Download citation
Download citation
link to html
The structure of synthetic YbFeMnO4 has been refined by single-crystal X-ray diffraction. Space group R\bar 3m, a = 3.4580 (1), c = 25.647 (3) Å, V = 265.59 (3) Å3, Z = 3. Yb is in octahedral coordination, whereas Fe and Mn are disordered on a single crystallographic type of trigonal bipyramid, in which the cation is off-centred from the basal plane. Assuming perfect stoichiometry, R1 = 0.0195, but the charge distribution (CD) analysis suggests incomplete occupation of the Yb site. Refinement of the occupancy lowers R1 to 0.0175, resulting in s.o.f.(Yb) = 0.963 (3), with a significant improvement of the Fourier difference. The electroneutrality is likely preserved through incomplete occupancy of one of the two oxygen sites: the compound is thus non-stoichiometric, with the formula Yb0.963FeMnO3.945. Another mechanism for preserving the electroneutrality is the oxidation of a small amount of Mn2+ to Mn3+, which is, however, less probable because of the reduction conditions in which the sample was synthesized. Both models give a satisfactorily CD result, but they cannot be definitively distinguished by X-ray data.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768100005383/na0104sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768100005383/na0104sup2.hkl
Contains datablock ybfemno4

Computing details top

Data collection: CAD-4 EXPRESS; cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1.  
(I) top
Crystal data top
Yb0.963FeMnO3.945Dx = 6.405 Mg m3
Mr = 341.49Mo Kα radiation, λ = 0.71073 Å
Hexagonal, R3mCell parameters from 18 reflections
Hall symbol: -R 3 2"θ = 41.0–45.3°
a = 3.4580 (1) ŵ = 32.64 mm1
c = 25.647 (3) ÅT = 293 K
V = 265.59 (3) Å3Sphere, black
Z = 30.06 × 0.06 × 0.06 × 0.06 (radius) mm
F(000) = 451
Data collection top
Enraf Nonius CAD4
diffractometer
528 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 59.8°, θmin = 2.4°
ωθ scansh = 07
Absorption correction: for a sphere
PLATON
k = 04
Tmin = 0.086, Tmax = 0.166l = 6061
655 measured reflections3 standard reflections every 240 min
577 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018 w = 1/[σ2(Fo2) + (0.0192P)2 + 1.2133P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.044(Δ/σ)max = 0.001
S = 1.18Δρmax = 2.55 e Å3
577 reflectionsΔρmin = 4.88 e Å3
14 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0290 (11)
Crystal data top
Yb0.963FeMnO3.945Z = 3
Mr = 341.49Mo Kα radiation
Hexagonal, R3mµ = 32.64 mm1
a = 3.4580 (1) ÅT = 293 K
c = 25.647 (3) Å0.06 × 0.06 × 0.06 × 0.06 (radius) mm
V = 265.59 (3) Å3
Data collection top
Enraf Nonius CAD4
diffractometer
528 reflections with I > 2σ(I)
Absorption correction: for a sphere
PLATON
Rint = 0.020
Tmin = 0.086, Tmax = 0.1663 standard reflections every 240 min
655 measured reflections intensity decay: none
577 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01814 parameters
wR(F2) = 0.0440 restraints
S = 1.18Δρmax = 2.55 e Å3
577 reflectionsΔρmin = 4.88 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Yb0.00000.00000.00000.01184 (5)0.963 (3)
Fe0.00000.00000.215706 (14)0.00728 (7)0.50
Mn0.00000.00000.215706 (14)0.00728 (7)0.50
O10.00000.00000.12826 (13)0.0208 (5)0.97
O20.00000.00000.29345 (8)0.0098 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Yb0.00345 (4)0.00345 (4)0.02863 (11)0.00172 (2)0.0000.000
Fe0.00660 (8)0.00660 (8)0.00865 (12)0.00330 (4)0.0000.000
Mn0.00660 (8)0.00660 (8)0.00865 (12)0.00330 (4)0.0000.000
O10.0217 (8)0.0217 (8)0.0192 (10)0.0108 (4)0.0000.000
O20.0095 (3)0.0095 (3)0.0106 (5)0.00474 (17)0.0000.000
Geometric parameters (Å, º) top
Yb—O2i2.2432 (10)Fe—O1v2.0150 (5)
Yb—O2ii2.2432 (10)Fe—O12.243 (3)
Yb—O2iii2.2432 (10)Fe—Ybxiii3.6176 (4)
Yb—O2iv2.2432 (10)Fe—Ybxiv3.6176 (4)
Yb—O2v2.2433 (10)Fe—Ybxv3.6176 (4)
Yb—O2vi2.2433 (10)O1—Mniii2.0150 (5)
Yb—Ybvii3.4580O1—Feiii2.0150 (5)
Yb—Ybviii3.4580O1—Mni2.0150 (5)
Yb—Ybix3.4580O1—Fei2.0150 (5)
Yb—Ybx3.4580O1—Mnv2.0150 (5)
Yb—Ybxi3.4580O1—Fev2.0150 (5)
Yb—Ybxii3.4580O2—Ybxiii2.2432 (10)
Fe—O21.994 (2)O2—Ybxiv2.2432 (10)
Fe—O1iii2.0150 (4)O2—Ybxv2.2433 (10)
Fe—O1i2.0150 (5)
O2i—Yb—O2ii180.00 (10)Ybvii—Yb—Ybxii60.0
O2i—Yb—O2iii100.84 (6)Ybviii—Yb—Ybxii120.0
O2ii—Yb—O2iii79.16 (6)Ybix—Yb—Ybxii180.0
O2i—Yb—O2iv79.16 (6)Ybx—Yb—Ybxii120.0
O2ii—Yb—O2iv100.84 (6)Ybxi—Yb—Ybxii60.0
O2iii—Yb—O2iv180.00 (10)O2—Fe—O1iii97.77 (9)
O2i—Yb—O2v100.84 (6)O2—Fe—O1i97.77 (9)
O2ii—Yb—O2v79.16 (6)O1iii—Fe—O1i118.20 (4)
O2iii—Yb—O2v100.84 (6)O2—Fe—O1v97.77 (9)
O2iv—Yb—O2v79.16 (6)O1iii—Fe—O1v118.20 (4)
O2i—Yb—O2vi79.16 (6)O1i—Fe—O1v118.20 (4)
O2ii—Yb—O2vi100.84 (6)O2—Fe—O1180.0
O2iii—Yb—O2vi79.16 (6)O1iii—Fe—O182.23 (9)
O2iv—Yb—O2vi100.84 (6)O1i—Fe—O182.23 (9)
O2v—Yb—O2vi180.00 (10)O1v—Fe—O182.23 (9)
O2i—Yb—Ybvii140.42 (3)O2—Fe—Ybxiii33.496 (5)
O2ii—Yb—Ybvii39.58 (3)O1iii—Fe—Ybxiii112.72 (8)
O2iii—Yb—Ybvii39.58 (3)O1i—Fe—Ybxiii64.28 (9)
O2iv—Yb—Ybvii140.42 (3)O1v—Fe—Ybxiii112.72 (8)
O2v—Yb—Ybvii90.0O1—Fe—Ybxiii146.504 (4)
O2vi—Yb—Ybvii90.0O2—Fe—Ybxiv33.496 (4)
O2i—Yb—Ybviii39.58 (3)O1iii—Fe—Ybxiv64.28 (9)
O2ii—Yb—Ybviii140.42 (3)O1i—Fe—Ybxiv112.72 (8)
O2iii—Yb—Ybviii140.42 (3)O1v—Fe—Ybxiv112.72 (8)
O2iv—Yb—Ybviii39.58 (3)O1—Fe—Ybxiv146.504 (4)
O2v—Yb—Ybviii90.0Ybxiii—Fe—Ybxiv57.102 (7)
O2vi—Yb—Ybviii90.0O2—Fe—Ybxv33.496 (4)
Ybvii—Yb—Ybviii180.0O1iii—Fe—Ybxv112.72 (8)
O2i—Yb—Ybix90.0O1i—Fe—Ybxv112.72 (8)
O2ii—Yb—Ybix90.0O1v—Fe—Ybxv64.28 (9)
O2iii—Yb—Ybix140.42 (3)O1—Fe—Ybxv146.504 (4)
O2iv—Yb—Ybix39.58 (3)Ybxiii—Fe—Ybxv57.102 (7)
O2v—Yb—Ybix39.58 (3)Ybxiv—Fe—Ybxv57.102 (7)
O2vi—Yb—Ybix140.42 (3)Mniii—O1—Feiii0.00 (2)
Ybvii—Yb—Ybix120.0Mniii—O1—Mni118.20 (4)
Ybviii—Yb—Ybix60.0Feiii—O1—Mni118.20 (4)
O2i—Yb—Ybx140.42 (3)Mniii—O1—Fei118.20 (4)
O2ii—Yb—Ybx39.58 (3)Feiii—O1—Fei118.20 (4)
O2iii—Yb—Ybx90.0Mni—O1—Fei0.00 (2)
O2iv—Yb—Ybx90.0Mniii—O1—Mnv118.20 (4)
O2v—Yb—Ybx39.58 (3)Feiii—O1—Mnv118.20 (4)
O2vi—Yb—Ybx140.42 (3)Mni—O1—Mnv118.20 (4)
Ybvii—Yb—Ybx60.0Fei—O1—Mnv118.20 (4)
Ybviii—Yb—Ybx120.0Mniii—O1—Fev118.20 (4)
Ybix—Yb—Ybx60.0Feiii—O1—Fev118.20 (4)
O2i—Yb—Ybxi39.58 (3)Mni—O1—Fev118.20 (4)
O2ii—Yb—Ybxi140.42 (3)Fei—O1—Fev118.20 (4)
O2iii—Yb—Ybxi90.0Mnv—O1—Fev0.00 (2)
O2iv—Yb—Ybxi90.0Mniii—O1—Fe97.77 (9)
O2v—Yb—Ybxi140.42 (3)Feiii—O1—Fe97.77 (9)
O2vi—Yb—Ybxi39.58 (3)Mni—O1—Fe97.77 (9)
Ybvii—Yb—Ybxi120.0Fei—O1—Fe97.77 (9)
Ybviii—Yb—Ybxi60.0Mnv—O1—Fe97.77 (9)
Ybix—Yb—Ybxi120.0Fev—O1—Fe97.77 (9)
Ybx—Yb—Ybxi180.0Fe—O2—Ybxiii117.13 (5)
O2i—Yb—Ybxii90.0Fe—O2—Ybxiv117.13 (5)
O2ii—Yb—Ybxii90.0Ybxiii—O2—Ybxiv100.84 (6)
O2iii—Yb—Ybxii39.58 (3)Fe—O2—Ybxv117.13 (5)
O2iv—Yb—Ybxii140.42 (3)Ybxiii—O2—Ybxv100.84 (6)
O2v—Yb—Ybxii140.42 (3)Ybxiv—O2—Ybxv100.84 (6)
O2vi—Yb—Ybxii39.58 (3)
Symmetry codes: (i) x+2/3, y+1/3, z+1/3; (ii) x2/3, y1/3, z1/3; (iii) x1/3, y2/3, z+1/3; (iv) x+1/3, y+2/3, z1/3; (v) x1/3, y+1/3, z+1/3; (vi) x+1/3, y1/3, z1/3; (vii) x1, y1, z; (viii) x+1, y+1, z; (ix) x, y+1, z; (x) x1, y, z; (xi) x+1, y, z; (xii) x, y1, z; (xiii) x+2/3, y+1/3, z+1/3; (xiv) x1/3, y2/3, z+1/3; (xv) x1/3, y+1/3, z+1/3.

Experimental details

Crystal data
Chemical formulaYb0.963FeMnO3.945
Mr341.49
Crystal system, space groupHexagonal, R3m
Temperature (K)293
a, c (Å)3.4580 (1), 25.647 (3)
V3)265.59 (3)
Z3
Radiation typeMo Kα
µ (mm1)32.64
Crystal size (mm)0.06 × 0.06 × 0.06 × 0.06 (radius)
Data collection
DiffractometerEnraf Nonius CAD4
diffractometer
Absorption correctionFor a sphere
PLATON
Tmin, Tmax0.086, 0.166
No. of measured, independent and
observed [I > 2σ(I)] reflections
655, 577, 528
Rint0.020
(sin θ/λ)max1)1.217
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.044, 1.18
No. of reflections577
No. of parameters14
Δρmax, Δρmin (e Å3)2.55, 4.88

Computer programs: CAD-4 EXPRESS, XCAD4 (Harms, 1996), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997).

 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds