallographic twofold axis runs through the midpoint of the Re···Re vector. This geometry leads for the axial PHCy2 and CO ligands to intramolecular non-bonding distances of PH···HP 2.32 (15) Å [P—H is 1.44 (8) Å] and O···O 2.994 (15) Å. For a corresponding planar molecule like (I) the carbonyl O···O distances are about 3.2 Å but the calculated PH···HP separation of 0.9 Å and cyclohexyl CH···HC of 1.8 Å would be clearly too short and the resulting repulsive forces give rise to the observed ring distortion. Similar ring folding in order to reduce intramolecular repulsion is also known for µ-P bridged complexes (Flörke & Haupt, 1994). The Re—S bond lengths of 2.523 (2) and 2.526 (2) Å compare well to those of (I), but the Re—S—Re and S—Re—S angles of 98.93 (8) and 74.64 (8)°, respectively, reflect the folding of the ring. The non-bonding Re···Re distance is 3.838 (1) Å.

Experimental top

Preparation of (I): Re2(CO)10 (200 mg, 0.307 mmol) and 4-methoxy-thiophenol (75 µl, 0.612 mmol) were heated at 443 K in a sealed glass tube in the presence of xylene (1.5 ml) for 10 h. Subsequent thin-layer chromatography (TLC) separation (eluant: dichloromethane/n-hexane 1/5) gave (I) in 10% yield. Single crystals were grown from chloroform/n-pentane. Preparation of (II): trimethylamine N-oxide (17 mg, 0.226 mmol) were added to a solution of Re2[µ-S(2- naphthyl)]2(CO)8 (100 mg, 0.109 mmol) and PHCy2 (44 µl, 0.218 mmol) in tetra-hydrofuran. The Re educt was prepared according to Treichel & Tegen (1988). After stirring for 2 h (II) was isolated by TLC separation (eluant: dichloromethane/n-hexane 1/2) in 60% yield. Single crystals were grown from dichloromethane/n-pentane.

Computing details top

Data collection: XSCANS (Siemens, 1995a) for (I); XSCANS (Siemens, 1995b) for (II). For both compounds, cell refinement: XSCANS; data reduction: XSCANS. Program(s) used to solve structure: SHELXTL (Siemens 1995b) for (I); SHELXTL (Siemens, 1995a) for (II). For both compounds, program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The molecular structure of (II) showing 50% probability displacement ellipsoids. Cyclohexyl and naphthyl H atoms have been omitted for clarity.
(I) Octacarbonyl-bis(µ-4-methoxyphenyl-sulfido)-dirhenium top
Crystal data top
[Re2(C7H7OS)2(CO)8]F(000) = 816
Mr = 874.85Dx = 2.361 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.731 (2) ÅCell parameters from 30 reflections
b = 9.638 (1) Åθ = 7.3–22.1°
c = 13.772 (1) ŵ = 10.05 mm1
β = 107.66 (1)°T = 203 K
V = 1230.8 (3) Å3Block, pale yellow
Z = 20.44 × 0.24 × 0.18 mm
Data collection top
Siemens P4
diffractometer
2448 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.019
Graphite monochromatorθmax = 27.5°, θmin = 2.3°
2θ/ω scansh = 121
Absorption correction: ψ scan
North et al. (1968)
k = 112
Tmin = 0.080, Tmax = 0.164l = 1717
3716 measured reflections3 standard reflections every 397 reflections
2832 independent reflections intensity decay: <1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.0352P)2 + 1.1289P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2832 reflectionsΔρmax = 0.99 e Å3
165 parametersΔρmin = 1.00 e Å3
0 restraintsExtinction correction: SHELXTL (Siemens 1995a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00201 (18)
Crystal data top
[Re2(C7H7OS)2(CO)8]V = 1230.8 (3) Å3
Mr = 874.85Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.731 (2) ŵ = 10.05 mm1
b = 9.638 (1) ÅT = 203 K
c = 13.772 (1) Å0.44 × 0.24 × 0.18 mm
β = 107.66 (1)°
Data collection top
Siemens P4
diffractometer
2448 reflections with I > 2σ(I)
Absorption correction: ψ scan
North et al. (1968)
Rint = 0.019
Tmin = 0.080, Tmax = 0.1643 standard reflections every 397 reflections
3716 measured reflections intensity decay: <1%
2832 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 1.05Δρmax = 0.99 e Å3
2832 reflectionsΔρmin = 1.00 e Å3
165 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10.563075 (18)0.313838 (19)0.034644 (13)0.02253 (8)
S10.35250 (12)0.46876 (12)0.03121 (8)0.0230 (2)
O10.6890 (5)0.4452 (5)0.2516 (3)0.0484 (10)
C10.6459 (5)0.3910 (6)0.1762 (4)0.0304 (11)
O20.4286 (5)0.2426 (5)0.1961 (3)0.0464 (10)
C20.4753 (5)0.2655 (5)0.1123 (4)0.0293 (11)
O30.4467 (4)0.0480 (4)0.1051 (3)0.0427 (9)
C30.4876 (5)0.1499 (6)0.0804 (4)0.0303 (11)
O40.8242 (4)0.1285 (5)0.0439 (3)0.0462 (10)
C40.7316 (5)0.2021 (6)0.0410 (4)0.0329 (12)
C110.1824 (5)0.4096 (5)0.0519 (3)0.0230 (9)
C120.1485 (6)0.2702 (6)0.0607 (5)0.0389 (13)
H120.21820.20440.02730.047*
C130.0125 (6)0.2266 (7)0.1183 (5)0.0470 (16)
H130.00950.13140.12220.056*
C140.0907 (5)0.3195 (6)0.1699 (4)0.0336 (12)
C150.0589 (5)0.4582 (6)0.1600 (4)0.0353 (12)
H150.12900.52380.19280.042*
C160.0768 (5)0.5018 (6)0.1014 (4)0.0354 (12)
H160.09720.59740.09550.042*
O50.2208 (4)0.2662 (5)0.2275 (4)0.0526 (12)
C170.3234 (6)0.3616 (8)0.2884 (5)0.0480 (16)
H17A0.35760.42230.24450.072*
H17B0.40410.31070.33290.072*
H17C0.27810.41660.32920.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.01726 (11)0.02045 (11)0.02749 (11)0.00094 (8)0.00321 (7)0.00102 (8)
S10.0170 (5)0.0232 (6)0.0267 (5)0.0002 (4)0.0038 (4)0.0002 (4)
O10.051 (2)0.057 (3)0.0302 (19)0.006 (2)0.0008 (17)0.007 (2)
C10.025 (2)0.033 (3)0.031 (3)0.001 (2)0.004 (2)0.006 (2)
O20.051 (3)0.045 (2)0.037 (2)0.012 (2)0.0045 (19)0.0060 (19)
C20.024 (2)0.025 (2)0.038 (3)0.007 (2)0.008 (2)0.002 (2)
O30.047 (2)0.031 (2)0.055 (2)0.0033 (19)0.0231 (19)0.0091 (18)
C30.022 (2)0.030 (3)0.036 (3)0.003 (2)0.006 (2)0.002 (2)
O40.029 (2)0.042 (2)0.067 (3)0.0107 (19)0.0124 (19)0.000 (2)
C40.024 (2)0.033 (3)0.040 (3)0.002 (2)0.007 (2)0.001 (2)
C110.0159 (19)0.026 (2)0.028 (2)0.0014 (19)0.0067 (17)0.0010 (19)
C120.020 (2)0.031 (3)0.058 (4)0.000 (2)0.002 (2)0.000 (3)
C130.029 (3)0.031 (3)0.074 (4)0.005 (2)0.005 (3)0.005 (3)
C140.018 (2)0.039 (3)0.039 (3)0.003 (2)0.001 (2)0.005 (2)
C150.024 (2)0.035 (3)0.042 (3)0.000 (2)0.003 (2)0.006 (2)
C160.024 (2)0.027 (3)0.050 (3)0.008 (2)0.003 (2)0.002 (2)
O50.0246 (19)0.050 (3)0.071 (3)0.0094 (19)0.0040 (19)0.015 (2)
C170.020 (2)0.070 (4)0.046 (3)0.005 (3)0.003 (2)0.002 (3)
Geometric parameters (Å, º) top
Re1—C31.927 (5)O3—C31.150 (6)
Re1—C41.941 (5)O4—C41.138 (6)
Re1—C21.998 (5)C11—C161.373 (7)
Re1—C12.012 (5)C11—C121.379 (7)
Re1—S1i2.5179 (12)C12—C131.387 (7)
Re1—S12.5243 (12)C13—C141.372 (8)
S1—C111.796 (4)C14—C151.370 (8)
S1—Re1i2.5179 (12)C14—O51.373 (6)
O1—C11.123 (6)C15—C161.388 (6)
O2—C21.126 (6)O5—C171.428 (7)
C3—Re1—C486.0 (2)Re1i—S1—Re198.47 (4)
C3—Re1—C293.0 (2)O1—C1—Re1173.9 (5)
C4—Re1—C290.7 (2)O2—C2—Re1177.3 (5)
C3—Re1—C193.8 (2)O3—C3—Re1176.3 (5)
C4—Re1—C194.4 (2)O4—C4—Re1175.1 (5)
C2—Re1—C1171.8 (2)C16—C11—C12117.7 (4)
C3—Re1—S1i176.78 (15)C16—C11—S1121.1 (4)
C4—Re1—S1i96.58 (16)C12—C11—S1121.0 (4)
C2—Re1—S1i85.13 (15)C11—C12—C13120.4 (5)
C1—Re1—S1i87.88 (15)C14—C13—C12121.4 (6)
C3—Re1—S195.93 (16)C15—C14—C13118.5 (5)
C4—Re1—S1177.08 (16)C15—C14—O5124.3 (5)
C2—Re1—S191.36 (15)C13—C14—O5117.2 (5)
C1—Re1—S183.32 (15)C14—C15—C16120.0 (5)
S1i—Re1—S181.53 (4)C11—C16—C15121.9 (5)
C11—S1—Re1i111.92 (16)C14—O5—C17117.1 (5)
C11—S1—Re1114.20 (16)
Symmetry code: (i) x1, y+1, z.
(II) Hexacarbonyl-bis(dicyclohexylphosphane)-bis(µ-naphthyl- sulfido)-dirhenium top
Crystal data top
[Re2(C12H23P)2(C10H7S)2(CO)6]F(000) = 2480
Mr = 1255.44Dx = 1.653 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 24.561 (3) ÅCell parameters from 35 reflections
b = 9.378 (3) Åθ = 8.7–15.6°
c = 23.722 (3) ŵ = 4.99 mm1
β = 112.63 (1)°T = 293 K
V = 5043.3 (18) Å3Prism, colorless
Z = 40.41 × 0.10 × 0.08 mm
Data collection top
Siemens P4
diffractometer
2766 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 27.5°, θmin = 2.0°
ω scansh = 311
Absorption correction: ψ scan
North et al. (1968)
k = 112
Tmin = 0.482, Tmax = 0.671l = 2830
6948 measured reflections3 standard reflections every 397 reflections
5783 independent reflections intensity decay: 3%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: geom and difmap
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0328P)2 + 11.0195P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
5783 reflectionsΔρmax = 0.99 e Å3
284 parametersΔρmin = 0.50 e Å3
67 restraintsExtinction correction: SHELXTL (Siemens, 1995a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00016 (3)
Crystal data top
[Re2(C12H23P)2(C10H7S)2(CO)6]V = 5043.3 (18) Å3
Mr = 1255.44Z = 4
Monoclinic, C2/cMo Kα radiation
a = 24.561 (3) ŵ = 4.99 mm1
b = 9.378 (3) ÅT = 293 K
c = 23.722 (3) Å0.41 × 0.10 × 0.08 mm
β = 112.63 (1)°
Data collection top
Siemens P4
diffractometer
2766 reflections with I > 2σ(I)
Absorption correction: ψ scan
North et al. (1968)
Rint = 0.037
Tmin = 0.482, Tmax = 0.6713 standard reflections every 397 reflections
6948 measured reflections intensity decay: 3%
5783 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04767 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0328P)2 + 11.0195P]
where P = (Fo2 + 2Fc2)/3
5783 reflectionsΔρmax = 0.99 e Å3
284 parametersΔρmin = 0.50 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10.018345 (16)0.43684 (5)0.178340 (17)0.05035 (16)
S10.06590 (9)0.4999 (3)0.29032 (10)0.0484 (6)
P10.03091 (10)0.6969 (3)0.16728 (11)0.0511 (7)
H10.025 (4)0.773 (10)0.217 (4)0.080*
O10.1296 (3)0.3655 (10)0.1552 (4)0.097 (3)
C10.0873 (5)0.3964 (12)0.1640 (5)0.067 (3)
O20.0028 (4)0.1162 (10)0.1881 (4)0.101 (3)
C20.0084 (5)0.2456 (13)0.1855 (5)0.075 (4)
C30.0287 (4)0.4116 (13)0.0952 (5)0.075 (4)
O30.0577 (4)0.3863 (10)0.0442 (3)0.101 (3)
C110.0210 (3)0.7929 (12)0.1011 (4)0.058 (3)
H110.01190.89430.10940.069*
C120.0842 (4)0.7750 (13)0.0947 (4)0.079 (4)
H12A0.08780.80720.13200.095*
H12B0.09430.67450.08970.095*
C130.1278 (4)0.8573 (15)0.0409 (5)0.098 (4)
H13A0.16780.83490.03680.118*
H13B0.12170.95880.04850.118*
C140.1204 (4)0.8198 (16)0.0176 (5)0.108 (5)
H14A0.13020.72010.02730.129*
H14B0.14720.87680.05090.129*
C150.0579 (4)0.8465 (13)0.0116 (4)0.087 (4)
H15A0.04910.94740.00480.104*
H15B0.05390.82000.04930.104*
C160.0143 (4)0.7617 (12)0.0409 (4)0.071 (3)
H16A0.02550.78510.04500.085*
H16B0.02050.66070.03190.085*
C210.1053 (3)0.7552 (9)0.1727 (4)0.049 (2)
H210.11180.70890.13870.059*
C220.1111 (4)0.9132 (9)0.1647 (4)0.059 (3)
H22A0.10520.96370.19760.071*
H22B0.08050.94340.12650.071*
C230.1710 (4)0.9533 (11)0.1644 (5)0.071 (3)
H23A0.17381.05630.16270.085*
H23B0.17470.91400.12820.085*
C240.2215 (4)0.8974 (10)0.2215 (5)0.069 (3)
H24A0.25870.91290.21710.083*
H24B0.22240.95040.25690.083*
C250.2146 (3)0.7398 (10)0.2315 (5)0.064 (3)
H25A0.22110.68580.19980.077*
H25B0.24450.71160.27040.077*
C260.1544 (3)0.7025 (11)0.2309 (4)0.061 (3)
H26A0.14990.74540.26610.074*
H26B0.15140.60000.23400.074*
C310.1300 (4)0.4001 (12)0.3338 (4)0.056 (3)
C320.1368 (5)0.2595 (13)0.3277 (5)0.071 (3)
H320.10700.20720.29860.085*
C330.1920 (5)0.1884 (15)0.3673 (5)0.071 (3)
C340.1971 (7)0.0470 (18)0.3613 (7)0.110 (5)
H340.16670.00670.33360.132*
C350.2516 (7)0.0159 (19)0.3996 (7)0.129 (7)
H350.25740.11300.39630.154*
C360.2969 (7)0.066 (2)0.4424 (7)0.131 (7)
H360.33210.02240.46650.157*
C370.2903 (7)0.204 (2)0.4490 (7)0.127 (7)
H370.32010.25680.47790.152*
C380.2345 (6)0.2720 (16)0.4096 (5)0.074 (3)
C390.2281 (6)0.4125 (16)0.4163 (5)0.093 (4)
H390.25750.46480.44580.111*
C400.1762 (4)0.4775 (14)0.3778 (4)0.072 (4)
H400.17180.57520.38110.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.0413 (2)0.0581 (3)0.0530 (2)0.0043 (2)0.01959 (16)0.0070 (3)
S10.0366 (11)0.0596 (15)0.0483 (13)0.0025 (11)0.0154 (10)0.0016 (12)
P10.0421 (13)0.0569 (17)0.0463 (14)0.0057 (13)0.0080 (11)0.0010 (13)
O10.063 (5)0.120 (7)0.124 (7)0.008 (5)0.055 (5)0.030 (6)
C10.057 (6)0.072 (9)0.065 (7)0.018 (6)0.014 (5)0.014 (6)
O20.107 (7)0.069 (6)0.148 (8)0.001 (5)0.071 (6)0.010 (6)
C20.073 (8)0.069 (8)0.096 (9)0.025 (7)0.046 (7)0.028 (7)
C30.061 (6)0.102 (10)0.072 (7)0.014 (7)0.035 (6)0.025 (8)
O30.090 (6)0.135 (9)0.066 (5)0.017 (6)0.017 (5)0.035 (5)
C110.047 (5)0.073 (8)0.054 (6)0.003 (6)0.020 (5)0.003 (6)
C120.061 (7)0.100 (10)0.075 (7)0.020 (7)0.025 (6)0.025 (7)
C130.063 (7)0.141 (13)0.083 (9)0.031 (8)0.018 (7)0.051 (9)
C140.069 (8)0.138 (14)0.090 (10)0.007 (9)0.002 (7)0.033 (10)
C150.087 (9)0.102 (10)0.053 (7)0.011 (8)0.008 (6)0.020 (7)
C160.073 (7)0.083 (9)0.059 (6)0.002 (7)0.028 (6)0.004 (6)
C210.043 (5)0.049 (6)0.051 (6)0.001 (5)0.014 (5)0.002 (5)
C220.050 (5)0.063 (8)0.061 (6)0.002 (5)0.019 (5)0.007 (6)
C230.066 (6)0.054 (7)0.088 (8)0.004 (6)0.026 (6)0.013 (7)
C240.048 (6)0.066 (8)0.083 (8)0.000 (5)0.015 (6)0.007 (6)
C250.045 (6)0.061 (7)0.077 (7)0.004 (5)0.014 (5)0.017 (6)
C260.049 (5)0.068 (7)0.066 (6)0.003 (6)0.022 (5)0.019 (6)
C310.040 (5)0.076 (9)0.058 (6)0.011 (5)0.027 (5)0.011 (6)
C320.062 (7)0.084 (9)0.080 (8)0.010 (7)0.041 (6)0.012 (7)
C330.086 (9)0.074 (9)0.075 (8)0.018 (8)0.055 (7)0.012 (7)
C340.121 (12)0.111 (14)0.119 (12)0.019 (11)0.071 (10)0.012 (11)
C350.116 (12)0.155 (17)0.112 (12)0.082 (13)0.040 (10)0.038 (12)
C360.097 (11)0.20 (2)0.084 (11)0.083 (15)0.024 (9)0.050 (14)
C370.094 (11)0.19 (2)0.101 (11)0.062 (13)0.047 (9)0.055 (14)
C380.072 (8)0.097 (11)0.060 (7)0.015 (8)0.035 (6)0.003 (8)
C390.082 (9)0.118 (13)0.077 (8)0.011 (9)0.031 (7)0.036 (9)
C400.031 (5)0.117 (11)0.061 (6)0.009 (6)0.010 (5)0.002 (7)
Geometric parameters (Å, º) top
Re1—C21.827 (13)C15—C161.518 (10)
Re1—C31.878 (11)C21—C221.508 (9)
Re1—C11.889 (11)C21—C261.526 (9)
Re1—P12.484 (3)C22—C231.519 (9)
Re1—S1i2.523 (2)C23—C241.535 (10)
Re1—S12.526 (2)C24—C251.517 (10)
S1—C311.780 (10)C25—C261.512 (9)
S1—Re1i2.523 (2)C31—C321.343 (14)
P1—C111.834 (9)C31—C401.412 (13)
P1—C211.864 (8)C32—C331.478 (14)
O1—C11.173 (11)C33—C341.345 (17)
O2—C21.225 (13)C33—C381.380 (16)
C3—O31.169 (11)C34—C351.424 (17)
C11—C121.509 (9)C35—C361.41 (2)
C11—C161.527 (9)C36—C371.32 (2)
C12—C131.524 (10)C37—C381.473 (17)
C13—C141.510 (11)C38—C391.344 (16)
C14—C151.506 (10)C39—C401.391 (15)
C2—Re1—C385.7 (5)C14—C13—C12111.0 (9)
C2—Re1—C188.9 (5)C15—C14—C13110.7 (9)
C3—Re1—C191.0 (4)C14—C15—C16111.2 (9)
C2—Re1—P1179.3 (4)C15—C16—C11111.8 (8)
C3—Re1—P193.7 (4)C22—C21—C26110.6 (7)
C1—Re1—P191.2 (3)C22—C21—P1114.7 (6)
C2—Re1—S1i92.8 (3)C26—C21—P1112.3 (6)
C3—Re1—S1i95.5 (3)C21—C22—C23112.5 (7)
C1—Re1—S1i173.4 (3)C22—C23—C24111.6 (7)
P1—Re1—S1i87.16 (8)C25—C24—C23111.7 (8)
C2—Re1—S199.0 (4)C26—C25—C24113.1 (8)
C3—Re1—S1169.2 (3)C25—C26—C21111.3 (7)
C1—Re1—S198.8 (3)C32—C31—C40119.1 (10)
P1—Re1—S181.69 (8)C32—C31—S1125.0 (9)
S1i—Re1—S174.64 (8)C40—C31—S1116.0 (9)
C31—S1—Re1i110.4 (3)C31—C32—C33119.8 (12)
C31—S1—Re1115.7 (3)C34—C33—C38124.2 (14)
Re1i—S1—Re198.93 (8)C34—C33—C32118.5 (14)
C11—P1—C21104.8 (4)C38—C33—C32117.3 (12)
C11—P1—Re1119.9 (3)C33—C34—C35116.3 (16)
C21—P1—Re1116.1 (3)C36—C35—C34121.3 (16)
O1—C1—Re1177.3 (10)C37—C36—C35121.4 (16)
O2—C2—Re1176.8 (10)C36—C37—C38118.5 (18)
O3—C3—Re1175.5 (12)C39—C38—C33123.5 (13)
C12—C11—C16111.2 (7)C39—C38—C37118.2 (15)
C12—C11—P1112.4 (6)C33—C38—C37118.3 (14)
C16—C11—P1114.6 (6)C38—C39—C40118.2 (13)
C11—C12—C13113.1 (8)C39—C40—C31122.2 (12)
Symmetry code: (i) x, y, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formula[Re2(C7H7OS)2(CO)8][Re2(C12H23P)2(C10H7S)2(CO)6]
Mr874.851255.44
Crystal system, space groupMonoclinic, P21/nMonoclinic, C2/c
Temperature (K)203293
a, b, c (Å)9.731 (2), 9.638 (1), 13.772 (1)24.561 (3), 9.378 (3), 23.722 (3)
β (°) 107.66 (1) 112.63 (1)
V3)1230.8 (3)5043.3 (18)
Z24
Radiation typeMo KαMo Kα
µ (mm1)10.054.99
Crystal size (mm)0.44 × 0.24 × 0.180.41 × 0.10 × 0.08
Data collection
DiffractometerSiemens P4
diffractometer
Siemens P4
diffractometer
Absorption correctionψ scan
North et al. (1968)
ψ scan
North et al. (1968)
Tmin, Tmax0.080, 0.1640.482, 0.671
No. of measured, independent and
observed [I > 2σ(I)] reflections
3716, 2832, 2448 6948, 5783, 2766
Rint0.0190.037
(sin θ/λ)max1)0.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.063, 1.05 0.047, 0.117, 1.02
No. of reflections28325783
No. of parameters165284
No. of restraints067
H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0352P)2 + 1.1289P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0328P)2 + 11.0195P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.99, 1.000.99, 0.50

Computer programs: XSCANS (Siemens, 1995a), XSCANS (Siemens, 1995b), XSCANS, SHELXTL (Siemens 1995b), SHELXTL (Siemens, 1995a), SHELXTL.

Selected geometric parameters (Å, º) for (I) top
Re1—S1i2.5179 (12)S1—C111.796 (4)
Re1—S12.5243 (12)
S1i—Re1—S181.53 (4)C11—S1—Re1114.20 (16)
C11—S1—Re1i111.92 (16)Re1i—S1—Re198.47 (4)
Symmetry code: (i) x1, y+1, z.
Selected geometric parameters (Å, º) for (II) top
Re1—P12.484 (3)Re1—S12.526 (2)
Re1—S1i2.523 (2)S1—C311.780 (10)
S1i—Re1—S174.64 (8)C31—S1—Re1115.7 (3)
C31—S1—Re1i110.4 (3)Re1i—S1—Re198.93 (8)
Symmetry code: (i) x, y, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds