Download citation
Download citation
link to html
In the two title copper(II) complexes, [CuL(C5H7O2)]n, (I), and [CuL′(C5H7O2)], (II), respectively, where HL is 4-hy­­droxy-3-meth­oxy­benzaldehyde picoloylhydrazone, C14H12N3O3, and HL′ is 4-meth­oxy­benzaldehyde picoloylhydrazone, C14H12N3O2, the CuII ions display a highly Jahn–Teller-distorted octa­hedral and a square-planar coordination geom­etry, respectively. In complex (I), two neighbouring CuII atoms are bridged by L and acetyl­acetonate, alternately, giving rise to a one-dimensional chain of CuN2O4 octa­hedra inter­connected by these two ligands along the a axis. In addition, the hydroxy H atom of the vanillin group connects to the carboxyl O atom of the adjacent chain via an O—H...O hydrogen bond, giving rise to a three-dimensional supra­molecular assembly. Complex (II) displays a discrete structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110044343/mx3036sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110044343/mx3036Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110044343/mx3036IIsup3.hkl
Contains datablock II

CCDC references: 809999; 810000

Comment top

Studies of acylhydrazone Schiff base and construction of complexes of transition metals are of great interest, not only because of their intriguing structural motifs but also because of their important potential applications (Pickart et al., 1983; Sreekanth et al., 2004) such as catalytic materials (Duda et al., 2003) and magnetochemistry (Lin et al., 2008). The use of carefully selected multidentate ligands and metal ions has allowed the construction of polymers with defined geometries and special properties. From the structural point of view, picoloylhydrazone and its derivatives have been extensively used as blocking ligands as they have potential N,O-donor sites, which give rise to different coordination modes (Domiano et al., 1980; Wu & Liu, 2003). As part of continuing investigations of these types of Schiff base ligands, this work presents the syntheses and structural characterization of two copper(II) complexes, [CuL(C5H7O2)]n, (I), and [CuL'(C5H7O2)], (II), where HL and HL' are 4-hydroxy-3-methoxybenzaldehyde picoloylhydrazone and 4-methoxybenzaldehyde picoloylhydrazone, respectively. To the best of the author's knowledge, the title complexes represent the first examples of structurally characterized CuL and CuL' complexes.

Structural views of (I) and (II) are shown in Figs. 1 and 2, respectively, and selected bond lengths and angles are given in Tables 1 and 3. In complex (I), the CuII ion displays a highly Jahn–Teller distorted CuN2O4 octahedron, with the equatorial plane defined by the two N atoms [N1(pyridyl) and N2(hydrazine)] of the L- ligand and atoms O4 and O5 of the acetylacetonate ligand. The Cu1—N1(pyridyl) and Cu1—N2(hydrazine) distances are similar to the values reported for other copper complexes involving N-donor ligands (Table 4). The Cu1—O4 and Cu1—O5 bond lengths correspond to the distances observed in other Cu acetylacetonate complexes (Heinze & Reinhart, 2006). There is no significant deviation of the metal centre from the N2O2 equatorial plane, which shows a small but significant tetrahedral distortion. The maximum displacements from the least-squares plane through atoms N1, N2, O4 and O5 are -0.0798 (15) and 0.0824 (15) Å for atoms N2 and N1, respectively; Cu1 is 0.0339 (16) Å below this plane. The two axial positions are occupied by carbonyl atom O5A of an acetylacetonate ligand [symmetry code: (A) 1 - x, 1 - y, 1 - z] and carboxyl atom O1B of an L- ligand [symmetry code: (B) - x, 1 - y, 1 - z], with two weak coordination bonds of 2.8466 (30) and 2.8935 (32) Å, respectively (Das & Pal, 2005; Heinze & Reinhart, 2006).

The tridentate hydrazone ligand L- is a bridging ligand to coordinate to two neighbouring CuII ions through its donors carboxyl atom O2, hydrazine atom N2 and phenolic atom O1. In addition, atom O5 of acetylacetonate acts as a bridging atom linking Cu1 and Cu1A [symmetry code: (A) 1 - x, 1 - y, 1 - z]. Therefore, a one-dimensional chain is built up, consisting of CuN2O4 octahedra connected by two ligands along the a axis, shown in Fig. 3.

The planes through acetylacetonate (O4/C15–C19/O5) and picoloylhydrazone (C1–C5/N1/C6/O1/N2/N3) make dihedral angles of 17.40 (18) and 8.60 (18)°, respectively, with the equatorial N2O4 plane. More buckling of the acetylacetonate than picoloylhydrazone allows for a closer approach of atom O5 towards Cu1A [symmetry code: (A) 1 - x, 1 - y, 1 - z] and simultaneously reduces the steric interaction between the two ligands (Bhadbhade & Srinivas, 1993) (Fig. 3). The O—H function of the vanillin group connects to the carboxyl O atom of the adjacent chain via an O3—H3B···O1A hydrogen bond [symmetry code: (A) x, 1/2 - y, -1/2 + z], giving rise to a three-dimensional supramolecular assembly, as shown in Fig. 4.

In complex (II), atom Cu1 displays a square-planar coordination geometry (Fig. 2). The Cu1—N and Cu1—O bond lengths in the N2O4 plane are comparable with those found in (I) (Table 3). However, unlike (I), (II) does not form chains but is rather a simple discrete complex. The closest distance between a CuII ion and an O atom from a neighbouring molecule is 3.334 (4) Å for Cu1—O3A [symmetry code: (A) - x, 1 - y, 1 - z], indicating that no intermolecular bonding interactions are present. Just as in (I), there is no significant deviation of the metal centre from the N2O4 coordination plane and the distortion of this plane is even smaller. The maximum displacements from the least-squares plane through atoms N1, N2, O3 and O4 are -0.0422 (20) and 0.0432 (20) Å for atoms N2 and N1, respectively; Cu1 is 0.0054 (19) Å below this plane. It is worth noting that the acetylacetonate (C15–C19/O3/O4) and picoloylhydrazone (C1–C5/N1/C6/O1/N2/N3) planes make dihedral angles of 7.97 (18) and 6.43 (15)°, respectively, with the N2O4 plane. The approximately planar conformation of the CuII ion in complex (II) could be due to the absence of the Cu1—O3A interaction, which reduces the steric interaction between the ligands and a second molecule compared with (I).

Experimental top

The ligand HL was prepared by the reaction of picoloylhydrazide and 4-hydroxy-3-methoxybenzaldehyde in a molar ratio of 1:1 under reflux in ethanol for 3 h. The yellow product obtained on cooling was washed with anhydrous ethanol. The ligand HL' was obtained by a similar procedure to that for HL, but using 4-methoxybenzaldehyde in place of 4-hydroxy-3-methoxybenzaldehyde.

Both complexes were prepared using the same method. Complex (I) was synthesized by adding Cu(acac)2 (16.2 mg, 0.10 mmol) to a solution of HL (27.1 mg, 0.10 mmol) in methanol (15 ml). The resulting mixture was stirred for 3 h at room temperature to afford a green solution. The solution was allowed to stand at room temperature for about two weeks, during which time dark-green crystals of (I) were produced at the bottom of the vessel on slow evaporation of the methanol [yield 56.0% (based on Cu)].

Complex (II) was obtained by using HL' in place of HL. After two weeks, dark-green crystals of complex (II) appeared [yield 49.0% (based on Cu)].

Refinement top

In both complexes, H atoms bonded to C atoms were positioned geometrically and refined using a riding model, with Csp2—H = 0.93 Å, Cmethyl—H = 0.96 Å, and Uiso(H) = 1.2Ueq(Csp2) or 1.5Ueq(Cmethyl). The H atom bonded to the phenolate O atom in (I) was located in a difference Fourier map and subesquently refined with the help of an O—H distance restraint of 0.82(s.u.?) Å [0.79 (3) given in CIF tables - please clarify], and with Uiso(H) = 1.2Ueq(O).

Computing details top

For both compounds, data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular structure of (II), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. The one-dimensional chain structure in (I). [Symmetry codes: (A) 1 - x, 1 - y, 1 - z; (B) - x, 1 - y, 1 - z.]
[Figure 4] Fig. 4. The three-dimensional structure of (I). [Symmetry code: (A) x, 1/2 - y, - 1/2 + z.]
(I) catena-Poly[copper(II)-di-µ-acetylacetonato-copper(II)-bis(µ-4- hydroxy-3-methoxybenzaldehyde picoloylhydrazonato)] top
Crystal data top
[Cu(C14H12N3O3)(C5H7O2)]F(000) = 892
Mr = 432.91Dx = 1.502 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2831 reflections
a = 8.4719 (15) Åθ = 3.0–27.5°
b = 23.586 (3) ŵ = 1.18 mm1
c = 9.8635 (14) ÅT = 293 K
β = 103.683 (6)°Prism, green
V = 1915.0 (5) Å30.42 × 0.31 × 0.18 mm
Z = 4
Data collection top
Bruker APEXII CCD area detector
diffractometer
4358 independent reflections
Radiation source: fine-focus sealed tube2831 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.089
ϕ and ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.652, Tmax = 0.809k = 3030
18642 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0553P)2 + 1.1925P]
where P = (Fo2 + 2Fc2)/3
4358 reflections(Δ/σ)max < 0.001
259 parametersΔρmax = 0.47 e Å3
1 restraintΔρmin = 0.63 e Å3
Crystal data top
[Cu(C14H12N3O3)(C5H7O2)]V = 1915.0 (5) Å3
Mr = 432.91Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.4719 (15) ŵ = 1.18 mm1
b = 23.586 (3) ÅT = 293 K
c = 9.8635 (14) Å0.42 × 0.31 × 0.18 mm
β = 103.683 (6)°
Data collection top
Bruker APEXII CCD area detector
diffractometer
4358 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2831 reflections with I > 2σ(I)
Tmin = 0.652, Tmax = 0.809Rint = 0.089
18642 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0601 restraint
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.47 e Å3
4358 reflectionsΔρmin = 0.63 e Å3
259 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.27797 (6)0.488508 (18)0.44863 (5)0.03741 (17)
N10.2710 (4)0.54082 (11)0.6040 (3)0.0343 (7)
N20.1482 (4)0.43977 (11)0.5474 (3)0.0330 (7)
N30.0740 (4)0.38704 (11)0.5137 (3)0.0358 (7)
O10.0036 (4)0.44891 (10)0.7130 (3)0.0499 (8)
O20.2864 (4)0.21111 (11)0.4284 (3)0.0546 (8)
O30.1439 (4)0.14071 (13)0.2930 (4)0.0683 (10)
H3B0.079 (6)0.123 (2)0.266 (6)0.082*
O40.2557 (4)0.43982 (11)0.2915 (3)0.0529 (8)
O50.4142 (4)0.54076 (11)0.3774 (3)0.0462 (7)
C10.1758 (5)0.52238 (14)0.6851 (4)0.0349 (8)
C20.1525 (6)0.55332 (15)0.7969 (4)0.0426 (10)
H2A0.08400.53990.85080.051*
C30.2317 (6)0.60469 (16)0.8287 (5)0.0518 (12)
H3A0.21910.62600.90460.062*
C40.3285 (6)0.62304 (16)0.7457 (5)0.0510 (11)
H4A0.38310.65740.76480.061*
C50.3459 (5)0.59081 (15)0.6332 (4)0.0459 (10)
H5A0.41120.60420.57650.055*
C60.0950 (5)0.46569 (14)0.6477 (4)0.0338 (8)
C70.1491 (5)0.35102 (14)0.4553 (4)0.0407 (9)
H7A0.24960.36010.43830.049*
C80.0762 (5)0.29536 (14)0.4152 (4)0.0388 (9)
C90.0694 (5)0.28020 (14)0.4464 (4)0.0375 (9)
H9A0.11950.30530.49570.045*
C100.1411 (5)0.22865 (15)0.4057 (4)0.0396 (9)
C110.0640 (6)0.19020 (15)0.3322 (4)0.0442 (10)
C120.0820 (6)0.20446 (16)0.3037 (4)0.0471 (10)
H12A0.13430.17890.25730.056*
C130.1518 (5)0.25694 (15)0.3441 (4)0.0456 (10)
H13A0.25010.26650.32350.055*
C140.3631 (6)0.24627 (18)0.5081 (5)0.0590 (12)
H14A0.46240.22880.51750.089*
H14B0.38680.28230.46250.089*
H14C0.29260.25170.59890.089*
C150.2242 (8)0.4112 (3)0.0586 (6)0.0821 (17)
H15A0.11800.39790.06170.123*
H15B0.29800.37970.07020.123*
H15C0.21940.42900.02970.123*
C160.2830 (6)0.4538 (2)0.1754 (5)0.0551 (12)
C170.3582 (6)0.5033 (2)0.1499 (5)0.0616 (13)
H17A0.36780.50970.05920.074*
C180.4199 (6)0.54383 (18)0.2487 (5)0.0497 (11)
C190.5032 (6)0.5954 (2)0.2104 (6)0.0677 (15)
H19A0.44640.62880.22820.102*
H19B0.50340.59390.11320.102*
H19C0.61300.59660.26520.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0440 (3)0.0347 (3)0.0372 (3)0.0028 (2)0.0169 (2)0.00061 (18)
N10.0340 (19)0.0286 (15)0.0394 (18)0.0000 (12)0.0067 (14)0.0016 (12)
N20.040 (2)0.0237 (15)0.0354 (18)0.0014 (12)0.0095 (14)0.0008 (11)
N30.043 (2)0.0268 (15)0.0379 (18)0.0025 (12)0.0101 (15)0.0012 (11)
O10.066 (2)0.0358 (15)0.0590 (19)0.0089 (13)0.0376 (17)0.0047 (12)
O20.054 (2)0.0400 (16)0.075 (2)0.0074 (13)0.0261 (17)0.0105 (13)
O30.055 (2)0.0420 (18)0.112 (3)0.0058 (14)0.028 (2)0.0298 (17)
O40.070 (2)0.0514 (17)0.0426 (18)0.0026 (14)0.0239 (16)0.0044 (12)
O50.0499 (19)0.0469 (15)0.0454 (17)0.0002 (13)0.0186 (14)0.0121 (12)
C10.034 (2)0.0320 (19)0.036 (2)0.0039 (14)0.0023 (17)0.0002 (13)
C20.054 (3)0.038 (2)0.037 (2)0.0070 (17)0.0120 (19)0.0014 (15)
C30.068 (3)0.041 (2)0.043 (3)0.003 (2)0.007 (2)0.0113 (17)
C40.061 (3)0.030 (2)0.057 (3)0.0049 (18)0.005 (2)0.0061 (17)
C50.050 (3)0.036 (2)0.051 (3)0.0036 (17)0.011 (2)0.0002 (16)
C60.037 (2)0.0304 (18)0.035 (2)0.0022 (15)0.0095 (17)0.0018 (14)
C70.043 (3)0.033 (2)0.048 (2)0.0010 (16)0.013 (2)0.0025 (15)
C80.048 (3)0.0299 (19)0.038 (2)0.0011 (15)0.0082 (19)0.0044 (14)
C90.048 (3)0.0263 (18)0.040 (2)0.0026 (15)0.0145 (19)0.0050 (14)
C100.044 (3)0.0321 (19)0.040 (2)0.0014 (16)0.0060 (18)0.0023 (14)
C110.055 (3)0.0260 (19)0.049 (2)0.0024 (17)0.007 (2)0.0097 (16)
C120.054 (3)0.038 (2)0.051 (3)0.0052 (18)0.016 (2)0.0131 (17)
C130.049 (3)0.038 (2)0.053 (3)0.0027 (17)0.016 (2)0.0079 (17)
C140.061 (3)0.049 (3)0.074 (3)0.002 (2)0.031 (3)0.001 (2)
C150.090 (5)0.111 (4)0.049 (3)0.003 (3)0.023 (3)0.023 (3)
C160.050 (3)0.081 (3)0.037 (3)0.015 (2)0.015 (2)0.001 (2)
C170.062 (3)0.089 (4)0.038 (3)0.011 (3)0.021 (2)0.016 (2)
C180.042 (3)0.060 (3)0.051 (3)0.014 (2)0.019 (2)0.023 (2)
C190.052 (3)0.078 (3)0.078 (4)0.006 (2)0.024 (3)0.041 (3)
Geometric parameters (Å, º) top
Cu1—O41.902 (3)C7—C81.465 (5)
Cu1—O51.931 (3)C7—H7A0.9300
Cu1—N11.979 (3)C8—C91.387 (6)
Cu1—N21.996 (3)C8—C131.391 (5)
N1—C11.336 (5)C9—C101.376 (5)
N1—C51.338 (5)C9—H9A0.9300
N2—C61.329 (4)C10—C111.414 (5)
N2—N31.398 (4)C11—C121.374 (6)
N3—C71.278 (5)C12—C131.389 (5)
O1—C61.234 (4)C12—H12A0.9300
O2—C101.367 (5)C13—H13A0.9300
O2—C141.404 (5)C14—H14A0.9600
O3—C111.359 (5)C14—H14B0.9600
O3—H3B0.79 (3)C14—H14C0.9600
O4—C161.265 (5)C15—C161.521 (7)
O5—C181.284 (5)C15—H15A0.9600
C1—C21.375 (5)C15—H15B0.9600
C1—C61.507 (5)C15—H15C0.9600
C2—C31.385 (6)C16—C171.381 (7)
C2—H2A0.9300C17—C181.378 (7)
C3—C41.358 (6)C17—H17A0.9300
C3—H3A0.9300C18—C191.499 (6)
C4—C51.382 (6)C19—H19A0.9600
C4—H4A0.9300C19—H19B0.9600
C5—H5A0.9300C19—H19C0.9600
O4—Cu1—O592.40 (12)C10—C9—H9A119.4
O4—Cu1—N1172.69 (14)C8—C9—H9A119.4
O5—Cu1—N190.77 (12)O2—C10—C9124.9 (4)
O4—Cu1—N295.14 (12)O2—C10—C11115.7 (3)
O5—Cu1—N2172.15 (12)C9—C10—C11119.4 (4)
N1—Cu1—N281.99 (12)O3—C11—C12124.3 (4)
C1—N1—C5118.7 (3)O3—C11—C10116.0 (4)
C1—N1—Cu1113.2 (2)C12—C11—C10119.7 (3)
C5—N1—Cu1128.1 (3)C11—C12—C13120.2 (4)
C6—N2—N3111.9 (3)C11—C12—H12A119.9
C6—N2—Cu1114.9 (2)C13—C12—H12A119.9
N3—N2—Cu1131.7 (2)C12—C13—C8120.6 (4)
C7—N3—N2117.0 (3)C12—C13—H13A119.7
C10—O2—C14117.9 (3)C8—C13—H13A119.7
C11—O3—H3B102 (4)O2—C14—H14A109.5
C16—O4—Cu1125.2 (3)O2—C14—H14B109.5
C18—O5—Cu1124.1 (3)H14A—C14—H14B109.5
N1—C1—C2121.9 (3)O2—C14—H14C109.5
N1—C1—C6116.5 (3)H14A—C14—H14C109.5
C2—C1—C6121.6 (4)H14B—C14—H14C109.5
C1—C2—C3119.5 (4)C16—C15—H15A109.5
C1—C2—H2A120.3C16—C15—H15B109.5
C3—C2—H2A120.3H15A—C15—H15B109.5
C4—C3—C2118.2 (4)C16—C15—H15C109.5
C4—C3—H3A120.9H15A—C15—H15C109.5
C2—C3—H3A120.9H15B—C15—H15C109.5
C3—C4—C5120.2 (4)O4—C16—C17125.2 (4)
C3—C4—H4A119.9O4—C16—C15114.6 (5)
C5—C4—H4A119.9C17—C16—C15120.2 (4)
N1—C5—C4121.5 (4)C18—C17—C16124.9 (4)
N1—C5—H5A119.3C18—C17—H17A117.5
C4—C5—H5A119.3C16—C17—H17A117.5
O1—C6—N2129.2 (3)O5—C18—C17124.3 (4)
O1—C6—C1118.7 (3)O5—C18—C19115.1 (4)
N2—C6—C1112.1 (3)C17—C18—C19120.5 (4)
N3—C7—C8119.6 (4)C18—C19—H19A109.5
N3—C7—H7A120.2C18—C19—H19B109.5
C8—C7—H7A120.2H19A—C19—H19B109.5
C9—C8—C13118.9 (3)C18—C19—H19C109.5
C9—C8—C7120.8 (3)H19A—C19—H19C109.5
C13—C8—C7120.3 (4)H19B—C19—H19C109.5
C10—C9—C8121.2 (3)
O4—Cu1—N1—C161.0 (10)N3—N2—C6—C1179.6 (3)
O5—Cu1—N1—C1176.7 (3)Cu1—N2—C6—C112.6 (4)
N2—Cu1—N1—C16.3 (2)N1—C1—C6—O1174.6 (3)
O4—Cu1—N1—C5117.7 (9)C2—C1—C6—O15.5 (6)
O5—Cu1—N1—C52.0 (3)N1—C1—C6—N27.5 (5)
N2—Cu1—N1—C5175.0 (3)C2—C1—C6—N2172.4 (3)
O4—Cu1—N2—C6162.3 (3)N2—N3—C7—C8178.9 (3)
O5—Cu1—N2—C634.0 (10)N3—C7—C8—C93.4 (6)
N1—Cu1—N2—C610.9 (3)N3—C7—C8—C13176.2 (4)
O4—Cu1—N2—N32.5 (3)C13—C8—C9—C101.4 (6)
O5—Cu1—N2—N3161.2 (7)C7—C8—C9—C10178.2 (4)
N1—Cu1—N2—N3175.7 (3)C14—O2—C10—C95.0 (6)
C6—N2—N3—C7157.7 (3)C14—O2—C10—C11176.3 (4)
Cu1—N2—N3—C737.2 (5)C8—C9—C10—O2177.9 (4)
O5—Cu1—O4—C1618.8 (4)C8—C9—C10—C110.7 (6)
N1—Cu1—O4—C1696.9 (10)O2—C10—C11—O30.1 (6)
N2—Cu1—O4—C16163.4 (4)C9—C10—C11—O3178.7 (4)
O4—Cu1—O5—C1820.4 (3)O2—C10—C11—C12179.5 (4)
N1—Cu1—O5—C18153.1 (3)C9—C10—C11—C120.7 (6)
N2—Cu1—O5—C18175.9 (8)O3—C11—C12—C13177.9 (4)
C5—N1—C1—C20.2 (5)C10—C11—C12—C131.5 (7)
Cu1—N1—C1—C2178.7 (3)C11—C12—C13—C80.8 (7)
C5—N1—C1—C6179.7 (3)C9—C8—C13—C120.7 (6)
Cu1—N1—C1—C61.4 (4)C7—C8—C13—C12178.9 (4)
N1—C1—C2—C31.1 (6)Cu1—O4—C16—C1711.1 (7)
C6—C1—C2—C3178.8 (4)Cu1—O4—C16—C15168.3 (4)
C1—C2—C3—C41.0 (6)O4—C16—C17—C182.5 (8)
C2—C3—C4—C50.0 (7)C15—C16—C17—C18178.1 (5)
C1—N1—C5—C40.9 (6)Cu1—O5—C18—C1714.5 (6)
Cu1—N1—C5—C4179.5 (3)Cu1—O5—C18—C19166.6 (3)
C3—C4—C5—N11.0 (7)C16—C17—C18—O50.4 (8)
N3—N2—C6—O11.9 (6)C16—C17—C18—C19178.4 (4)
Cu1—N2—C6—O1169.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O1i0.79 (3)1.93 (4)2.636 (4)149 (6)
Symmetry code: (i) x, y+1/2, z1/2.
(II) (acetylacetonato)(4-methoxybenzaldehyde picoloylhydrazone)copper(II) top
Crystal data top
[Cu(C14H12N3O2)(C5H7O2)]F(000) = 860
Mr = 416.91Dx = 1.570 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1904 reflections
a = 7.4198 (15) Åθ = 3.0–27.5°
b = 14.969 (3) ŵ = 1.27 mm1
c = 15.885 (3) ÅT = 293 K
β = 91.78 (3)°Prism, green
V = 1763.4 (6) Å30.39 × 0.26 × 0.17 mm
Z = 4
Data collection top
Bruker APEXII CCD area detector
diffractometer
4005 independent reflections
Radiation source: fine-focus sealed tube1904 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.125
ϕ and ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 79
Tmin = 0.680, Tmax = 0.806k = 1919
16505 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.0677P)2]
where P = (Fo2 + 2Fc2)/3
4005 reflections(Δ/σ)max < 0.001
247 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Cu(C14H12N3O2)(C5H7O2)]V = 1763.4 (6) Å3
Mr = 416.91Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.4198 (15) ŵ = 1.27 mm1
b = 14.969 (3) ÅT = 293 K
c = 15.885 (3) Å0.39 × 0.26 × 0.17 mm
β = 91.78 (3)°
Data collection top
Bruker APEXII CCD area detector
diffractometer
4005 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1904 reflections with I > 2σ(I)
Tmin = 0.680, Tmax = 0.806Rint = 0.125
16505 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 0.91Δρmax = 0.39 e Å3
4005 reflectionsΔρmin = 0.51 e Å3
247 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.24285 (8)0.56946 (3)0.50749 (3)0.0421 (2)
N10.3473 (5)0.4815 (2)0.5885 (2)0.0393 (9)
N20.3357 (6)0.6542 (2)0.5925 (2)0.0410 (10)
N30.3051 (6)0.7470 (2)0.5978 (2)0.0440 (10)
O10.4486 (6)0.6567 (2)0.7300 (2)0.0646 (11)
O20.1997 (6)1.1571 (2)0.5092 (3)0.0654 (11)
O30.1728 (5)0.4759 (2)0.4311 (2)0.0531 (10)
O40.1361 (5)0.6575 (2)0.4366 (2)0.0528 (9)
C10.4082 (6)0.5176 (3)0.6605 (3)0.0385 (11)
C20.4723 (7)0.4689 (3)0.7257 (3)0.0480 (13)
H2A0.51300.49670.77510.058*
C30.4772 (7)0.3757 (3)0.7184 (3)0.0509 (13)
H3B0.52160.34020.76230.061*
C40.4146 (7)0.3387 (3)0.6444 (4)0.0495 (14)
H4A0.41570.27700.63770.059*
C50.3500 (7)0.3920 (3)0.5800 (3)0.0480 (13)
H5A0.30760.36610.53000.058*
C60.3994 (7)0.6193 (3)0.6645 (3)0.0425 (12)
C70.3257 (7)0.7900 (3)0.5298 (3)0.0432 (11)
H7A0.36510.75950.48280.052*
C80.2895 (6)0.8855 (3)0.5230 (3)0.0394 (11)
C90.3057 (7)0.9292 (3)0.4477 (3)0.0445 (11)
H9A0.33850.89670.40070.053*
C100.2750 (7)1.0194 (3)0.4395 (3)0.0477 (13)
H10A0.28561.04740.38760.057*
C110.2287 (7)1.0674 (3)0.5090 (3)0.0459 (11)
C120.2118 (7)1.0254 (3)0.5850 (3)0.0490 (13)
H12A0.18211.05850.63220.059*
C130.2384 (7)0.9348 (3)0.5923 (3)0.0446 (11)
H13A0.22200.90660.64360.054*
C140.1839 (9)1.2024 (3)0.4313 (4)0.0703 (18)
H14A0.14951.26330.44090.105*
H14B0.09371.17380.39610.105*
H14C0.29751.20100.40410.105*
C150.0746 (8)0.4017 (3)0.3083 (3)0.0520 (14)
H15A0.00660.36010.34050.078*
H15B0.18920.37600.29580.078*
H15C0.00950.41520.25670.078*
C160.1035 (7)0.4856 (3)0.3579 (3)0.0415 (12)
C170.0572 (7)0.5661 (3)0.3220 (3)0.0456 (12)
H17A0.00810.56550.26750.055*
C180.0786 (7)0.6484 (3)0.3615 (3)0.0417 (12)
C190.0328 (9)0.7324 (3)0.3156 (4)0.0637 (16)
H19A0.01460.77520.35410.096*
H19B0.05580.72010.27180.096*
H19C0.13940.75620.29110.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0585 (4)0.0362 (3)0.0311 (3)0.0018 (3)0.0044 (3)0.0006 (3)
N10.049 (3)0.039 (2)0.030 (2)0.0017 (17)0.0011 (19)0.0027 (16)
N20.056 (3)0.033 (2)0.033 (2)0.0054 (17)0.003 (2)0.0009 (15)
N30.056 (3)0.035 (2)0.041 (3)0.0029 (18)0.003 (2)0.0040 (17)
O10.100 (3)0.048 (2)0.044 (2)0.0039 (19)0.025 (2)0.0072 (16)
O20.092 (3)0.038 (2)0.066 (3)0.0090 (18)0.004 (2)0.0013 (17)
O30.085 (3)0.0400 (18)0.034 (2)0.0044 (17)0.0089 (18)0.0003 (14)
O40.070 (3)0.0401 (18)0.047 (2)0.0009 (16)0.0129 (19)0.0018 (15)
C10.040 (3)0.042 (3)0.033 (3)0.001 (2)0.000 (2)0.0013 (19)
C20.055 (4)0.047 (3)0.040 (3)0.007 (2)0.007 (3)0.004 (2)
C30.056 (4)0.055 (3)0.042 (3)0.013 (3)0.003 (3)0.012 (2)
C40.057 (4)0.037 (3)0.055 (4)0.010 (2)0.011 (3)0.007 (2)
C50.065 (4)0.036 (3)0.044 (3)0.003 (2)0.003 (3)0.004 (2)
C60.045 (3)0.045 (3)0.037 (3)0.002 (2)0.002 (2)0.004 (2)
C70.050 (3)0.039 (3)0.041 (3)0.003 (2)0.004 (2)0.004 (2)
C80.041 (3)0.039 (3)0.038 (3)0.004 (2)0.003 (2)0.0003 (19)
C90.057 (3)0.041 (3)0.035 (3)0.003 (2)0.005 (2)0.002 (2)
C100.060 (4)0.046 (3)0.037 (3)0.005 (2)0.004 (2)0.004 (2)
C110.051 (3)0.041 (3)0.046 (3)0.003 (2)0.006 (2)0.001 (2)
C120.063 (4)0.045 (3)0.039 (3)0.006 (2)0.001 (3)0.008 (2)
C130.058 (3)0.045 (3)0.030 (2)0.002 (2)0.001 (2)0.003 (2)
C140.091 (5)0.041 (3)0.077 (4)0.003 (3)0.023 (4)0.017 (3)
C150.068 (4)0.049 (3)0.039 (3)0.002 (2)0.000 (3)0.005 (2)
C160.045 (3)0.049 (3)0.031 (3)0.007 (2)0.006 (2)0.000 (2)
C170.048 (3)0.058 (3)0.031 (3)0.006 (2)0.005 (2)0.003 (2)
C180.041 (3)0.044 (3)0.040 (3)0.001 (2)0.009 (2)0.005 (2)
C190.080 (5)0.052 (3)0.058 (4)0.001 (3)0.015 (3)0.012 (3)
Geometric parameters (Å, º) top
Cu1—O41.892 (3)C8—C91.371 (6)
Cu1—O31.914 (3)C8—C131.388 (6)
Cu1—N21.962 (4)C9—C101.376 (6)
Cu1—N11.982 (4)C9—H9A0.9300
N1—C11.331 (6)C10—C111.370 (7)
N1—C51.347 (5)C10—H10A0.9300
N2—C61.331 (6)C11—C121.371 (7)
N2—N31.412 (5)C12—C131.374 (6)
N3—C71.271 (6)C12—H12A0.9300
O1—C61.227 (6)C13—H13A0.9300
O2—C111.359 (5)C14—H14A0.9600
O2—C141.414 (6)C14—H14B0.9600
O3—C161.265 (6)C14—H14C0.9600
O4—C181.261 (6)C15—C161.495 (6)
C1—C21.342 (6)C15—H15A0.9600
C1—C61.524 (6)C15—H15B0.9600
C2—C31.401 (7)C15—H15C0.9600
C2—H2A0.9300C16—C171.371 (6)
C3—C41.367 (7)C17—C181.389 (6)
C3—H3B0.9300C17—H17A0.9300
C4—C51.372 (7)C18—C191.488 (6)
C4—H4A0.9300C19—H19A0.9600
C5—H5A0.9300C19—H19B0.9600
C7—C81.458 (6)C19—H19C0.9600
C7—H7A0.9300
O4—Cu1—O391.81 (14)C8—C9—H9A118.9
O4—Cu1—N295.25 (15)C10—C9—H9A118.9
O3—Cu1—N2172.67 (16)C11—C10—C9118.9 (5)
O4—Cu1—N1176.03 (16)C11—C10—H10A120.5
O3—Cu1—N191.08 (15)C9—C10—H10A120.5
N2—Cu1—N181.97 (15)O2—C11—C10124.3 (5)
C1—N1—C5119.0 (4)O2—C11—C12115.6 (4)
C1—N1—Cu1113.8 (3)C10—C11—C12120.0 (4)
C5—N1—Cu1127.0 (4)C11—C12—C13120.7 (5)
C6—N2—N3112.9 (4)C11—C12—H12A119.7
C6—N2—Cu1116.5 (3)C13—C12—H12A119.7
N3—N2—Cu1128.6 (3)C12—C13—C8120.0 (5)
C7—N3—N2115.0 (4)C12—C13—H13A120.0
C11—O2—C14118.8 (4)C8—C13—H13A120.0
C16—O3—Cu1126.4 (3)O2—C14—H14A109.5
C18—O4—Cu1127.7 (3)O2—C14—H14B109.5
N1—C1—C2123.1 (4)H14A—C14—H14B109.5
N1—C1—C6115.3 (4)O2—C14—H14C109.5
C2—C1—C6121.6 (5)H14A—C14—H14C109.5
C1—C2—C3119.1 (5)H14B—C14—H14C109.5
C1—C2—H2A120.5C16—C15—H15A109.5
C3—C2—H2A120.5C16—C15—H15B109.5
C4—C3—C2117.8 (5)H15A—C15—H15B109.5
C4—C3—H3B121.1C16—C15—H15C109.5
C2—C3—H3B121.1H15A—C15—H15C109.5
C3—C4—C5120.4 (5)H15B—C15—H15C109.5
C3—C4—H4A119.8O3—C16—C17124.9 (4)
C5—C4—H4A119.8O3—C16—C15115.8 (4)
N1—C5—C4120.6 (5)C17—C16—C15119.3 (5)
N1—C5—H5A119.7C16—C17—C18124.6 (4)
C4—C5—H5A119.7C16—C17—H17A117.7
O1—C6—N2129.6 (4)C18—C17—H17A117.7
O1—C6—C1118.7 (5)O4—C18—C17123.6 (4)
N2—C6—C1111.7 (4)O4—C18—C19116.0 (4)
N3—C7—C8122.1 (4)C17—C18—C19120.5 (5)
N3—C7—H7A118.9C18—C19—H19A109.5
C8—C7—H7A118.9C18—C19—H19B109.5
C9—C8—C13118.1 (4)H19A—C19—H19B109.5
C9—C8—C7120.7 (4)C18—C19—H19C109.5
C13—C8—C7121.2 (4)H19A—C19—H19C109.5
C8—C9—C10122.2 (4)H19B—C19—H19C109.5
O4—Cu1—N1—C139 (2)N3—N2—C6—O17.2 (8)
O3—Cu1—N1—C1175.8 (3)Cu1—N2—C6—O1172.4 (5)
N2—Cu1—N1—C16.6 (3)N3—N2—C6—C1172.6 (4)
O4—Cu1—N1—C5136 (2)Cu1—N2—C6—C17.5 (5)
O3—Cu1—N1—C50.8 (4)N1—C1—C6—O1178.0 (5)
N2—Cu1—N1—C5178.5 (4)C2—C1—C6—O11.7 (8)
O4—Cu1—N2—C6169.2 (4)N1—C1—C6—N21.9 (6)
O3—Cu1—N2—C626.5 (15)C2—C1—C6—N2178.4 (4)
N1—Cu1—N2—C68.0 (3)N2—N3—C7—C8176.5 (4)
O4—Cu1—N2—N36.8 (4)N3—C7—C8—C9177.2 (5)
O3—Cu1—N2—N3171.1 (11)N3—C7—C8—C132.9 (8)
N1—Cu1—N2—N3170.4 (4)C13—C8—C9—C100.8 (8)
C6—N2—N3—C7149.1 (5)C7—C8—C9—C10179.1 (5)
Cu1—N2—N3—C748.0 (6)C8—C9—C10—C110.7 (8)
O4—Cu1—O3—C167.9 (4)C14—O2—C11—C1011.9 (8)
N2—Cu1—O3—C16156.5 (11)C14—O2—C11—C12169.2 (5)
N1—Cu1—O3—C16174.8 (4)C9—C10—C11—O2178.2 (5)
O3—Cu1—O4—C1811.7 (4)C9—C10—C11—C120.6 (8)
N2—Cu1—O4—C18166.3 (4)O2—C11—C12—C13179.9 (5)
N1—Cu1—O4—C18148 (2)C10—C11—C12—C131.0 (8)
C5—N1—C1—C20.1 (7)C11—C12—C13—C82.5 (8)
Cu1—N1—C1—C2175.2 (4)C9—C8—C13—C122.4 (7)
C5—N1—C1—C6179.8 (4)C7—C8—C13—C12177.5 (5)
Cu1—N1—C1—C64.4 (5)Cu1—O3—C16—C173.7 (7)
N1—C1—C2—C30.4 (8)Cu1—O3—C16—C15175.3 (3)
C6—C1—C2—C3180.0 (5)O3—C16—C17—C180.6 (8)
C1—C2—C3—C40.4 (8)C15—C16—C17—C18179.6 (5)
C2—C3—C4—C50.2 (8)Cu1—O4—C18—C1711.2 (7)
C1—N1—C5—C40.1 (7)Cu1—O4—C18—C19168.9 (4)
Cu1—N1—C5—C4174.8 (4)C16—C17—C18—O43.2 (8)
C3—C4—C5—N10.1 (8)C16—C17—C18—C19176.8 (5)

Experimental details

(I)(II)
Crystal data
Chemical formula[Cu(C14H12N3O3)(C5H7O2)][Cu(C14H12N3O2)(C5H7O2)]
Mr432.91416.91
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)293293
a, b, c (Å)8.4719 (15), 23.586 (3), 9.8635 (14)7.4198 (15), 14.969 (3), 15.885 (3)
β (°) 103.683 (6) 91.78 (3)
V3)1915.0 (5)1763.4 (6)
Z44
Radiation typeMo KαMo Kα
µ (mm1)1.181.27
Crystal size (mm)0.42 × 0.31 × 0.180.39 × 0.26 × 0.17
Data collection
DiffractometerBruker APEXII CCD area detector
diffractometer
Bruker APEXII CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.652, 0.8090.680, 0.806
No. of measured, independent and
observed [I > 2σ(I)] reflections
18642, 4358, 2831 16505, 4005, 1904
Rint0.0890.125
(sin θ/λ)max1)0.6490.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.138, 1.04 0.051, 0.154, 0.91
No. of reflections43584005
No. of parameters259247
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.630.39, 0.51

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) for (I) top
Cu1—O41.902 (3)Cu1—N11.979 (3)
Cu1—O51.931 (3)Cu1—N21.996 (3)
O4—Cu1—O592.40 (12)O4—Cu1—N295.14 (12)
O4—Cu1—N1172.69 (14)O5—Cu1—N2172.15 (12)
O5—Cu1—N190.77 (12)N1—Cu1—N281.99 (12)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O1i0.79 (3)1.93 (4)2.636 (4)149 (6)
Symmetry code: (i) x, y+1/2, z1/2.
Selected geometric parameters (Å, º) for (II) top
Cu1—O41.892 (3)Cu1—N21.962 (4)
Cu1—O31.914 (3)Cu1—N11.982 (4)
O4—Cu1—O391.81 (14)O4—Cu1—N1176.03 (16)
O4—Cu1—N295.25 (15)O3—Cu1—N191.08 (15)
O3—Cu1—N2172.67 (16)N2—Cu1—N181.97 (15)
Comparative geometric parameters (Å) for Cu—N in copper complexes. top
ComplexCu—N(pyridyl)Cu—N(hydrazine)
(I)a1.979 (3)1.996 (3)
(II)a1.982 (4)1.962 (4)
[Cu(C15H13N4O2)Cl]b1.989 (2)1.921 (2)
[Cu2(C12H8N4O2)(H2O)3](NO3)2.2H2Oc1.980 (4), 1.996 (3)2.008 (4), 1.919 (3)
[Cu4(C13H9N3O2)2Cl4]nd2.013 (6)1.984 (6)
References: (a) this work; (b) Grove et al. (2004); (c) Lagrenée et al. (1991); (d) Bai et al. (2006).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds