Download citation
Download citation
link to html
X-ray diffraction patterns of [N(CH_{3})_{4}][CdCl_{3}], tetramethyl­ammonium trichlorocadmate(II), have been investigated in the temperature range 80-293 K, which includes two phase transitions at 118 and 104 K, respectively. The main interest in this compound is to establish the mechanism of the structural phase transitions common to other members of the isostructural family [(CH_{3})_{4}N][MX_{3}]. It is supposed to be related to the ordering of the organic part together with some small distortion of the inorganic chains. The origin of the order-disorder mechanism would be the orientationally disordered distribution of the tetramethylammonium tetrahedra at room temperature. Maximum Entropy Methods suggest that the most probable distribution of the organic groups can be described through the so-called two-well model, in which one threefold axis of the tetramethylammonium tetrahedron coincides with the crystallographic threefold axis of the structure. Below 118 K the reflections are split. However, the splitting cannot be fully explained by the ferroelastic domains expected to appear after the phase transitions. Recent NMR results [Mulla-Osman et al. (1998). J. Phys. Condensed Matter, 10, 2465-2476] corroborate the existence of more domains than expected from symmetry considerations. A model of ferroelastic domains which is in agreement with both X-ray diffraction diagram and NMR measurements is proposed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768199013622/na0098sup1.cif
Contains datablocks tmcc, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768199013622/na0098Isup2.hkl
Contains datablock I

CCDC reference: 1272242

Computing details top

Data collection: CAD4VPC; cell refinement: CAD4VPC; data reduction: xtal_DIFDAT_ABSORB_ADDREF_SORTRF; program(s) used to solve structure: Xtal; program(s) used to refine structure: xtal_CRYLSQ; molecular graphics: Xtal; software used to prepare material for publication: xtal_BONDLA_CIFIO.

(tmcc) top
Crystal data top
C4CdCl3H12NDx = 2.008 Mg m3
Mr = 292.62Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63/mCell parameters from 25 reflections
Hall symbol: -P_6cθ = 4–25°
a = 9.126 (5) ŵ = 2.99 mm1
c = 6.718 (2) ÅT = 293 K
V = 484.5 (6) Å3Hexagonal prism, colourless
Z = 20.29 × 0.12 × 0.09 mm
F(000) = 284
Data collection top
CAD4
diffractometer
791 reflections with F____ > _.000_σ(F___)
Radiation source: xray_tubeRint = 0.021
Graphite monochromatorθmax = 44.9°, θmin = 4.0°
θ/2θ scansh = 015
Absorption correction: analytical
(Alcock, 1974)
k = 015
Tmin = 0.709, Tmax = 0.788l = 1313
2979 measured reflections3 standard reflections every 60 min
1406 independent reflections intensity decay: 3%
Refinement top
Refinement on F0 restraints
Least-squares matrix: full0 constraints
R[F2 > 2σ(F2)] = 0.045H-atom parameters not defined
wR(F2) = 0.032Weighting scheme based on measured s.u.'s
S = 0.67(Δ/σ)max = 0.363
791 reflectionsΔρmax = 1.51 e Å3
29 parametersΔρmin = 4.81 e Å3
Special details top

Refinement. Sfls: F σ weight full matrix

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd0.000000.000000.000000.0319 (2)
Cl0.1006 (1)0.1552 (1)0.250000.0388 (5)
N0.333300.666600.250000.035 (2)
C10.532 (2)0.153 (2)0.212 (3)0.075 (9)
C20.578 (3)0.219 (2)0.415 (2)0.19 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd0.0387 (2)0.0387 (2)0.0183 (2)0.01934 (9)0.000000.00000
Cl0.0505 (7)0.0460 (6)0.0304 (5)0.0319 (6)0.000000.00000
N0.034 (2)0.034 (2)0.036 (3)0.017 (1)0.000000.00000
C10.086 (8)0.035 (5)0.06 (2)0.006 (5)0.04 (1)0.006 (7)
C20.28 (5)0.25 (3)0.13 (2)0.21 (3)0.15 (2)0.17 (2)
Geometric parameters (Å, º) top
Ni—C11.50 (1)Ni—C1iv1.50 (1)
Ni—C2ii1.46 (2)Ni—C2v1.46 (2)
Ni—C1iii1.50 (2)Ni—C1vi1.50 (2)
Ni—C21.46 (3)Ni—C2iv1.46 (3)
Ni—C1ii1.50 (3)Ni—C1v1.50 (3)
Ni—C2iii1.46 (4)Ni—C2vi1.46 (4)
C1—Ni—C2ii118 (1)C2—Ni—C2v142 (2)
C1—Ni—C1iii117 (1)C2—Ni—C1vi102 (1)
C1—Ni—C259 (1)C2—Ni—C2iv99 (2)
C1—Ni—C1ii117 (1)C2—Ni—C1v100 (2)
C1—Ni—C2iii115 (1)C2—Ni—C2vi142 (3)
C1—Ni—C1iv20 (1)C1ii—Ni—C2iii118 (2)
C1—Ni—C2v102 (1)C1ii—Ni—C1iv121 (1)
C1—Ni—C1vi121 (1)C1ii—Ni—C2v40 (1)
C1—Ni—C2iv40 (1)C1ii—Ni—C1vi121 (2)
C1—Ni—C1v121 (1)C1ii—Ni—C2iv100 (2)
C1—Ni—C2vi100 (1)C1ii—Ni—C1v20 (1)
C2ii—Ni—C1iii115 (1)C1ii—Ni—C2vi102 (2)
C2ii—Ni—C268 (2)C2iii—Ni—C1iv100 (1)
C2ii—Ni—C1ii59 (1)C2iii—Ni—C2v142 (1)
C2ii—Ni—C2iii68 (2)C2iii—Ni—C1vi40 (2)
C2ii—Ni—C1iv102 (1)C2iii—Ni—C2iv142 (3)
C2ii—Ni—C2v99 (1)C2iii—Ni—C1v102 (2)
C2ii—Ni—C1vi100 (1)C2iii—Ni—C2vi99 (2)
C2ii—Ni—C2iv142 (2)C1iv—Ni—C2v118 (1)
C2ii—Ni—C1v40 (1)C1iv—Ni—C1vi117 (1)
C2ii—Ni—C2vi142 (1)C1iv—Ni—C2iv59 (1)
C1iii—Ni—C2118 (2)C1iv—Ni—C1v117 (1)
C1iii—Ni—C1ii117 (2)C1iv—Ni—C2vi115 (1)
C1iii—Ni—C2iii59 (2)C2v—Ni—C1vi115 (1)
C1iii—Ni—C1iv121 (1)C2v—Ni—C2iv68 (2)
C1iii—Ni—C2v100 (1)C2v—Ni—C1v59 (1)
C1iii—Ni—C1vi20 (1)C2v—Ni—C2vi68 (2)
C1iii—Ni—C2iv102 (1)C1vi—Ni—C2iv118 (2)
C1iii—Ni—C1v121 (2)C1vi—Ni—C1v117 (2)
C1iii—Ni—C2vi40 (2)C1vi—Ni—C2vi59 (2)
C2—Ni—C1ii115 (2)C2iv—Ni—C1v115 (2)
C2—Ni—C2iii68 (1)C2iv—Ni—C2vi68 (1)
C2—Ni—C1iv40 (1)C1v—Ni—C2vi118 (2)
Symmetry codes: (i) x+1, y+1, z+1/2; (ii) x+y+1, x+1, z; (iii) y+1, xy, z; (iv) x, y, z+1/2; (v) x+y+1, x+1, z+1/2; (vi) y+1, xy, z+1/2.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds