Download citation
Download citation
link to html
The title compound, C16H11ClN4O, is an anticonvulsant agent. In the crystal, a particularly short C—H...N intermolecular hydrogen bond is noted [H...N 2.22 (2) Å]. The diazepine ring has a boat conformation.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199014754/na1441sup1.cif
Contains datablocks RL202, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199014754/na1441Isup2.hkl
Contains datablock I

CCDC reference: 142785

Comment top

The title compound, indicated here as RL202,was previously reported to exhibit anticonvulsant activity (Bauer et al., 1974; Fryer et al., 1978). Its crystal structure has been now determined as part of an investigation on the relationships between molecular properties and pharmacological activities of [1,2,4]triazolo[4,3-a][1,5]benzodiazepin-5-amines with different substitution patterns (Di Braccio et al., 1990; Roma et al., 1991; Grossi et al., 1993).

To our knowledge, the present work reports for the first time the crystal structure of a [1,2,4]triazolo[4,3-a][1,5]benzodiazepinone. The structure of RL202 has been solved by direct methods (Gabe et al., 1989). An ORTEPII view (Johnson, 1976) is shown in Fig. 1. The diazepine ring has a boat conformation; the asymmetry parameters (PARST; Nardelli, 1983, 1995) give evidence of a pseudo mirror plane passing through C4 [ΔCs = 0.0420 (4)]. The extent of the boat conformation can be described in terms of the (acute) dihedral angles between the central plane, defined by atoms N11, C3a, C5, N6 and the 'bow' and 'stern' planes, defined by atoms C3a, C4, C5 and C6a, C10a, N11, N6, respectively (Hamor & Martin, 1983). The bow and stern angles in RL202 [55.1 (1) and 37.1 (1)°] compare well with analogous values obtained for [1,2,4]triazolo[4,3-a][1,4]benzodiazepines, where the ranges for bow-angles and stern-angles are 53.4–55.5 and 31.2–36.2°, respectively (Hamor & Martin, 1983). For Clobazam, an important 1,5-benzodiazepinedione (Butcher & Hamor, 1985), the corresponding values are 59.4 (5) and 40.7 (5)°, respectively.

The main conformational parameter of RL202 is the torsion angle of the non-condensed phenyl ring. Its rather high value, 57.3 (2)° for the C6a—N6—C1'-C6' torsion angle, can be referred back to the steric hindrance with neighbouring atoms [C2'···O 2.929 (2), C6'···C7 3.300 (2) Å]. In order to investigate the effects of packing forces on the observed conformation, the geometry of the isolated molecule has been calculated with ab initio molecular orbital methods at the HF/6–31 G* level (Hariharan & Pople, 1973;full optimization, 356 basis functions). In this case, the internal strain relaxes through an even larger torsion angle of the phenyl ring (68.4°); the two non-bonded distances become 2.97 and 3.53 Å, respectively.

Intermolecular contacts in the crystal state correspond to van der Waals interactions, with the exception of a stronger C—H···N hydrogen bond [C1—H1 1.00 (2) Å, C1···N3 3.191 (2) Å, H1···N3 2.22 (2) Å, C1—H1···N3 163.7(1.5)°, N3 in x, 3/2 − y, −1/2 + z] and of a weaker C—H···O interaction [C6'-H6' 0.94 (2) Å, C6'···O 3.371 (2) Å, H6'···O 2.45 (2) Å, C6'-H6'···O 166.5(1.7)°, O in x, 3/2 − y, −1/2 + z]. According to a recent review on C—H···N hydrogen bonds (Mascal, 1998), the present H···N distance locates on the short side of the distribution.

Atomic charges have been evaluated for the experimental molecule with re-normalized C—H bond distances; the calculations have been performed at the HF/6–31 G* level with the method of the best-fit to the electrostatic potential. The resulting values for exposed heteroatoms in the molecule (O −0.59, N3 − 0.39, N2 − 0.34, Cl −0.13 a.u.), along with the packing geometry, support the observed interactions. Charges calculated for H1 and H6' are 0.14 and 0.17 a.u., respectively.

Experimental top

Compound RL202 was crystallized from methanol.

Refinement top

In the final least-squares cycles zero weight was given to four low-angle reflections, as affected by extinction or experimental error. All the hydrogen atoms were localized from difference syntheses and refined isotropically. The range of resulting C—H bond lengths is 0.92 to 1.01 A with a nearly constant su of 0.02 A. No correlation matrix elements larger than 0.50 were found.

The sequence of programs used to generate CIF:

SHELXL97 -> PREP97 (by Professor M. Nardelli) -> PARST97 -> PARSTCIF

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989) and CADABS (local software); program(s) used to solve structure: NRCVAX; program(s) used to refine structure: NRCVAX and SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP (Johnson, 1976); software used to prepare material for publication: PARST (Nardelli, 1983, 1995) and PARSTCIF (Nardelli, 1991).

Figures top
[Figure 1] Fig. 1. A molecule of RL202 with numbering scheme of atoms. Displacement ellipsoids are drawn at 0.50 level of probability. H atoms are on an arbitrary scale.
8-Chloro-6-phenyl-4H-[1,2,4]triazolo[4,3-a][1,5]benzodiazepin-5(6H)-one top
Crystal data top
C16H11ClN4ODx = 1.442 Mg m3
Dm = 1.441 Mg m3
Dm measured by floating crystals method
Mr = 310.74Melting point: 571 K
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
a = 16.983 (4) ÅCell parameters from 25 reflections
b = 8.863 (2) Åθ = 16.5–19.7°
c = 9.784 (4) ŵ = 0.27 mm1
β = 103.67 (3)°T = 293 K
V = 1431.0 (8) Å3Prism, colourless
Z = 40.54 × 0.46 × 0.40 mm
F(000) = 640.0
Data collection top
Enraf-Nonius CAD-4
diffractometer
3462 reflections with Fo > 4 σ(Fo)
Radiation source: X-rayRint = 0.000
Graphite monochromatorθmax = 29.9°, θmin = 2.6°
ωθ scan modeh = 023
Absorption correction: ψ scan
(North et al., 1968)
k = 012
Tmin = 0.823, Tmax = 0.896l = 1313
4161 measured reflections2 standard reflections every 90 min
4161 independent reflections intensity decay: 5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: difference Fourier map
wR(F2) = 0.110All H-atom parameters refined
S = 1.04Calculated w = 1/[σ2(Fo2) + (0.0524P)2 + 0.3463P]
where P = (Fo2 + 2Fc2)/3
4157 reflections(Δ/σ)max = 0.001
243 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.36 e Å3
0 constraints
Crystal data top
C16H11ClN4OV = 1431.0 (8) Å3
Mr = 310.74Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.983 (4) ŵ = 0.27 mm1
b = 8.863 (2) ÅT = 293 K
c = 9.784 (4) Å0.54 × 0.46 × 0.40 mm
β = 103.67 (3)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
3462 reflections with Fo > 4 σ(Fo)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.823, Tmax = 0.8962 standard reflections every 90 min
4161 measured reflections intensity decay: 5%
4161 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.110All H-atom parameters refined
S = 1.04Δρmax = 0.26 e Å3
4157 reflectionsΔρmin = 0.36 e Å3
243 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.96531 (8)0.7749 (2)0.6615 (1)0.0436 (4)
N21.01163 (7)0.7650 (2)0.7882 (1)0.0483 (4)
N30.98292 (7)0.8695 (1)0.8715 (1)0.0421 (3)
C3a0.92086 (7)0.9369 (2)0.7909 (1)0.0338 (3)
C40.86656 (7)1.0520 (2)0.8289 (1)0.0371 (4)
C50.78386 (7)0.9816 (2)0.8141 (1)0.0374 (4)
N60.74182 (6)0.9478 (1)0.6784 (1)0.0332 (3)
C6a0.77051 (7)0.9776 (1)0.5549 (1)0.0309 (3)
C70.71696 (7)1.0427 (2)0.4396 (1)0.0356 (4)
C80.74001 (8)1.0633 (2)0.3151 (1)0.0379 (4)
C90.81573 (9)1.0198 (2)0.2989 (1)0.0438 (4)
C100.86979 (8)0.9598 (2)0.4138 (1)0.0416 (4)
C10a0.84801 (7)0.9384 (2)0.5407 (1)0.0331 (3)
N110.90638 (6)0.8807 (1)0.6571 (1)0.0348 (3)
Cl0.67268 (2)1.14899 (5)0.17568 (4)0.0556 (1)
O0.75713 (7)0.9534 (2)0.9154 (1)0.0619 (4)
C1'0.66060 (7)0.8872 (1)0.6559 (1)0.0336 (3)
C2'0.60226 (8)0.9632 (2)0.7060 (2)0.0460 (4)
C3'0.52425 (9)0.9055 (2)0.6817 (2)0.0531 (5)
C4'0.50528 (8)0.7728 (2)0.6079 (2)0.0514 (5)
C5'0.5636 (1)0.6987 (2)0.5570 (2)0.0545 (5)
C6'0.64216 (9)0.7548 (2)0.5817 (2)0.0452 (5)
H10.9677 (10)0.711 (2)0.5781 (19)0.052 (5)*
H410.8627 (10)1.1417 (19)0.7644 (18)0.043 (4)*
H420.8872 (10)1.083 (2)0.9237 (19)0.051 (5)*
H70.6646 (10)1.073 (2)0.4493 (18)0.047 (4)*
H90.8325 (10)1.034 (2)0.2145 (19)0.053 (5)*
H100.9219 (11)0.936 (2)0.4080 (18)0.051 (5)*
H2'0.6144 (12)1.058 (2)0.756 (2)0.064 (6)*
H3'0.4814 (13)0.962 (3)0.717 (2)0.082 (7)*
H4'0.4493 (12)0.732 (2)0.589 (2)0.067 (6)*
H5'0.5508 (13)0.606 (3)0.503 (2)0.076 (6)*
H6'0.6817 (12)0.702 (2)0.548 (2)0.062 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0367 (6)0.0607 (8)0.0339 (6)0.0141 (6)0.0090 (5)0.0001 (6)
N20.0412 (6)0.0667 (8)0.0354 (6)0.0145 (6)0.0061 (5)0.0019 (5)
N30.0356 (5)0.0570 (7)0.0322 (5)0.0017 (5)0.0051 (4)0.0006 (5)
C3a0.0293 (5)0.0436 (6)0.0294 (5)0.0045 (5)0.0084 (4)0.0017 (5)
C40.0316 (5)0.0437 (7)0.0366 (6)0.0057 (5)0.0091 (5)0.0090 (5)
C50.0332 (6)0.0485 (7)0.0328 (6)0.0051 (5)0.0124 (5)0.0054 (5)
N60.0271 (4)0.0439 (5)0.0310 (5)0.0051 (4)0.0116 (3)0.0028 (4)
C6a0.0280 (5)0.0363 (6)0.0299 (5)0.0016 (4)0.0099 (4)0.0009 (4)
C70.0299 (5)0.0395 (6)0.0376 (6)0.0031 (5)0.0083 (4)0.0007 (5)
C80.0391 (6)0.0391 (6)0.0337 (6)0.0038 (5)0.0050 (5)0.0055 (5)
C90.0444 (7)0.0572 (8)0.0325 (6)0.0045 (6)0.0147 (5)0.0084 (6)
C100.0333 (6)0.0595 (8)0.0352 (6)0.0063 (6)0.0147 (5)0.0052 (6)
C10a0.0284 (5)0.0424 (6)0.0289 (5)0.0013 (4)0.0079 (4)0.0013 (4)
N110.0287 (4)0.0484 (6)0.0276 (4)0.0045 (4)0.0072 (3)0.0003 (4)
Cl0.0591 (2)0.0595 (2)0.0436 (2)0.0153 (2)0.0027 (2)0.0158 (2)
O0.0516 (6)0.1032 (10)0.0357 (5)0.0235 (6)0.0201 (4)0.0079 (6)
C1'0.0275 (5)0.0391 (6)0.0356 (6)0.0043 (4)0.0105 (4)0.0002 (5)
C2'0.0357 (6)0.0505 (8)0.0562 (8)0.0054 (6)0.0197 (6)0.0127 (6)
C3'0.0317 (6)0.0696 (10)0.0622 (9)0.0031 (6)0.0194 (6)0.0046 (8)
C4'0.0329 (6)0.0636 (9)0.0561 (8)0.0137 (6)0.0074 (6)0.0047 (7)
C5'0.0488 (8)0.0487 (8)0.0645 (10)0.0161 (7)0.0101 (7)0.0105 (7)
C6'0.0390 (6)0.0433 (7)0.0554 (8)0.0045 (6)0.0151 (6)0.0093 (6)
Geometric parameters (Å, º) top
C1—N21.304 (2)C8—C91.387 (2)
C1—N111.365 (2)C8—Cl1.734 (1)
C1—H11.00 (1)C9—C101.379 (2)
N2—N31.395 (2)C9—H90.94 (2)
N3—C3a1.302 (2)C10—C10a1.390 (2)
C3a—C41.480 (2)C10—H100.92 (1)
C3a—N111.367 (2)C10a—N111.417 (2)
C4—C51.512 (2)C1'—C2'1.380 (2)
C4—H411.01 (1)C1'—C6'1.376 (2)
C4—H420.95 (1)C2'—C3'1.387 (2)
C5—N61.383 (2)C2'—H2'0.97 (2)
C5—O1.210 (2)C3'—C4'1.378 (3)
N6—C6a1.430 (2)C3'—H3'1.01 (2)
N6—C1'1.448 (2)C4'—C5'1.376 (3)
C6a—C71.395 (2)C4'—H4'0.99 (2)
C6a—C10a1.400 (2)C5'—C6'1.390 (2)
C7—C81.377 (2)C5'—H5'0.98 (2)
C7—H70.96 (1)C6'—H6'0.94 (2)
N2—C1—N11110.4 (1)C8—C9—H9123 (1)
N2—C1—H1127 (1)C10—C9—H9119 (1)
N11—C1—H1122 (1)C9—C10—C10a121.0 (1)
C1—N2—N3107.2 (1)C9—C10—H10120 (1)
N2—N3—C3a107.2 (1)C10a—C10—H10119 (1)
N3—C3a—C4128.8 (1)C6a—C10a—C10120.7 (1)
N3—C3a—N11110.4 (1)C6a—C10a—N11120.3 (1)
C4—C3a—N11120.6 (1)C10—C10a—N11119.0 (1)
C3a—C4—C5108.1 (1)C1—N11—C3a104.8 (1)
C3a—C4—H41110 (1)C1—N11—C10a129.9 (1)
C3a—C4—H42110 (1)C3a—N11—C10a124.9 (1)
C5—C4—H41110 (1)N6—C1'—C2'120.2 (1)
C5—C4—H42109 (1)N6—C1'—C6'119.1 (1)
H41—C4—H42110 (1)C2'—C1'—C6'120.7 (1)
C4—C5—N6116.0 (1)C1'—C2'—C3'119.7 (1)
C4—C5—O121.8 (1)C1'—C2'—H2'121 (1)
N6—C5—O122.2 (1)C3'—C2'—H2'119 (1)
C5—N6—C6a124.7 (1)C2'—C3'—C4'120.0 (2)
C5—N6—C1'118.9 (1)C2'—C3'—H3'120 (1)
C6a—N6—C1'116.3 (1)C4'—C3'—H3'120 (1)
N6—C6a—C7118.2 (1)C3'—C4'—C5'119.9 (2)
N6—C6a—C10a123.7 (1)C3'—C4'—H4'120 (1)
C7—C6a—C10a118.1 (1)C5'—C4'—H4'120 (1)
C6a—C7—C8120.2 (1)C4'—C5'—C6'120.7 (2)
C6a—C7—H7119 (1)C4'—C5'—H5'121 (1)
C8—C7—H7121 (1)C6'—C5'—H5'119 (1)
C7—C8—C9122.0 (1)C1'—C6'—C5'119.1 (1)
C7—C8—Cl118.8 (1)C1'—C6'—H6'121 (1)
C9—C8—Cl119.2 (1)C5'—C6'—H6'120 (1)
C8—C9—C10118.1 (1)
N11—C1—N2—N30.5 (2)C6a—C7—C8—C90.6 (2)
H1—C1—N2—N3175 (1)C6a—C7—C8—Cl178.4 (1)
N2—C1—N11—C3a0.9 (2)H7—C7—C8—C9179 (1)
N2—C1—N11—C10a173.6 (1)H7—C7—C8—Cl1 (1)
H1—C1—N11—C3a177 (1)C7—C8—C9—C102.6 (2)
H1—C1—N11—C10a10 (1)C7—C8—C9—H9179 (1)
C1—N2—N3—C3a0.0 (2)Cl—C8—C9—C10176.4 (1)
N2—N3—C3a—C4177.0 (1)Cl—C8—C9—H90 (1)
N2—N3—C3a—N110.5 (2)C8—C9—C10—C10a2.3 (2)
N3—C3a—C4—C5111.7 (2)C8—C9—C10—H10175 (1)
N3—C3a—C4—H41128 (1)H9—C9—C10—C10a179 (1)
N3—C3a—C4—H428 (1)H9—C9—C10—H101 (2)
N11—C3a—C4—C564.4 (2)C9—C10—C10a—C6a0.1 (2)
N11—C3a—C4—H4155 (1)C9—C10—C10a—N11178.1 (1)
N11—C3a—C4—H42175 (1)H10—C10—C10a—C6a178 (1)
N3—C3a—N11—C10.9 (2)H10—C10—C10a—N110 (1)
N3—C3a—N11—C10a174.0 (1)C6a—C10a—N11—C1145.1 (1)
C4—C3a—N11—C1177.6 (1)C6a—C10a—N11—C3a43.5 (2)
C4—C3a—N11—C10a9.2 (2)C10—C10a—N11—C136.9 (2)
C3a—C4—C5—N668.3 (1)C10—C10a—N11—C3a134.5 (1)
C3a—C4—C5—O110.0 (2)N6—C1'—C2'—C3'178.9 (1)
H41—C4—C5—N652 (1)N6—C1'—C2'—H2'0 (1)
H41—C4—C5—O129 (1)C6'—C1'—C2'—C3'0.3 (2)
H42—C4—C5—N6172 (1)C6'—C1'—C2'—H2'177 (1)
H42—C4—C5—O9 (1)N6—C1'—C6'—C5'178.4 (1)
C4—C5—N6—C6a1.4 (2)N6—C1'—C6'—H6'2 (1)
C4—C5—N6—C1'176.9 (1)C2'—C1'—C6'—C5'0.3 (2)
O—C5—N6—C6a179.6 (1)C2'—C1'—C6'—H6'179 (1)
O—C5—N6—C1'4.8 (2)C1'—C2'—C3'—C4'0.0 (3)
C5—N6—C6a—C7134.4 (1)C1'—C2'—C3'—H3'178 (2)
C5—N6—C6a—C10a48.9 (2)H2'—C2'—C3'—C4'179 (1)
C1'—N6—C6a—C741.3 (2)H2'—C2'—C3'—H3'0 (2)
C1'—N6—C6a—C10a135.4 (1)C2'—C3'—C4'—C5'0.7 (3)
C5—N6—C1'—C2'54.6 (2)C2'—C3'—C4'—H4'178 (1)
C5—N6—C1'—C6'126.8 (1)H3'—C3'—C4'—C5'179 (2)
C6a—N6—C1'—C2'121.3 (1)H3'—C3'—C4'—H4'0 (2)
C6a—N6—C1'—C6'57.3 (2)C3'—C4'—C5'—C6'1.2 (3)
N6—C6a—C7—C8175.3 (1)C3'—C4'—C5'—H5'178 (2)
N6—C6a—C7—H75 (1)H4'—C4'—C5'—C6'180 (1)
C10a—C6a—C7—C81.6 (2)H4'—C4'—C5'—H5'0 (2)
C10a—C6a—C7—H7177 (1)C4'—C5'—C6'—C1'1.0 (3)
N6—C6a—C10a—C10174.8 (1)C4'—C5'—C6'—H6'179 (1)
N6—C6a—C10a—N117.2 (2)H5'—C5'—C6'—C1'179 (2)
C7—C6a—C10a—C101.9 (2)H5'—C5'—C6'—H6'0 (2)
C7—C6a—C10a—N11176.1 (1)

Experimental details

Crystal data
Chemical formulaC16H11ClN4O
Mr310.74
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)16.983 (4), 8.863 (2), 9.784 (4)
β (°) 103.67 (3)
V3)1431.0 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.54 × 0.46 × 0.40
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.823, 0.896
No. of measured, independent and
observed [Fo > 4 σ(Fo)] reflections
4161, 4161, 3462
Rint0.000
(sin θ/λ)max1)0.701
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.110, 1.04
No. of reflections4157
No. of parameters243
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.26, 0.36

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, NRCVAX (Gabe et al., 1989) and CADABS (local software), NRCVAX and SHELXL97 (Sheldrick, 1997), ORTEP (Johnson, 1976), PARST (Nardelli, 1983, 1995) and PARSTCIF (Nardelli, 1991).

Selected geometric parameters (Å, º) top
C1—N21.304 (2)C4—C51.512 (2)
C1—N111.365 (2)C5—N61.383 (2)
N2—N31.395 (2)N6—C6a1.430 (2)
N3—C3a1.302 (2)C6a—C10a1.400 (2)
C3a—C41.480 (2)C10a—N111.417 (2)
C3a—N111.367 (2)
N2—C1—N11110.4 (1)C4—C5—N6116.0 (1)
C1—N2—N3107.2 (1)C5—N6—C6a124.7 (1)
N2—N3—C3a107.2 (1)N6—C6a—C10a123.7 (1)
N3—C3a—C4128.8 (1)C6a—C10a—N11120.3 (1)
N3—C3a—N11110.4 (1)C1—N11—C3a104.8 (1)
C4—C3a—N11120.6 (1)C3a—N11—C10a124.9 (1)
C3a—C4—C5108.1 (1)
N11—C3a—C4—C564.4 (2)C5—N6—C1'—C2'54.6 (2)
C4—C3a—N11—C10a9.2 (2)C6a—N6—C1'—C6'57.3 (2)
C3a—C4—C5—N668.3 (1)N6—C6a—C10a—N117.2 (2)
C4—C5—N6—C6a1.4 (2)C6a—C10a—N11—C3a43.5 (2)
C5—N6—C6a—C10a48.9 (2)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds