research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of the tetra­kis complex NaNdPyr4(i-PrOH)2·i-PrOH with a carbacyl­amido­phosphate of the amide type

crossmark logo

aDepartment of Chemistry, Kyiv National Taras Shevchenko University, Volodymyrska str. 64, 01601 Kyiv, Ukraine, and bSSI "Institute for Single Crystals", National Academy of Sciences of Ukraine, Nauky ave. 60, 61001 Kharkiv, Ukraine
*Correspondence e-mail: natalia_kariaka@i.ua

Edited by J. T. Mague, Tulane University, USA (Received 5 October 2023; accepted 20 November 2023; online 30 November 2023)

The tetra­kis complex of neodymium(III), tetra­kis­{μ-N-[bis­(pyrrolidin-1-yl)phos­phor­yl]acet­am­id­ato}bis(pro­pan-2-ol)neodymiumsodium pro­pan-2-ol monosol­vate, [NaNd(C10H16Cl3N3O2)4(C3H8O)2]·C3H8O or NaNdPyr4(i-PrOH)2·i-PrOH, with the amide type CAPh ligand bis(N,N-tetra­methylene)(tri­chloro­acetyl)phos­phoric acid tri­amide (HPyr), has been synthesized, crystallized and characterized by X-ray diffraction. The complex does not have the tetra­kis­(CAPh)lanthanide anion, which is typical for ester-type CAPh-based coordin­ation compounds. Instead, the NdO8 polyhedron is formed by one oxygen atom of a 2-propanol mol­ecule and seven oxygen atoms of CAPh ligands in the title compound. Three CAPh ligands are coordinated in a bidentate chelating manner to the NdIII ion and simultaneously binding the sodium cation by μ2-bridging PO and CO groups while the fourth CAPh ligand is coordinated to the sodium cation in a bidentate chelating manner and, due to the μ2-bridging function of the PO group, also binds the neodymium ion.

1. Chemical context

Carbacyl­amido­phosphates (CAPh, HL) belong to an attractive class of organic compounds due to their biological activity (Grimes et al., 2008[Grimes, K. D., Lu, Y. J., Zhang, Y. M., Luna, A. V., Hurdle, J. G., Carson, E. I., Qi, J., Kudrimoti, S., Rock, O. C. & Lee, R. E. (2008). ChemMedChem, 3, 1936-1945.]; Grynyuk et al., 2016[Grynyuk, I. I., Prylutska, S. V., Franskevych, D. V., Trush, V. A., Sliva, T. Y., Slobodyanik, M. S., Hurmach, V. V., Prylutskyy, Y. I., Matyshevska, O. P. & Ritter, U. (2016). Materialwiss. Werkst. 47, 98-104.]; Oroujzadeh et al., 2017[Oroujzadeh, N., Gholivand, K. & Jamalabadi, N. R. (2017). Polyhedron, 122, 29-38.]; Amirkhanov et al., 2019[Amirkhanov, V., Rauf, A., Hadda, T. B., Ovchynnikov, V., Trush, V., Saleem, M., Raza, M., Rehman, T., Zgou, H., Shaheen, U. & Farghaly, T. A. (2019). Mini Rev. Med. Chem. 19, 1015-1027.]), ability to bind metals and create complexes with biological or pharmacological activity (Dorosti et al., 2019[Dorosti, N., Afshar, F., Ghaziani, F., Gholivand, K. & Zarabi, S. (2019). Inorg. Chim. Acta, 489, 140-149.]) as well as highly luminescent lanthanides complexes (Kariaka et al., 2018[Kariaka, N. S., Trush, V. A., Smola, S. S., Fadieiev, Y. M., Dyakonenko, V. V., Shishkina, S. V., Sliva, T. Y. & Amirkhanov, V. M. (2018). J. Lumin. 194, 108-115.]; Pham et al., 2020a[Pham, Y. H., Trush, V. A., Carneiro Neto, A. N., Korabik, M., Sokolnicki, J., Weselski, M., Malta, O. L., Amirkhanov, V. M. & Gawryszewska, P. (2020a). J. Mater. Chem. C. 8, 9993-10009.]).

Among CAPh-based luminescent lanthanide compounds, tetra­kis-complexes, (cation)[LnL4], are of special inter­est because of the full saturation of the lanthanide coordination sphere with the formation of an LnO8 polyhedron that shields the metal from the quenching effects of the solvent mol­ecules. To date, CAPh-based lanthanide tetra­kis-complexes are known only for the ester-type CAPhs (i.e. CAPhs with ester-type substituents at the phospho­rus atom) with no structures of tetra­kis-complexes with amide-type CAPhs (i.e. CAPhs with amide-type substituents at the phospho­rus atom) reported (Amirkhanov et al., 2014[Amirkhanov, V., Ovchynnikov, V., Trush, V., Gawryszewska, P. & Jerzykiewicz, L. B. (2014). Ligands. Synthesis, Characterization and Role in Biotechnology, edited by P. Gawryszewska & P. Smolenski, ch. 7, pp. 199-248. New York: Nova Science Publishers.]). Aiming to synthesize the tetra­kis-complex with an amide-type CAPh [bis(N,N-tetra­methylene)(tri­chloro­acetyl)phos­phoric acid tri­amide (HPyr)], the title compound of formula NaNdPyr4(i-PrOH)2·i-PrOH was obtained. Herein the synthesis and crystal structure, including characterization of the inter­molecular contacts by Hirshfeld surface analysis, of NaNdPyr4(i-PrOH)2·i-PrOH are presented.

[Scheme 1]

2. Structural commentary

The title compound crystallizes in the triclinic crystal system with two mol­ecules in the unit cell. The mol­ecular structure of the title compound is shown in Fig. 1[link].

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. All the hydrogen atoms and disordered chlorine atoms are omitted for clarity.

The neodymium atom has coordination number eight; however, unlike typical CAPh-based tetra­kis-complexes, the NdO8 polyhedron is formed by seven oxygen atoms of CAPh ligands and one oxygen atom of a 2-propanol mol­ecule. All of the four CAPh anions are involved in binding the neodymium ion, but each of them in a different mode. One of the CAPhs is coordinated to the neodymium cation in the typical bidentate chelating mode while two others are coordinated to the neodymium ion in the bidentate chelating mode and additionally, due to the μ2-bridging function of the PO or CO group, are coordinated to the sodium cation as well. The fourth CAPh ligand is coordinated to the sodium cation in a bidentate chelating manner and, due to μ2-bridging function of the PO group, is coordinated to the neodymium ion as well. The coordination polyhedron of NdIII can be inter­preted with the SHAPE2.1 program (Llunell et al., 2013[Llunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). SHAPE. Shape Software, Barcelona, Spain.]) as a square anti­prism (D4d) (Table 1[link]). The sodium cation polyhedron, NaO5Cl, can be inter­preted as a trigonal prism (D3h). The coordination environment of the sodium cation consists of five oxygen atoms and one chlorine atom. The two oxygen atoms are from CAPh ligands coordinated to sodium in a bidentate chelating mode, one more oxygen is from the μ2-bridging PO group of the other CAPh, the chlorine atom and one more oxygen atom are from a bridging CAPh in which the CO group has the μ2-bridging function, and the fifth oxygen is from a 2-propanol mol­ecule.

Table 1
Continuous shape measures values for Nd1 and Na1 in the title compound

OP-8 is an octa­gon, D8h; HPY-8 is a hepta­gonal pyramid, C7v; HBPY-8 is a hexa­gonal bipyramid, D6h; CU-8 is a cube, Oh; SAPR-8 is a square anti­prism, D4d; TDD-8 is a triangular dodeca­hedron, D2d; JGBF-8 is a Johnson-gyrobifastigium (J26), D2d; JETBPY-8 is a Johnson-elongated triangular bipyramid (J14), D3h; JBTP-8 is a Johnson-biaugmented trigonal prism (J50), C2v; BTPR-8 is a biaugmented trigonal prism, C2v; JSD-8 is a snub disphenoid (J84), D2d; TT-8 is a triakis tetra­hedron, Td; ETBPY-8 is an elongated trigonal bipyramid, D3h.

Nd1 OP-8 HPY-8 HBPY-8 CU-8 SAPR-8 TDD-8 ETBPY-8
  29.441 22.884 15.960 9.477 0.388 2.318 14.685
  JGBF-8 JETBPY-8 JBTPR-8 BTPR-8 JSD-8 TT-8 -
  27.709 2.164 1.935 4.197 10.282 23.994 -
Na1 Hexagon (D6h) Penta­gonal pyramid (C5v) Octa­hedron (Oh) Trigonal prism (D3h) Johnson penta­gonal pyramid J2 (C5v) - -
  33.334 18.031 9.098 4.986 22.006 - -

Selected bonds lengths for the title compound are given in Table 2[link]. The Nd—O(P) bonds are shorter than the Nd—O(C) bonds. Among the Nd—O(P) bonds, the longest is that for the μ2-bridging oxygen atom (Nd1—O3). Among the Nd—O(C) bonds, the longest is also that for the μ2-bridging oxygen atom (Nd1—O6). The neodymium–oxygen bond to the 2-propanol mol­ecule (Nd1—O9) is longer than the average values for the Nd—O(P) and Nd—O(C) bonds. All the Nd—O bonds are shorter than the sum of van der Waals radii of oxygen and the Nd3+ ionic radius (2.61 Å). For the sodium cation, the Na—O bond lengths follow the trend d[Na—O(i-PrOH)] < d[Na—O(C)] < d[Na—O(P)]. The Na—O(P) bonds are longer than the sum of the O2− and Na+ ionic radii (2.37 Å) but shorter, however, than the sum of Na+ ionic radius and oxygen's van der Waals radius (2.52 Å). The Na1—Cl9 bond is also longer than the sum of the Na+ ionic radius and chlorine's van der Waals radius (2.75 Å), which points to the ionic character of this bond. The Na1—Cl9 bond length [3.0192 (19) Å] is comparable to reported Na⋯Cl inter­actions in CAPh-based complexes (2.98–3.22 Å; Amirkhanov et al., 1996[Amirkhanov, V. M., Trush, V. A., Kapshuk, A. A. & Skopenko, V. V. (1996). Zh. Neorg. Khim. 41, 2052-2057.]; Trush et al., 2005[Trush, V. A., Gubina, K. E., Amirkhanov, V. M., Swiatek-Kozlowska, J. & Domasevitch, K. V. (2005). Polyhedron, 24, 1007-1014.]). Compared to HPyr (Gholivand et al., 2006[Gholivand, K., Alizadehgan, A. M., Arshadi, S. & Firooz, A. A. (2006). J. Mol. Struct. 791, 193-200.]), the C—O and P—O bonds are longer and the P—N and C—N bonds are shorter in the title compound. The bond lengths of the μ2-bridging P—O and C—O groups are comparable to those in the C—O and P—O groups that are coordinated to one metal. Thus, the μ2-bridging function does not influence the C—O and P—O bond lengths.

Table 2
Selected bond lengths (Å)

Nd1—O1 2.364 (3) P4—O7 1.505 (3)
Nd1—O2 2.422 (3) P4—N10 1.633 (3)
Nd1—O3 2.431 (3) Na1—O3 2.407 (3)
Nd1—O4 2.478 (2) Na1—O6 2.369 (3)
Nd1—O5 2.366 (3) Na1—O7 2.418 (3)
Nd1—O6 2.573 (2) Na1—O8 2.296 (3)
Nd1—O7 2.413 (3) Na1—O10 2.275 (3)
Nd1—O9 2.543 (3) O2—C9 1.248 (5)
Cl9—Na1 3.0192 (19) O4—C19 1.255 (5)
P1—O1 1.501 (3) O6—C29 1.257 (5)
P1—N1 1.630 (3) O8—C39 1.240 (4)
P2—O3 1.500 (3) N1—C9 1.298 (5)
P2—N4 1.622 (3) N4—C19 1.288 (5)
P3—O5 1.500 (3) N7—C29 1.292 (5)
P3—N7 1.625 (3) N10—C39 1.325 (5)

In the title compound, an intra­molecular hydrogen bond is observed between the hydrogen atom H10 of the 2-propanol mol­ecule coordinated to the sodium cation and the N6 nitro­gen atom of the pyrrolidine substituent of the CAPh ligand (Table 3[link]). The participation of the N6 atom as a proton acceptor in hydrogen bonding results in its pyramidalization (the sum of bond angles centered at the N6 atom is 340°). Another hydrogen bond exists between the hydrogen atom H11 of the solvate 2-propanol mol­ecule and the N10 nitro­gen atom of the chelating fragment of the CAPh ligand, coordinated to the sodium cation in the bidentate chelating mode (Table 3[link]). Additionally to the hydrogen bonds, an intra­molecular contact C49—H49A⋯Cl11 contact is observed (Table 3[link]).

Table 3
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H10A⋯N6 0.85 2.11 2.872 (4) 148
O11—H11⋯N10 0.84 2.22 3.024 (6) 160
C49—H49A⋯Cl11 0.98 2.82 3.637 (7) 141

3. Supra­molecular features

Numerous Cl⋯Cl, Cl⋯H and H⋯H inter­molecular contacts are observed in the crystal of the title compound. The CCl3 and pyrrolidine substituents of the CAPh ligand as well as the 2-propanol mol­ecules participate in these contacts. The main Cl⋯Cl and Cl⋯H inter­molecular inter­actions are given in Table 4[link]. The Cl8⋯Cl6B inter­actions, at 3.04 Å, and Cl2⋯Cl6A inter­actions, at 3.42 Å, are less than the sum of the chlorine atoms van der Waals radii (3.5 Å) and are in the middle of the range (2.75–4.0 Å) reported for Cl⋯Cl inter­actions (Capdevila-Cortada et al., 2016[Capdevila-Cortada, M., Castello, J. & Novoa, J. J. (2016). CrystEngComm, 16, 8232-8242.]). The [θ1 - θ2] value equals 3.4° and 39.3° for the Cl8⋯Cl6B and Cl2⋯Cl6A inter­actions, respectively. Thus the first inter­action can be assigned as Type I and the latter as Type II. Among the Cl⋯H contacts, the closest are Cl5B—H4A inter­actions (2.52 Å).

Table 4
Inter­molecular Cl⋯Cl and Cl⋯H inter­actions in the title compound (Å)

Atom 1 Atom 2 Symmetry atom 1 Symmetry atom 2 Contact distance
Cl6A C12 x, y, z −1 + x, y, z 3.419
Cl6B Cl8 x, y, z x, y, z 3.038
Cl1 H3A x, y, z 2 − x, 1 − y, 1 − z 2.750
Cl4A H7B x, y, z −1 + x, −1 + y, z 2.770
Cl5A H24A x, y, z x, y, z 2.913
Cl5A H5A x, y, z 1 − x, 1 − y, 1 − z 2.830
Cl5A H6A x, y, z 1 − x, 1 − y, 1 − z 2.943
Cl5B H4A x, y, z x, y, z 2.517
Cl6A H24C x, y, z x, y, z 2.903
Cl7 H48C x, y, z x, −1 + y, z 2.878
C18 H37A x, y, z x, −1 + y, z 2.943
Cl9 H31A x, y, z x, y, z 2.835
Cl11 H38B x, y, z 1 − x, 1 − y, −z 2.936
Cl11 H49A x, y, z x, y, z 2.823
Cl12 H12B x, y, z x, −y, −z 2.874

4. Hirshfeld surface analysis and fingerprint plots

The inter­molecular inter­actions in the crystal structure of the title compound were visualized with a Hirshfeld surface analysis (Fig. 2[link]) and the corresponding two-dimensional fingerprint plots (Spackman et al., 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) using the CrystalExplorer17 program (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.]). The strongest contacts, which are visualized on the Hirshfeld surface as dark-red spots, correspond to the Cl⋯Cl inter­actions. The lighter red spots correspond to H⋯Cl/Cl⋯H and H⋯H contacts. The majority of the inter­molecular inter­actions of the title compound are weak, which results in the blue colour of the Hirshfeld surface. According to the fingerprint plots, the H⋯H contacts make the largest contribution to the Hirshfeld surface (58.2%) with the shortest at di + de = 2.3 Å. The second largest contribution (37.4%) belongs to H⋯Cl/Cl⋯H contacts with the shortest at di + de = 2.5 Å. The Cl⋯Cl inter­actions are not numerous and contribute only 4.0% to the surface with the shortest at di + de = 3.0 Å. The H⋯O/O⋯H inter­actions make a 0.4% contribution to the Hirshfeld surface and represent hydrogen bonds to the carbonyl group oxygen atom O8 from the hydrogen atoms of the 2-propanol mol­ecules.

[Figure 2]
Figure 2
The Hirshfeld surface mapped over dnorm and two-dimensional fingerprint plots for the H⋯H (58.2%), H⋯Cl/Cl⋯H (37.4%), Cl⋯Cl (4.0%) and H⋯O/O⋯H (0.4%) inter­actions of the title compound.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.44, updated to June 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) found 23 structures where a metal is coordinated by four CAPh ligands. The five tetra­kis-complexes crystallize with two mol­ecules in the unit cell. Three of the complexes are binuclear, containing bis-carbacyl­amido­phosphate ligands. There are two complexes of LaIII, five of NdIII, one of SmIII, six of EuIII, three of GdIII, two of TbIII, one of DyIII one of ErIII, and two of YbIII. Most often the coordination polyhedra of the central ions in the tetra­kis-complexes are distorted square anti­prisms (D4d). Six cases of triangular dodeca­hedral (D2d) LnIII ion coordination polyhedra have been reported for CAPh-based tetra­kis-complexes. In the neodymium compounds, the central ions have coordination polyhedra in the form of distorted square anti­prisms (D4d) and the Nd—O bonds lengths are in the range 2.303–2.516 Å (Kariaka et al., 2016[Kariaka, N. S., Trush, V. A., Medviediev, V. V., Dyakonenko, V. V., Shishkin, O. V., Smola, S. S., Fadeyev, E. M., Rusakova, N. V. & Amirkhanov, V. M. (2016). J. Coord. Chem. 69, 123-134.], 2022[Kariaka, N. S., Trush, V. A., Dyakonenko, V. V., Shishkina, S. V., Smola, S. S., Rusakova, N. V., Sliva, T. Yu., Gawryszewska, P., Carneiro Neto, A. N., Malta, O. L. & Amirkhanov, V. M. (2022). ChemPhysChem, 23, e202200129.]; Pham et al., 2020b[Pham, Y. H., Trush, V. A., Korabik, M., Amirkhanov, V. M. & Gawryszewska, P. (2020b). Dyes Pigm. 186, 108986.]; Horniichuk et al., 2021[Horniichuk, O. Y., Trush, V. A., Kariaka, N. S., Shishkina, S. V., Dyakonenko, V. V., Severinovskaya, O. V., Gawryszewska, P., Domasevitch, K. V., Watras, A. & Amirkhanov, V. M. (2021). New J. Chem. 45, 22361-22368.]). Eleven of the reported CAPh-based tetra­kis-complexes of lanthanides contain a sodium cation as the counter-ion. All these sodium-containing complexes contain solvent mol­ecules in their lattices, while the other twelve known tetra­kis-complexes of lanthanides are solvent free. The sodium cations are six- or seven-coordinated in these complexes, being bonded to solvents, chelating core substituents of the CAPh ligands, and by bridging CO and PO groups of the chelating CAPh ligands.

6. Synthesis and crystallization

To obtain the complex NaNdPyr4(i-PrOH)2·i-PrOH, 0.1 mmol (0.03587 mg) of NdCl3·6H2O was dissolved in 2-propanol in the presence of the dehydrating agent HC(OC2H5)3 (0.6 mmol, 0.1 ml) by boiling this mixture for several minutes. This solution was added to a solution of NaPyr (0.4 mmol, 0.14826 g) in acetone. The resulting mixture was boiled for a minute then cooled to room temperature and left to stand tightly corked for a day for precipitation of NaCl. The clear solution was deca­nted and left to stand for slow evaporation of the solvent. In a few days, crystals of the target complex appeared. The crystals were filtered off, washed with cold iso­propanol and dried in air. The crystals are soluble in DMSO, methanol, acetone, aceto­nitrile and insoluble in water. IR (KBr): νmax = 3379w,br, 2967m, 2868m [ν(CH)], 1614s [ν(CO)], 1460w, 1336s [ν(CN)], 1240w, 1205m, 1127s [(PO)], 1010m, 989w [ν(PN)], 949w, 910w, 865m, 813m, 761w, 673m, 583m, 526m, 440w cm−1.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. The C-bound H atoms were placed in calculated positions and refined using the riding model with xUeq(C, O), where x = 1.5 for hydroxyl groups and 1.2 for all other H atoms.

Table 5
Experimental details

Crystal data
Chemical formula [NaNd(C10H16Cl3N3O2)4(C3H8O)2]·C3H8O
Mr 1737.82
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 103
a, b, c (Å) 12.7712 (4), 13.6102 (4), 24.7288 (8)
α, β, γ (°) 98.301 (3), 97.814 (3), 117.051 (3)
V3) 3687.5 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.29
Crystal size (mm) 0.5 × 0.3 × 0.2
 
Data collection
Diffractometer Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis PRO, Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.711, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 29184, 14464, 12181
Rint 0.047
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.110, 1.04
No. of reflections 14464
No. of parameters 877
No. of restraints 87
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.76, −1.34
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), OLEX2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXL2019/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

The structure exhibits disorder of the Cl atoms of one CCl3 substituent. All Cl—C bond distances were restrained to be similar to each other (within a standard deviation of 0.002 Å) and with a target value of 1.76 Å. The Uij values of the disordered chlorine atoms were restrained to be similar to each other (within a standard deviation of 0.02 Å2). The disorder ratio was refined and is 0.757 (3):0.243 (3).

One of the coordinated isopropyl groups is disordered over two positions. The C—O and C—C bond distances of the two components were restrained to be equal with an effective standard deviation 0.005 Å and the Uij values of the disordered C atoms were restrained to be similar to each other (within a standard deviation of 0.02 Å2). The disorder ratio was refined and is 0.529 (13):0.471 (13).

Supporting information


Computing details top

Tetrakis{N-[bis(pyrrolidin-1-yl)phosphoryl]acetamidato}bis(propan-2-ol)neodymiumsodium propan-2-ol monosolvate top
Crystal data top
[NaNd(C10H16Cl3N3O2)4(C3H8O)2]·C3H8OZ = 2
Mr = 1737.82F(000) = 1778
Triclinic, P1Dx = 1.565 Mg m3
a = 12.7712 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.6102 (4) ÅCell parameters from 6677 reflections
c = 24.7288 (8) Åθ = 3.3–30.1°
α = 98.301 (3)°µ = 1.29 mm1
β = 97.814 (3)°T = 103 K
γ = 117.051 (3)°Block, colourless
V = 3687.5 (2) Å30.5 × 0.3 × 0.2 mm
Data collection top
Xcalibur, Sapphire3
diffractometer
12181 reflections with I > 2σ(I)
Detector resolution: 16.1827 pixels mm-1Rint = 0.047
ω scansθmax = 26.0°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlisPro, Agilent, 2014)
h = 1515
Tmin = 0.711, Tmax = 1.000k = 1616
29184 measured reflectionsl = 2930
14464 independent reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0411P)2 + 3.2978P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
14464 reflectionsΔρmax = 1.76 e Å3
877 parametersΔρmin = 1.34 e Å3
87 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Nd10.49634 (2)0.27520 (2)0.27799 (2)0.01594 (7)
Cl11.03087 (10)0.48921 (11)0.38922 (5)0.0403 (3)
Cl20.90782 (10)0.32199 (10)0.28514 (5)0.0360 (3)
Cl30.98196 (10)0.55767 (10)0.28839 (6)0.0421 (3)
Cl4A0.0187 (3)0.00580 (19)0.34464 (11)0.1293 (17)0.757 (3)
Cl4B0.1629 (9)0.0463 (9)0.3960 (4)0.094 (2)0.243 (3)
Cl5A0.23064 (17)0.1698 (3)0.42076 (7)0.0729 (8)0.757 (3)
Cl5B0.1912 (9)0.2662 (4)0.3961 (4)0.103 (3)0.243 (3)
Cl6A0.0784 (3)0.2221 (3)0.35197 (12)0.0916 (10)0.757 (3)
Cl6B0.0108 (3)0.0943 (7)0.3317 (2)0.0723 (19)0.243 (3)
Cl70.51289 (10)0.14415 (8)0.19092 (5)0.0329 (3)
Cl80.76740 (10)0.01020 (9)0.23771 (6)0.0391 (3)
Cl90.64096 (13)0.04819 (10)0.14551 (6)0.0455 (3)
Cl100.47945 (12)0.26494 (11)0.04654 (5)0.0404 (3)
Cl110.34069 (13)0.36827 (11)0.01198 (5)0.0450 (3)
Cl120.24487 (13)0.12831 (11)0.02834 (6)0.0577 (4)
P10.68858 (9)0.50325 (8)0.39560 (5)0.0199 (2)
P20.19201 (9)0.06061 (8)0.20288 (4)0.0197 (2)
P30.57031 (10)0.09822 (9)0.35435 (5)0.0237 (2)
P40.56916 (9)0.39976 (8)0.15111 (4)0.0170 (2)
Na10.45014 (14)0.12135 (12)0.14265 (7)0.0228 (3)
O10.5723 (2)0.4383 (2)0.35177 (11)0.0190 (6)
O20.7142 (2)0.3698 (2)0.29281 (12)0.0237 (6)
O30.3248 (2)0.1274 (2)0.20604 (11)0.0197 (6)
O40.3203 (2)0.2102 (2)0.32181 (12)0.0249 (6)
O50.5434 (3)0.1933 (2)0.34924 (12)0.0266 (7)
O60.5470 (2)0.1249 (2)0.23225 (12)0.0223 (6)
O70.5357 (2)0.3189 (2)0.18929 (11)0.0179 (6)
O80.4573 (3)0.1925 (2)0.06370 (12)0.0275 (7)
O90.3904 (3)0.3862 (2)0.25091 (13)0.0268 (7)
H90.3972490.4103900.2215070.040*
O100.2997 (3)0.0579 (2)0.10109 (14)0.0401 (8)
H100.2500000.0991040.1189190.060*0.5
H10A0.2362900.0712540.1132990.060*0.5
N10.8054 (3)0.4951 (3)0.38100 (16)0.0246 (8)
N20.6586 (3)0.4606 (3)0.45281 (15)0.0292 (8)
N30.7394 (3)0.6402 (3)0.41128 (16)0.0284 (8)
N40.1428 (3)0.0721 (3)0.25932 (15)0.0252 (8)
N50.1126 (3)0.0863 (3)0.15567 (15)0.0238 (7)
N60.1567 (3)0.0758 (2)0.18312 (15)0.0230 (7)
N70.6067 (3)0.0480 (3)0.30070 (16)0.0267 (8)
N80.4565 (3)0.0133 (3)0.36409 (16)0.0310 (9)
N90.6800 (3)0.1423 (3)0.41036 (16)0.0279 (8)
N100.4694 (3)0.3681 (3)0.09354 (14)0.0189 (7)
N110.6959 (3)0.4136 (3)0.13640 (15)0.0226 (7)
N120.5901 (3)0.5236 (2)0.18370 (14)0.0190 (7)
C10.5453 (4)0.3650 (3)0.45645 (19)0.0286 (10)
H1A0.5127180.3023480.4225330.034*
H1B0.4838260.3889290.4610630.034*
C20.5812 (5)0.3299 (4)0.5076 (2)0.0422 (13)
H2A0.6175290.2806520.4987800.051*
H2B0.5113690.2898570.5240350.051*
C30.6742 (5)0.4442 (5)0.5467 (2)0.0559 (16)
H3A0.7254770.4345540.5769970.067*
H3B0.6346060.4847220.5636100.067*
C40.7488 (5)0.5077 (5)0.5065 (2)0.0456 (13)
H4A0.7814520.5906830.5188670.055*
H4B0.8162800.4915290.5037440.055*
C50.6656 (4)0.6852 (4)0.4342 (2)0.0374 (11)
H5A0.6615990.6757830.4729490.045*
H5B0.5825880.6472050.4104830.045*
C60.7320 (6)0.8091 (4)0.4332 (2)0.0538 (16)
H6A0.7210210.8564290.4638780.065*
H6B0.7038120.8216620.3968370.065*
C70.8625 (6)0.8352 (4)0.4415 (3)0.0573 (17)
H7A0.8983530.8456050.4814060.069*
H7B0.9115940.9041130.4286380.069*
C80.8532 (4)0.7300 (3)0.4052 (2)0.0375 (12)
H8A0.8503560.7354270.3655420.045*
H8B0.9217080.7177550.4190880.045*
C90.7993 (4)0.4347 (3)0.33380 (18)0.0219 (9)
C100.9243 (4)0.4482 (3)0.32560 (19)0.0267 (9)
C110.1571 (4)0.1238 (4)0.1063 (2)0.0342 (11)
H11A0.1747050.0682580.0845520.041*
H11B0.2309910.1987970.1176160.041*
C120.0523 (4)0.1304 (4)0.0724 (2)0.0374 (11)
H12A0.0818050.1906610.0513880.045*
H12B0.0044820.0571090.0456310.045*
C130.0074 (4)0.1582 (4)0.1168 (2)0.0390 (11)
H13A0.0921270.1365530.1002410.047*
H13B0.0369920.2402150.1350580.047*
C140.0013 (4)0.0879 (4)0.1583 (2)0.0342 (11)
H14A0.0012320.1240390.1965160.041*
H14B0.0711860.0103240.1467720.041*
C150.0259 (4)0.1618 (3)0.1704 (2)0.0305 (10)
H15A0.0120150.1780760.1301640.037*
H15B0.0180910.1355450.1934090.037*
C160.0271 (5)0.2651 (4)0.1854 (3)0.0634 (19)
H16A0.0476380.3118260.1972470.076*
H16B0.0332500.3121150.1527760.076*
C170.1322 (5)0.2225 (4)0.2313 (3)0.0565 (16)
H17A0.1630120.2774160.2310420.068*
H17B0.1112580.2097510.2678140.068*
C180.2263 (4)0.1118 (4)0.2221 (2)0.0310 (10)
H18A0.2682150.0541030.2580400.037*
H18B0.2869020.1229010.2049100.037*
C190.2099 (4)0.1389 (3)0.30703 (17)0.0199 (8)
C200.1410 (2)0.13080 (17)0.35323 (11)0.0283 (9)
C210.4217 (4)0.1327 (4)0.3399 (2)0.0388 (12)
H21A0.4930790.1445100.3441130.047*
H21B0.3811180.1558300.2996680.047*
C220.3356 (6)0.1982 (5)0.3742 (3)0.0652 (19)
H22A0.2663560.2683260.3496900.078*
H22B0.3774450.2191440.4033200.078*
C230.2946 (7)0.1226 (5)0.4000 (3)0.082 (3)
H23A0.2718670.1411780.4353860.099*
H23B0.2236680.1296390.3742910.099*
C240.4008 (5)0.0032 (5)0.4115 (3)0.0528 (15)
H24A0.3733290.0539930.4108480.063*
H24B0.4569840.0164480.4479390.063*
C250.7147 (5)0.0603 (4)0.4286 (2)0.0406 (12)
H25A0.7071110.0044950.3957300.049*
H25B0.6628800.0191500.4528380.049*
C260.8459 (5)0.1314 (4)0.4611 (2)0.0433 (13)
H26A0.8585730.1082140.4965500.052*
H26B0.9010130.1234670.4384730.052*
C270.8672 (4)0.2525 (4)0.4730 (2)0.0403 (12)
H27A0.9533100.3075460.4768980.048*
H27B0.8421430.2704160.5076520.048*
C280.7882 (4)0.2537 (4)0.4216 (2)0.0366 (11)
H28A0.7684110.3159560.4295720.044*
H28B0.8278350.2617390.3895250.044*
C290.5903 (4)0.0671 (3)0.25138 (18)0.0218 (9)
C300.6282 (4)0.0005 (3)0.20847 (19)0.0263 (9)
C310.7450 (4)0.3373 (4)0.1459 (2)0.0289 (10)
H31A0.6930240.2606880.1210600.035*
H31B0.7534740.3310760.1854480.035*
C320.8665 (4)0.3943 (4)0.1315 (2)0.0388 (12)
H32A0.8953080.3393480.1212790.047*
H32B0.9273440.4565700.1632550.047*
C330.8409 (5)0.4400 (4)0.0814 (2)0.0411 (13)
H33A0.9151230.5061640.0782370.049*
H33B0.8088900.3807350.0460840.049*
C340.7471 (4)0.4742 (3)0.09373 (19)0.0270 (10)
H34A0.7851270.5573170.1083440.032*
H34B0.6837110.4512840.0594160.032*
C350.6867 (4)0.5840 (3)0.23585 (18)0.0259 (9)
H35A0.7526120.5651270.2343950.031*
H35B0.6541780.5636180.2691200.031*
C360.7320 (4)0.7099 (3)0.23815 (19)0.0305 (10)
H36A0.8197970.7551230.2549340.037*
H36B0.6888480.7392330.2602130.037*
C370.7040 (4)0.7131 (3)0.17651 (19)0.0258 (9)
H37A0.6997260.7827440.1727800.031*
H37B0.7651680.7087000.1571440.031*
C380.5816 (4)0.6081 (3)0.15374 (18)0.0221 (9)
H38A0.5160290.6232680.1621340.026*
H38B0.5668130.5811650.1126390.026*
C390.4400 (4)0.2729 (3)0.05720 (17)0.0210 (8)
C400.3771 (4)0.2606 (3)0.00414 (18)0.0250 (9)
C410.3456 (4)0.4442 (4)0.2866 (2)0.0294 (10)
H410.3529340.4251050.3240280.035*
C420.2144 (5)0.4031 (5)0.2626 (3)0.0495 (14)
H42A0.2043990.4165740.2248850.074*
H42B0.1852720.4441090.2867650.074*
H42C0.1679840.3216290.2606050.074*
C430.4235 (4)0.5717 (4)0.2952 (2)0.0382 (12)
H43A0.5080740.5934820.3100910.057*
H43B0.3968210.6111270.3217380.057*
H43C0.4157070.5927850.2591440.057*
C44A0.2358 (9)0.1163 (8)0.0434 (3)0.041 (3)0.471 (13)
H44A0.1915590.0767840.0297330.050*0.471 (13)
C44B0.2746 (7)0.1499 (6)0.0555 (3)0.028 (2)0.529 (13)
H44B0.2855870.2110730.0690530.033*0.529 (13)
C45A0.1449 (9)0.1910 (13)0.0270 (6)0.054 (4)0.529 (13)
H45A0.1206810.2510050.0067010.081*0.529 (13)
H45B0.1368710.1276740.0163410.081*0.529 (13)
H45C0.0928150.2209590.0528170.081*0.529 (13)
C46A0.3608 (14)0.0959 (16)0.0192 (7)0.037 (4)0.529 (13)
H46A0.3442390.1528850.0145930.055*0.529 (13)
H46B0.4440190.0659020.0402930.055*0.529 (13)
H46C0.3502280.0339230.0084470.055*0.529 (13)
O110.2881 (3)0.4343 (3)0.12862 (16)0.0409 (8)
H110.3304960.4159450.1108080.061*
C470.2591 (4)0.5094 (4)0.1028 (2)0.0424 (12)
H470.3273060.5567290.0864030.051*
C480.2436 (5)0.5860 (5)0.1484 (3)0.0552 (15)
H48A0.1782500.5397040.1652430.083*
H48B0.2236550.6384580.1319490.083*
H48C0.3189420.6293280.1773070.083*
C490.1441 (5)0.4434 (5)0.0567 (3)0.0555 (15)
H49A0.1556680.3949570.0274300.083*
H49B0.1253430.4966350.0404040.083*
H49C0.0772740.3961810.0725480.083*
C46B0.3264 (16)0.105 (2)0.0081 (8)0.038 (5)0.471 (13)
H46D0.3732960.1403230.0213510.057*0.471 (13)
H46E0.3808870.0239890.0112010.057*0.471 (13)
H46F0.2838640.1418440.0312040.057*0.471 (13)
C45B0.1435 (15)0.2385 (9)0.0375 (8)0.061 (5)0.471 (13)
H45D0.1056000.2748960.0023420.091*0.471 (13)
H45E0.0816720.2417100.0577530.091*0.471 (13)
H45F0.1833760.2783230.0531370.091*0.471 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd10.01428 (11)0.01414 (10)0.01690 (12)0.00585 (8)0.00157 (9)0.00184 (8)
Cl10.0198 (6)0.0553 (7)0.0386 (7)0.0159 (5)0.0053 (5)0.0091 (6)
Cl20.0272 (6)0.0420 (6)0.0441 (7)0.0220 (5)0.0081 (5)0.0068 (5)
Cl30.0254 (6)0.0456 (7)0.0562 (9)0.0112 (5)0.0144 (6)0.0305 (6)
Cl4A0.128 (2)0.0747 (16)0.0567 (15)0.0577 (15)0.0675 (17)0.0248 (12)
Cl4B0.099 (5)0.178 (6)0.087 (5)0.106 (5)0.063 (4)0.092 (5)
Cl5A0.0359 (11)0.159 (2)0.0184 (9)0.0443 (13)0.0086 (8)0.0151 (12)
Cl5B0.105 (5)0.112 (5)0.066 (4)0.025 (4)0.065 (4)0.005 (4)
Cl6A0.130 (2)0.158 (3)0.0868 (19)0.126 (2)0.0760 (18)0.0730 (19)
Cl6B0.060 (3)0.128 (5)0.054 (4)0.057 (3)0.039 (3)0.030 (3)
Cl70.0335 (6)0.0206 (5)0.0398 (7)0.0109 (4)0.0102 (5)0.0012 (4)
Cl80.0274 (6)0.0334 (6)0.0587 (8)0.0183 (5)0.0122 (6)0.0022 (6)
Cl90.0767 (10)0.0459 (7)0.0428 (8)0.0437 (7)0.0376 (8)0.0227 (6)
Cl100.0530 (8)0.0624 (8)0.0279 (6)0.0406 (7)0.0191 (6)0.0206 (6)
Cl110.0690 (9)0.0608 (8)0.0239 (6)0.0508 (7)0.0000 (6)0.0056 (6)
Cl120.0433 (8)0.0463 (7)0.0366 (8)0.0111 (6)0.0110 (6)0.0072 (6)
P10.0186 (5)0.0164 (5)0.0199 (6)0.0068 (4)0.0012 (4)0.0012 (4)
P20.0166 (5)0.0180 (5)0.0174 (5)0.0036 (4)0.0034 (4)0.0010 (4)
P30.0318 (6)0.0217 (5)0.0234 (6)0.0167 (5)0.0070 (5)0.0082 (4)
P40.0162 (5)0.0150 (5)0.0175 (5)0.0065 (4)0.0019 (4)0.0030 (4)
Na10.0279 (9)0.0188 (7)0.0187 (9)0.0101 (7)0.0037 (7)0.0015 (6)
O10.0172 (14)0.0171 (13)0.0167 (15)0.0067 (11)0.0023 (12)0.0013 (11)
O20.0134 (14)0.0295 (15)0.0220 (16)0.0076 (12)0.0010 (13)0.0002 (12)
O30.0176 (14)0.0163 (13)0.0171 (15)0.0031 (11)0.0026 (12)0.0002 (11)
O40.0153 (15)0.0294 (15)0.0187 (16)0.0041 (12)0.0032 (13)0.0024 (12)
O50.0417 (18)0.0262 (15)0.0208 (16)0.0228 (14)0.0085 (14)0.0078 (12)
O60.0273 (16)0.0207 (14)0.0215 (16)0.0149 (12)0.0043 (13)0.0020 (12)
O70.0158 (14)0.0157 (12)0.0178 (15)0.0052 (11)0.0009 (12)0.0025 (11)
O80.0418 (19)0.0239 (15)0.0189 (16)0.0183 (14)0.0052 (14)0.0048 (12)
O90.0327 (17)0.0293 (15)0.0234 (17)0.0206 (14)0.0035 (14)0.0042 (13)
O100.043 (2)0.0255 (16)0.034 (2)0.0040 (14)0.0151 (17)0.0063 (14)
N10.0161 (17)0.0205 (17)0.031 (2)0.0076 (14)0.0042 (16)0.0002 (15)
N20.0210 (19)0.034 (2)0.020 (2)0.0055 (16)0.0035 (16)0.0044 (16)
N30.0243 (19)0.0148 (16)0.035 (2)0.0041 (14)0.0037 (17)0.0054 (15)
N40.0178 (18)0.0269 (18)0.022 (2)0.0042 (14)0.0055 (16)0.0017 (15)
N50.0175 (18)0.0258 (18)0.023 (2)0.0073 (14)0.0026 (16)0.0056 (15)
N60.0137 (17)0.0117 (15)0.029 (2)0.0033 (13)0.0005 (15)0.0006 (14)
N70.037 (2)0.0208 (17)0.032 (2)0.0193 (16)0.0134 (18)0.0094 (16)
N80.038 (2)0.0267 (19)0.033 (2)0.0172 (17)0.0128 (19)0.0098 (17)
N90.036 (2)0.0217 (17)0.028 (2)0.0164 (16)0.0040 (18)0.0073 (15)
N100.0189 (17)0.0182 (16)0.0176 (18)0.0088 (14)0.0004 (15)0.0029 (13)
N110.0230 (18)0.0233 (17)0.027 (2)0.0137 (15)0.0081 (16)0.0098 (15)
N120.0206 (17)0.0142 (15)0.0174 (18)0.0077 (13)0.0027 (14)0.0007 (13)
C10.029 (2)0.027 (2)0.029 (3)0.0114 (19)0.011 (2)0.0068 (19)
C20.039 (3)0.057 (3)0.053 (4)0.032 (3)0.025 (3)0.033 (3)
C30.031 (3)0.096 (5)0.037 (3)0.026 (3)0.002 (3)0.027 (3)
C40.028 (3)0.069 (4)0.026 (3)0.014 (3)0.002 (2)0.015 (3)
C50.037 (3)0.028 (2)0.039 (3)0.016 (2)0.000 (2)0.008 (2)
C60.097 (5)0.036 (3)0.042 (3)0.044 (3)0.015 (3)0.009 (2)
C70.069 (4)0.021 (2)0.058 (4)0.000 (2)0.029 (3)0.002 (2)
C80.043 (3)0.022 (2)0.034 (3)0.004 (2)0.015 (2)0.004 (2)
C90.019 (2)0.0203 (19)0.026 (2)0.0082 (17)0.0030 (19)0.0099 (18)
C100.021 (2)0.027 (2)0.028 (2)0.0086 (18)0.0032 (19)0.0094 (18)
C110.040 (3)0.039 (3)0.031 (3)0.022 (2)0.012 (2)0.015 (2)
C120.041 (3)0.040 (3)0.031 (3)0.020 (2)0.002 (2)0.010 (2)
C130.030 (3)0.045 (3)0.041 (3)0.020 (2)0.001 (2)0.007 (2)
C140.026 (2)0.042 (3)0.032 (3)0.017 (2)0.001 (2)0.002 (2)
C150.017 (2)0.022 (2)0.036 (3)0.0003 (17)0.001 (2)0.0022 (19)
C160.033 (3)0.031 (3)0.103 (6)0.004 (2)0.004 (3)0.031 (3)
C170.042 (3)0.038 (3)0.071 (5)0.005 (2)0.003 (3)0.024 (3)
C180.025 (2)0.027 (2)0.038 (3)0.0103 (19)0.006 (2)0.010 (2)
C190.019 (2)0.0202 (19)0.020 (2)0.0090 (17)0.0055 (18)0.0053 (16)
C200.024 (2)0.028 (2)0.026 (2)0.0072 (18)0.006 (2)0.0041 (18)
C210.040 (3)0.024 (2)0.051 (3)0.015 (2)0.005 (3)0.012 (2)
C220.084 (5)0.038 (3)0.065 (5)0.015 (3)0.028 (4)0.026 (3)
C230.087 (5)0.057 (4)0.105 (6)0.021 (4)0.070 (5)0.030 (4)
C240.063 (4)0.053 (3)0.046 (4)0.024 (3)0.032 (3)0.015 (3)
C250.054 (3)0.037 (3)0.037 (3)0.028 (3)0.001 (3)0.014 (2)
C260.044 (3)0.054 (3)0.047 (3)0.034 (3)0.012 (3)0.021 (3)
C270.030 (3)0.041 (3)0.041 (3)0.010 (2)0.002 (2)0.014 (2)
C280.039 (3)0.033 (2)0.035 (3)0.015 (2)0.007 (2)0.013 (2)
C290.025 (2)0.0141 (18)0.027 (2)0.0089 (16)0.0095 (19)0.0046 (17)
C300.032 (2)0.021 (2)0.030 (3)0.0148 (18)0.012 (2)0.0074 (18)
C310.028 (2)0.029 (2)0.034 (3)0.0170 (19)0.006 (2)0.009 (2)
C320.034 (3)0.044 (3)0.048 (3)0.025 (2)0.016 (3)0.014 (2)
C330.042 (3)0.047 (3)0.052 (3)0.027 (2)0.029 (3)0.025 (3)
C340.029 (2)0.026 (2)0.030 (3)0.0142 (19)0.013 (2)0.0135 (19)
C350.028 (2)0.022 (2)0.022 (2)0.0101 (18)0.0012 (19)0.0013 (17)
C360.033 (3)0.017 (2)0.030 (3)0.0069 (18)0.002 (2)0.0012 (18)
C370.025 (2)0.0165 (19)0.033 (3)0.0086 (17)0.006 (2)0.0031 (18)
C380.023 (2)0.0187 (19)0.026 (2)0.0115 (17)0.0050 (19)0.0076 (17)
C390.022 (2)0.0201 (19)0.019 (2)0.0086 (17)0.0046 (18)0.0046 (16)
C400.027 (2)0.023 (2)0.019 (2)0.0095 (18)0.0011 (19)0.0027 (17)
C410.031 (2)0.035 (2)0.032 (3)0.024 (2)0.011 (2)0.007 (2)
C420.036 (3)0.050 (3)0.071 (4)0.025 (3)0.015 (3)0.018 (3)
C430.041 (3)0.034 (3)0.042 (3)0.022 (2)0.008 (3)0.003 (2)
C44A0.037 (6)0.031 (5)0.039 (6)0.010 (4)0.006 (5)0.013 (4)
C44B0.031 (4)0.021 (4)0.031 (4)0.016 (3)0.004 (4)0.004 (3)
C45A0.041 (6)0.057 (8)0.044 (7)0.021 (6)0.001 (5)0.019 (7)
C46A0.041 (8)0.030 (6)0.029 (7)0.015 (7)0.005 (7)0.012 (6)
O110.0321 (19)0.0404 (19)0.051 (2)0.0164 (15)0.0136 (18)0.0127 (17)
C470.027 (3)0.044 (3)0.055 (4)0.014 (2)0.011 (3)0.017 (3)
C480.055 (4)0.043 (3)0.065 (4)0.025 (3)0.003 (3)0.010 (3)
C490.036 (3)0.071 (4)0.057 (4)0.027 (3)0.008 (3)0.011 (3)
C46B0.045 (9)0.026 (6)0.025 (7)0.007 (7)0.004 (7)0.003 (6)
C45B0.063 (8)0.031 (8)0.048 (9)0.004 (6)0.017 (7)0.015 (7)
Geometric parameters (Å, º) top
Nd1—Na13.4999 (15)C12—H12B0.9900
Nd1—O12.364 (3)C12—C131.515 (6)
Nd1—O22.422 (3)C13—H13A0.9900
Nd1—O32.431 (3)C13—H13B0.9900
Nd1—O42.478 (2)C13—C141.518 (6)
Nd1—O52.366 (3)C14—H14A0.9900
Nd1—O62.573 (2)C14—H14B0.9900
Nd1—O72.413 (3)C15—H15A0.9900
Nd1—O92.543 (3)C15—H15B0.9900
Cl1—C101.764 (5)C15—C161.511 (6)
Cl2—C101.765 (4)C16—H16A0.9900
Cl3—C101.787 (4)C16—H16B0.9900
Cl4A—C201.7595 (18)C16—C171.454 (8)
Cl4B—C201.757 (2)C17—H17A0.9900
Cl5A—C201.7471 (19)C17—H17B0.9900
Cl5B—C201.763 (2)C17—C181.514 (6)
Cl6A—C201.7583 (18)C18—H18A0.9900
Cl6B—C201.749 (2)C18—H18B0.9900
Cl7—C301.782 (4)C19—C201.521 (5)
Cl8—C301.763 (5)C21—H21A0.9900
Cl9—Na13.0192 (19)C21—H21B0.9900
Cl9—C301.771 (4)C21—C221.515 (7)
Cl10—C401.770 (4)C22—H22A0.9900
Cl11—C401.754 (4)C22—H22B0.9900
Cl12—C401.761 (4)C22—C231.460 (8)
P1—O11.501 (3)C23—H23A0.9900
P1—N11.630 (3)C23—H23B0.9900
P1—N21.633 (4)C23—C241.523 (8)
P1—N31.633 (3)C24—H24A0.9900
P2—O31.500 (3)C24—H24B0.9900
P2—N41.622 (3)C25—H25A0.9900
P2—N51.623 (4)C25—H25B0.9900
P2—N61.676 (3)C25—C261.525 (7)
P3—O51.500 (3)C26—H26A0.9900
P3—N71.625 (3)C26—H26B0.9900
P3—N81.633 (4)C26—C271.519 (7)
P3—N91.646 (4)C27—H27A0.9900
P4—Na13.3404 (17)C27—H27B0.9900
P4—O71.505 (3)C27—C281.520 (7)
P4—N101.633 (3)C28—H28A0.9900
P4—N111.640 (3)C28—H28B0.9900
P4—N121.643 (3)C29—C301.563 (5)
Na1—O32.407 (3)C31—H31A0.9900
Na1—O62.369 (3)C31—H31B0.9900
Na1—O72.418 (3)C31—C321.507 (6)
Na1—O82.296 (3)C32—H32A0.9900
Na1—O102.275 (3)C32—H32B0.9900
O2—C91.248 (5)C32—C331.525 (7)
O4—C191.255 (5)C33—H33A0.9900
O6—C291.257 (5)C33—H33B0.9900
O8—C391.240 (4)C33—C341.520 (5)
O9—H90.8400C34—H34A0.9900
O9—C411.441 (4)C34—H34B0.9900
O10—H100.8576C35—H35A0.9900
O10—H10A0.8530C35—H35B0.9900
O10—C44A1.449 (7)C35—C361.527 (5)
O10—C44B1.440 (6)C36—H36A0.9900
N1—C91.298 (5)C36—H36B0.9900
N2—C11.467 (5)C36—C371.529 (6)
N2—C41.472 (6)C37—H37A0.9900
N3—C51.468 (5)C37—H37B0.9900
N3—C81.458 (5)C37—C381.516 (5)
N4—C191.288 (5)C38—H38A0.9900
N5—C111.477 (5)C38—H38B0.9900
N5—C141.475 (5)C39—C401.564 (6)
N6—C151.494 (5)C41—H411.0000
N6—C181.502 (5)C41—C421.501 (7)
N7—C291.292 (5)C41—C431.522 (6)
N8—C211.479 (5)C42—H42A0.9800
N8—C241.472 (6)C42—H42B0.9800
N9—C251.479 (5)C42—H42C0.9800
N9—C281.467 (6)C43—H43A0.9800
N10—C391.325 (5)C43—H43B0.9800
N11—C311.465 (5)C43—H43C0.9800
N11—C341.473 (5)C44A—H44A1.0000
N12—C351.483 (5)C44A—C46B1.508 (5)
N12—C381.490 (5)C44A—C45B1.509 (4)
C1—H1A0.9900C44B—H44B1.0000
C1—H1B0.9900C44B—C45A1.5096 (19)
C1—C21.501 (6)C44B—C46A1.5096 (19)
C2—H2A0.9900C45A—H45A0.9800
C2—H2B0.9900C45A—H45B0.9800
C2—C31.529 (8)C45A—H45C0.9800
C3—H3A0.9900C46A—H46A0.9800
C3—H3B0.9900C46A—H46B0.9800
C3—C41.549 (7)C46A—H46C0.9800
C4—H4A0.9900O11—H110.8400
C4—H4B0.9900O11—C471.434 (6)
C5—H5A0.9900C47—H471.0000
C5—H5B0.9900C47—C481.518 (7)
C5—C61.509 (7)C47—C491.521 (8)
C6—H6A0.9900C48—H48A0.9800
C6—H6B0.9900C48—H48B0.9800
C6—C71.515 (8)C48—H48C0.9800
C7—H7A0.9900C49—H49A0.9800
C7—H7B0.9900C49—H49B0.9800
C7—C81.521 (6)C49—H49C0.9800
C8—H8A0.9900C46B—H46D0.9800
C8—H8B0.9900C46B—H46E0.9800
C9—C101.567 (5)C46B—H46F0.9800
C11—H11A0.9900C45B—H45D0.9800
C11—H11B0.9900C45B—H45E0.9800
C11—C121.526 (6)C45B—H45F0.9800
C12—H12A0.9900
O1—Nd1—Na1156.64 (7)N6—C15—H15B111.1
O1—Nd1—O273.20 (9)N6—C15—C16103.5 (4)
O1—Nd1—O3147.74 (8)H15A—C15—H15B109.0
O1—Nd1—O482.23 (9)C16—C15—H15A111.1
O1—Nd1—O584.29 (9)C16—C15—H15B111.1
O1—Nd1—O6142.69 (9)C15—C16—H16A110.5
O1—Nd1—O7113.26 (8)C15—C16—H16B110.5
O1—Nd1—O973.00 (9)H16A—C16—H16B108.7
O2—Nd1—Na193.66 (7)C17—C16—C15106.1 (4)
O2—Nd1—O3136.80 (9)C17—C16—H16A110.5
O2—Nd1—O4146.69 (10)C17—C16—H16B110.5
O2—Nd1—O674.39 (9)C16—C17—H17A110.5
O2—Nd1—O9117.26 (9)C16—C17—H17B110.5
O3—Nd1—Na143.39 (6)C16—C17—C18106.3 (4)
O3—Nd1—O473.55 (9)H17A—C17—H17B108.7
O3—Nd1—O669.13 (9)C18—C17—H17A110.5
O3—Nd1—O980.20 (9)C18—C17—H17B110.5
O4—Nd1—Na1116.43 (7)N6—C18—C17105.0 (4)
O4—Nd1—O6117.73 (9)N6—C18—H18A110.8
O4—Nd1—O974.79 (9)N6—C18—H18B110.8
O5—Nd1—Na1113.00 (7)C17—C18—H18A110.8
O5—Nd1—O280.20 (10)C17—C18—H18B110.8
O5—Nd1—O3109.02 (9)H18A—C18—H18B108.8
O5—Nd1—O475.21 (10)O4—C19—N4131.8 (4)
O5—Nd1—O672.41 (9)O4—C19—C20114.8 (3)
O5—Nd1—O7143.36 (9)N4—C19—C20113.4 (3)
O5—Nd1—O9144.35 (9)Cl4B—C20—Cl5B108.0 (5)
O6—Nd1—Na142.60 (7)Cl5A—C20—Cl4A107.64 (19)
O7—Nd1—Na143.62 (6)Cl5A—C20—Cl6A106.51 (19)
O7—Nd1—O275.18 (9)Cl6A—C20—Cl4A105.9 (2)
O7—Nd1—O373.76 (9)Cl6B—C20—Cl4B112.9 (4)
O7—Nd1—O4136.53 (9)Cl6B—C20—Cl5B97.6 (4)
O7—Nd1—O675.07 (8)C19—C20—Cl4A112.8 (2)
O7—Nd1—O972.08 (8)C19—C20—Cl4B110.5 (3)
O9—Nd1—Na197.41 (7)C19—C20—Cl5A113.8 (2)
O9—Nd1—O6140.01 (9)C19—C20—Cl5B110.8 (3)
C30—Cl9—Na197.76 (14)C19—C20—Cl6A109.7 (2)
O1—P1—N1117.19 (17)C19—C20—Cl6B116.1 (3)
O1—P1—N2106.08 (17)N8—C21—H21A111.1
O1—P1—N3114.01 (18)N8—C21—H21B111.1
N1—P1—N2111.06 (19)N8—C21—C22103.5 (4)
N1—P1—N3102.02 (17)H21A—C21—H21B109.0
N2—P1—N3106.06 (19)C22—C21—H21A111.1
O3—P2—N4118.87 (17)C22—C21—H21B111.1
O3—P2—N5112.08 (16)C21—C22—H22A110.5
O3—P2—N6105.45 (15)C21—C22—H22B110.5
N4—P2—N5105.79 (18)H22A—C22—H22B108.7
N4—P2—N6106.22 (17)C23—C22—C21106.1 (4)
N5—P2—N6107.86 (18)C23—C22—H22A110.5
O5—P3—N7116.24 (17)C23—C22—H22B110.5
O5—P3—N8113.11 (18)C22—C23—H23A110.6
O5—P3—N9108.16 (17)C22—C23—H23B110.6
N7—P3—N8103.82 (18)C22—C23—C24105.8 (5)
N7—P3—N9109.02 (19)H23A—C23—H23B108.7
N8—P3—N9105.97 (19)C24—C23—H23A110.6
O7—P4—Na141.09 (10)C24—C23—H23B110.6
O7—P4—N10117.46 (16)N8—C24—C23101.3 (4)
O7—P4—N11106.67 (15)N8—C24—H24A111.5
O7—P4—N12109.72 (16)N8—C24—H24B111.5
N10—P4—Na187.36 (11)C23—C24—H24A111.5
N10—P4—N11110.38 (17)C23—C24—H24B111.5
N10—P4—N12102.86 (16)H24A—C24—H24B109.3
N11—P4—Na194.19 (12)N9—C25—H25A110.7
N11—P4—N12109.61 (17)N9—C25—H25B110.7
N12—P4—Na1148.27 (12)N9—C25—C26105.4 (4)
Cl9—Na1—Nd1107.16 (5)H25A—C25—H25B108.8
Cl9—Na1—P4111.26 (5)C26—C25—H25A110.7
P4—Na1—Nd167.55 (3)C26—C25—H25B110.7
O3—Na1—Nd143.94 (7)C25—C26—H26A110.8
O3—Na1—Cl9133.14 (9)C25—C26—H26B110.8
O3—Na1—P491.64 (7)H26A—C26—H26B108.9
O3—Na1—O774.11 (9)C27—C26—C25104.6 (4)
O6—Na1—Nd147.32 (6)C27—C26—H26A110.8
O6—Na1—Cl963.39 (7)C27—C26—H26B110.8
O6—Na1—P499.80 (8)C26—C27—H27A111.2
O6—Na1—O373.01 (10)C26—C27—H27B111.2
O6—Na1—O778.85 (10)C26—C27—C28103.1 (4)
O7—Na1—Nd143.52 (7)H27A—C27—H27B109.1
O7—Na1—Cl9111.49 (9)C28—C27—H27A111.2
O7—Na1—P424.16 (7)C28—C27—H27B111.2
O8—Na1—Nd1124.61 (8)N9—C28—C27102.5 (3)
O8—Na1—Cl9102.95 (9)N9—C28—H28A111.3
O8—Na1—P458.46 (8)N9—C28—H28B111.3
O8—Na1—O3123.72 (11)C27—C28—H28A111.3
O8—Na1—O6149.95 (12)C27—C28—H28B111.3
O8—Na1—O782.44 (10)H28A—C28—H28B109.2
O10—Na1—Nd1126.63 (9)O6—C29—N7132.1 (4)
O10—Na1—Cl992.16 (10)O6—C29—C30116.3 (4)
O10—Na1—P4148.48 (12)N7—C29—C30111.6 (3)
O10—Na1—O386.74 (11)Cl8—C30—Cl7109.5 (2)
O10—Na1—O6109.72 (12)Cl8—C30—Cl9108.0 (2)
O10—Na1—O7155.97 (12)Cl9—C30—Cl7107.8 (2)
O10—Na1—O896.86 (13)C29—C30—Cl7107.0 (3)
P1—O1—Nd1132.59 (14)C29—C30—Cl8111.3 (3)
C9—O2—Nd1134.2 (2)C29—C30—Cl9113.2 (3)
P2—O3—Nd1134.08 (15)N11—C31—H31A111.2
P2—O3—Na1133.18 (16)N11—C31—H31B111.2
Na1—O3—Nd192.67 (9)N11—C31—C32103.0 (3)
C19—O4—Nd1137.0 (3)H31A—C31—H31B109.1
P3—O5—Nd1138.48 (17)C32—C31—H31A111.2
Na1—O6—Nd190.08 (9)C32—C31—H31B111.2
C29—O6—Nd1133.7 (3)C31—C32—H32A111.2
C29—O6—Na1135.6 (3)C31—C32—H32B111.2
Nd1—O7—Na192.86 (9)C31—C32—C33102.7 (4)
P4—O7—Nd1151.59 (15)H32A—C32—H32B109.1
P4—O7—Na1114.75 (15)C33—C32—H32A111.2
C39—O8—Na1126.2 (2)C33—C32—H32B111.2
Nd1—O9—H9120.2C32—C33—H33A110.9
C41—O9—Nd1127.9 (3)C32—C33—H33B110.9
C41—O9—H9109.5H33A—C33—H33B108.9
Na1—O10—H10122.2C34—C33—C32104.5 (3)
Na1—O10—H10A110.4C34—C33—H33A110.9
C44A—O10—Na1133.5 (4)C34—C33—H33B110.9
C44A—O10—H10101.2N11—C34—C33104.8 (3)
C44B—O10—Na1138.6 (3)N11—C34—H34A110.8
C44B—O10—H10A110.3N11—C34—H34B110.8
C9—N1—P1122.0 (3)C33—C34—H34A110.8
C1—N2—P1125.3 (3)C33—C34—H34B110.8
C1—N2—C4111.4 (4)H34A—C34—H34B108.9
C4—N2—P1123.0 (3)N12—C35—H35A110.8
C5—N3—P1119.5 (3)N12—C35—H35B110.8
C8—N3—P1128.4 (3)N12—C35—C36104.9 (3)
C8—N3—C5112.1 (3)H35A—C35—H35B108.8
C19—N4—P2124.3 (3)C36—C35—H35A110.8
C11—N5—P2121.2 (3)C36—C35—H35B110.8
C14—N5—P2126.7 (3)C35—C36—H36A111.0
C14—N5—C11111.8 (3)C35—C36—H36B111.0
C15—N6—P2116.9 (3)C35—C36—C37103.6 (3)
C15—N6—C18108.6 (3)H36A—C36—H36B109.0
C18—N6—P2114.1 (3)C37—C36—H36A111.0
C29—N7—P3124.6 (3)C37—C36—H36B111.0
C21—N8—P3125.7 (3)C36—C37—H37A111.3
C24—N8—P3120.4 (3)C36—C37—H37B111.3
C24—N8—C21111.7 (4)H37A—C37—H37B109.2
C25—N9—P3119.0 (3)C38—C37—C36102.2 (3)
C28—N9—P3121.1 (3)C38—C37—H37A111.3
C28—N9—C25109.2 (4)C38—C37—H37B111.3
C39—N10—P4115.8 (3)N12—C38—C37103.7 (3)
C31—N11—P4124.6 (3)N12—C38—H38A111.0
C31—N11—C34110.0 (3)N12—C38—H38B111.0
C34—N11—P4121.7 (3)C37—C38—H38A111.0
C35—N12—P4117.3 (2)C37—C38—H38B111.0
C35—N12—C38109.3 (3)H38A—C38—H38B109.0
C38—N12—P4123.2 (3)O8—C39—N10130.1 (4)
N2—C1—H1A111.1O8—C39—C40114.2 (3)
N2—C1—H1B111.1N10—C39—C40115.7 (3)
N2—C1—C2103.5 (4)Cl11—C40—Cl10108.5 (2)
H1A—C1—H1B109.0Cl11—C40—Cl12108.9 (2)
C2—C1—H1A111.1Cl12—C40—Cl10108.2 (2)
C2—C1—H1B111.1C39—C40—Cl10106.7 (3)
C1—C2—H2A111.4C39—C40—Cl11114.1 (3)
C1—C2—H2B111.4C39—C40—Cl12110.3 (3)
C1—C2—C3102.0 (4)O9—C41—H41108.0
H2A—C2—H2B109.2O9—C41—C42110.1 (4)
C3—C2—H2A111.4O9—C41—C43109.6 (3)
C3—C2—H2B111.4C42—C41—H41108.0
C2—C3—H3A111.3C42—C41—C43113.0 (4)
C2—C3—H3B111.3C43—C41—H41108.0
C2—C3—C4102.4 (4)C41—C42—H42A109.5
H3A—C3—H3B109.2C41—C42—H42B109.5
C4—C3—H3A111.3C41—C42—H42C109.5
C4—C3—H3B111.3H42A—C42—H42B109.5
N2—C4—C3102.4 (4)H42A—C42—H42C109.5
N2—C4—H4A111.3H42B—C42—H42C109.5
N2—C4—H4B111.3C41—C43—H43A109.5
C3—C4—H4A111.3C41—C43—H43B109.5
C3—C4—H4B111.3C41—C43—H43C109.5
H4A—C4—H4B109.2H43A—C43—H43B109.5
N3—C5—H5A111.1H43A—C43—H43C109.5
N3—C5—H5B111.1H43B—C43—H43C109.5
N3—C5—C6103.1 (4)O10—C44A—H44A107.5
H5A—C5—H5B109.1O10—C44A—C46B109.1 (10)
C6—C5—H5A111.1O10—C44A—C45B112.8 (10)
C6—C5—H5B111.1C46B—C44A—H44A107.5
C5—C6—H6A111.1C46B—C44A—C45B112.3 (14)
C5—C6—H6B111.1C45B—C44A—H44A107.5
C5—C6—C7103.3 (4)O10—C44B—H44B112.0
H6A—C6—H6B109.1O10—C44B—C45A103.2 (8)
C7—C6—H6A111.1O10—C44B—C46A104.9 (8)
C7—C6—H6B111.1C45A—C44B—H44B112.0
C6—C7—H7A111.2C45A—C44B—C46A112.3 (11)
C6—C7—H7B111.2C46A—C44B—H44B112.0
C6—C7—C8102.7 (4)C44B—C45A—H45A109.5
H7A—C7—H7B109.1C44B—C45A—H45B109.5
C8—C7—H7A111.2C44B—C45A—H45C109.5
C8—C7—H7B111.2H45A—C45A—H45B109.5
N3—C8—C7102.3 (4)H45A—C45A—H45C109.5
N3—C8—H8A111.3H45B—C45A—H45C109.5
N3—C8—H8B111.3C44B—C46A—H46A109.5
C7—C8—H8A111.3C44B—C46A—H46B109.5
C7—C8—H8B111.3C44B—C46A—H46C109.5
H8A—C8—H8B109.2H46A—C46A—H46B109.5
O2—C9—N1133.0 (4)H46A—C46A—H46C109.5
O2—C9—C10113.1 (3)H46B—C46A—H46C109.5
N1—C9—C10113.8 (4)C47—O11—H11109.5
Cl1—C10—Cl2108.8 (2)O11—C47—H47109.2
Cl1—C10—Cl3108.0 (2)O11—C47—C48107.6 (4)
Cl2—C10—Cl3108.8 (2)O11—C47—C49111.1 (4)
C9—C10—Cl1113.6 (3)C48—C47—H47109.2
C9—C10—Cl2111.3 (3)C48—C47—C49110.4 (4)
C9—C10—Cl3106.2 (3)C49—C47—H47109.2
N5—C11—H11A111.1C47—C48—H48A109.5
N5—C11—H11B111.1C47—C48—H48B109.5
N5—C11—C12103.2 (3)C47—C48—H48C109.5
H11A—C11—H11B109.1H48A—C48—H48B109.5
C12—C11—H11A111.1H48A—C48—H48C109.5
C12—C11—H11B111.1H48B—C48—H48C109.5
C11—C12—H12A111.0C47—C49—H49A109.5
C11—C12—H12B111.0C47—C49—H49B109.5
H12A—C12—H12B109.0C47—C49—H49C109.5
C13—C12—C11103.6 (4)H49A—C49—H49B109.5
C13—C12—H12A111.0H49A—C49—H49C109.5
C13—C12—H12B111.0H49B—C49—H49C109.5
C12—C13—H13A111.0C44A—C46B—H46D109.5
C12—C13—H13B111.0C44A—C46B—H46E109.5
C12—C13—C14103.8 (4)C44A—C46B—H46F109.5
H13A—C13—H13B109.0H46D—C46B—H46E109.5
C14—C13—H13A111.0H46D—C46B—H46F109.5
C14—C13—H13B111.0H46E—C46B—H46F109.5
N5—C14—C13102.8 (3)C44A—C45B—H45D109.5
N5—C14—H14A111.2C44A—C45B—H45E109.5
N5—C14—H14B111.2C44A—C45B—H45F109.5
C13—C14—H14A111.2H45D—C45B—H45E109.5
C13—C14—H14B111.2H45D—C45B—H45F109.5
H14A—C14—H14B109.1H45E—C45B—H45F109.5
N6—C15—H15A111.1
Nd1—O2—C9—N116.5 (7)N3—P1—N2—C1130.4 (3)
Nd1—O2—C9—C10165.6 (2)N3—P1—N2—C456.1 (4)
Nd1—O4—C19—N43.4 (7)N3—C5—C6—C730.6 (5)
Nd1—O4—C19—C20178.0 (2)N4—P2—O3—Nd18.2 (3)
Nd1—O6—C29—N713.5 (7)N4—P2—O3—Na1168.09 (19)
Nd1—O6—C29—C30169.2 (2)N4—P2—N5—C11157.9 (3)
Nd1—O9—C41—C42125.3 (4)N4—P2—N5—C1415.3 (4)
Nd1—O9—C41—C43109.8 (4)N4—P2—N6—C1559.6 (4)
P1—N1—C9—O23.9 (6)N4—P2—N6—C1868.7 (3)
P1—N1—C9—C10174.1 (3)N4—C19—C20—Cl4A31.4 (4)
P1—N2—C1—C2156.0 (3)N4—C19—C20—Cl4B100.3 (5)
P1—N2—C4—C3177.3 (3)N4—C19—C20—Cl5A154.4 (3)
P1—N3—C5—C6170.4 (4)N4—C19—C20—Cl5B140.0 (5)
P1—N3—C8—C7164.5 (4)N4—C19—C20—Cl6A86.4 (3)
P2—N4—C19—O42.8 (7)N4—C19—C20—Cl6B29.9 (5)
P2—N4—C19—C20178.7 (2)N5—P2—O3—Nd1115.8 (2)
P2—N5—C11—C12176.7 (3)N5—P2—O3—Na167.9 (2)
P2—N5—C14—C13159.0 (3)N5—P2—N4—C19124.1 (4)
P2—N6—C15—C16150.1 (4)N5—P2—N6—C1553.4 (3)
P2—N6—C18—C17133.0 (4)N5—P2—N6—C18178.3 (3)
P3—N7—C29—O60.7 (7)N5—C11—C12—C1329.4 (5)
P3—N7—C29—C30176.7 (3)N6—P2—O3—Nd1127.1 (2)
P3—N8—C21—C22165.0 (4)N6—P2—O3—Na149.2 (3)
P3—N8—C24—C23174.8 (4)N6—P2—N4—C19121.4 (4)
P3—N9—C25—C26154.8 (3)N6—P2—N5—C1188.8 (3)
P3—N9—C28—C27174.7 (3)N6—P2—N5—C1498.0 (4)
P4—N10—C39—O815.7 (5)N6—C15—C16—C1731.4 (6)
P4—N10—C39—C40162.1 (3)N7—P3—O5—Nd116.8 (4)
P4—N11—C31—C32174.1 (3)N7—P3—N8—C2115.6 (4)
P4—N11—C34—C33164.6 (3)N7—P3—N8—C24177.1 (4)
P4—N12—C35—C36149.7 (3)N7—P3—N9—C2559.5 (4)
P4—N12—C38—C37122.6 (3)N7—P3—N9—C2881.1 (3)
Na1—Cl9—C30—Cl787.16 (18)N7—C29—C30—Cl775.2 (4)
Na1—Cl9—C30—Cl8154.65 (17)N7—C29—C30—Cl844.4 (4)
Na1—Cl9—C30—C2931.0 (3)N7—C29—C30—Cl9166.2 (3)
Na1—P4—O7—Nd1165.3 (4)N8—P3—O5—Nd1103.2 (3)
Na1—P4—N10—C3933.8 (3)N8—P3—N7—C29110.1 (4)
Na1—P4—N11—C3124.5 (4)N8—P3—N9—C2551.7 (4)
Na1—P4—N11—C34131.5 (3)N8—P3—N9—C28167.7 (3)
Na1—P4—N12—C3580.1 (4)N8—C21—C22—C2319.2 (7)
Na1—P4—N12—C38138.4 (2)N9—P3—O5—Nd1139.7 (3)
Na1—O6—C29—N7154.2 (4)N9—P3—N7—C29137.3 (4)
Na1—O6—C29—C3023.1 (5)N9—P3—N8—C2199.2 (4)
Na1—O8—C39—N1036.4 (6)N9—P3—N8—C2462.3 (4)
Na1—O8—C39—C40145.8 (3)N9—C25—C26—C2715.1 (5)
Na1—O10—C44A—C46B53.1 (14)N10—P4—O7—Nd1117.8 (3)
Na1—O10—C44A—C45B178.6 (10)N10—P4—O7—Na147.6 (2)
Na1—O10—C44B—C45A136.7 (8)N10—P4—N11—C31113.2 (4)
Na1—O10—C44B—C46A18.9 (12)N10—P4—N11—C3442.8 (4)
O1—P1—N1—C90.5 (4)N10—P4—N12—C35173.7 (3)
O1—P1—N2—C18.8 (4)N10—P4—N12—C3832.2 (3)
O1—P1—N2—C4177.6 (4)N10—C39—C40—Cl10112.7 (3)
O1—P1—N3—C560.5 (4)N10—C39—C40—Cl117.1 (4)
O1—P1—N3—C8118.8 (4)N10—C39—C40—Cl12130.1 (3)
O2—C9—C10—Cl1156.1 (3)N11—P4—O7—Nd1117.8 (3)
O2—C9—C10—Cl232.9 (4)N11—P4—O7—Na176.86 (19)
O2—C9—C10—Cl385.3 (4)N11—P4—N10—C3959.7 (3)
O3—P2—N4—C192.9 (4)N11—P4—N12—C3556.2 (3)
O3—P2—N5—C1126.8 (4)N11—P4—N12—C3885.2 (3)
O3—P2—N5—C14146.3 (3)N11—C31—C32—C3338.0 (5)
O3—P2—N6—C15173.4 (3)N12—P4—O7—Nd10.9 (4)
O3—P2—N6—C1858.3 (3)N12—P4—O7—Na1164.49 (15)
O4—C19—C20—Cl4A149.8 (3)N12—P4—N10—C39176.6 (3)
O4—C19—C20—Cl4B80.8 (5)N12—P4—N11—C31134.2 (3)
O4—C19—C20—Cl5A26.8 (4)N12—P4—N11—C3469.9 (4)
O4—C19—C20—Cl5B38.8 (6)N12—C35—C36—C3726.5 (4)
O4—C19—C20—Cl6A92.5 (3)C1—N2—C4—C38.4 (5)
O4—C19—C20—Cl6B148.9 (4)C1—C2—C3—C442.5 (5)
O5—P3—N7—C2914.8 (4)C2—C3—C4—N231.1 (5)
O5—P3—N8—C21142.5 (4)C4—N2—C1—C218.2 (5)
O5—P3—N8—C2456.1 (5)C5—N3—C8—C716.2 (6)
O5—P3—N9—C25173.3 (3)C5—C6—C7—C840.9 (5)
O5—P3—N9—C2846.1 (4)C6—C7—C8—N334.6 (5)
O6—C29—C30—Cl7102.6 (3)C8—N3—C5—C69.0 (6)
O6—C29—C30—Cl8137.8 (3)C11—N5—C14—C1314.7 (5)
O6—C29—C30—Cl916.0 (5)C11—C12—C13—C1439.0 (5)
O7—P4—N10—C3962.8 (3)C12—C13—C14—N532.8 (5)
O7—P4—N11—C3115.5 (4)C14—N5—C11—C129.2 (5)
O7—P4—N11—C34171.4 (3)C15—N6—C18—C170.6 (5)
O7—P4—N12—C3560.6 (3)C15—C16—C17—C1831.8 (7)
O7—P4—N12—C38158.0 (3)C16—C17—C18—N619.2 (6)
O8—C39—C40—Cl1065.4 (4)C18—N6—C15—C1619.2 (5)
O8—C39—C40—Cl11174.7 (3)C21—N8—C24—C2321.4 (6)
O8—C39—C40—Cl1251.8 (4)C21—C22—C23—C2433.2 (8)
N1—P1—O1—Nd125.2 (3)C22—C23—C24—N833.0 (7)
N1—P1—N2—C1119.5 (3)C24—N8—C21—C222.2 (6)
N1—P1—N2—C454.0 (4)C25—N9—C28—C2730.7 (5)
N1—P1—N3—C5172.2 (4)C25—C26—C27—C2833.4 (5)
N1—P1—N3—C88.5 (5)C26—C27—C28—N939.1 (5)
N1—C9—C10—Cl125.6 (4)C28—N9—C25—C269.9 (5)
N1—C9—C10—Cl2148.8 (3)C31—N11—C34—C335.5 (5)
N1—C9—C10—Cl393.0 (4)C31—C32—C33—C3435.1 (5)
N2—P1—O1—Nd199.5 (2)C32—C33—C34—N1118.5 (5)
N2—P1—N1—C9121.6 (3)C34—N11—C31—C3227.6 (5)
N2—P1—N3—C555.9 (4)C35—N12—C38—C3721.5 (4)
N2—P1—N3—C8124.8 (4)C35—C36—C37—C3839.4 (4)
N2—C1—C2—C337.2 (4)C36—C37—C38—N1237.3 (4)
N3—P1—O1—Nd1144.21 (19)C38—N12—C35—C363.2 (4)
N3—P1—N1—C9125.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10A···N60.852.112.872 (4)148
O11—H11···N100.842.223.024 (6)160
C49—H49A···Cl110.982.823.637 (7)141
Continuous shape measures values for Nd1 and Na1 in the title compound top
OP-8 is an octagon, D8h; HPY-8 is a heptagonal pyramid, C7v; HBPY-8 is a hexagonal bipyramid, D6h; CU-8 is a cube, Oh; SAPR-8 is a square antiprism, D4d; TDD-8 is a triangular dodecahedron, D2d; JGBF-8 is a Johnson-gyrobifastigium (J26), D2d; JETBPY-8 is a Johnson-elongated triangular bipyramid (J14), D3h; JBTP-8 is a Johnson-biaugmented trigonal prism (J50), C2v; BTPR-8 is a biaugmented trigonal prism, C2v; JSD-8 is a snub disphenoid (J84), D2d; TT-8 is a triakis tetrahedron, Td; ETBPY-8 is an elongated trigonal bipyramid, D3h.
Nd1OP-8HPY-8HBPY-8CU-8SAPR-8TDD-8ETBPY-8
29.44122.88415.9609.4770.3882.31814.685
JGBF-8JETBPY-8JBTPR-8BTPR-8JSD-8TT-8-
27.7092.1641.9354.19710.28223.994-
Na1Hexagon (D6h)Pentagonal pyramid (C5v)Octahedron (Oh)Trigonal prism (D3h)Johnson pentagonal pyramid J2 (C5v)--
33.33418.0319.0984.98622.006--
Intermolecular Cl···Cl and Cl···H interactions in the title compound (Å) top
Atom 1Atom 2Symmetry atom 1Symmetry atom 2Contact distance
Cl6AC12x, y, z-1 + x, y, z3.419
Cl6BCl8x, y, zx, y, z3.038
Cl1H3Ax, y, z2 - x, 1 - y, 1 - z2.750
Cl4AH7Bx, y, z-1 + x, -1 + y, z2.770
Cl5AH24Ax, y, zx, y, z2.913
Cl5AH5Ax, y, z1 - x, 1 - y, 1 - z2.830
Cl5AH6Ax, y, z1 - x, 1 - y, 1 - z2.943
Cl5BH4Ax, y, zx, y, z2.517
Cl6AH24Cx, y, zx, y, z2.903
Cl7H48Cx, y, zx, -1 + y, z2.878
C18H37Ax, y, zx, -1 + y, z2.943
Cl9H31Ax, y, zx, y, z2.835
Cl11H38Bx, y, z1 - x, 1 - y, -z2.936
Cl11H49Ax, y, zx, y, z2.823
Cl12H12Bx, y, z-x, -y, -z2.874
 

Funding information

Funding for this research was provided by: Ministry of Education and Science of Ukraine (grant No. 22BF037-04).

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAmirkhanov, V., Ovchynnikov, V., Trush, V., Gawryszewska, P. & Jerzykiewicz, L. B. (2014). Ligands. Synthesis, Characterization and Role in Biotechnology, edited by P. Gawryszewska & P. Smolenski, ch. 7, pp. 199–248. New York: Nova Science Publishers.  Google Scholar
First citationAmirkhanov, V., Rauf, A., Hadda, T. B., Ovchynnikov, V., Trush, V., Saleem, M., Raza, M., Rehman, T., Zgou, H., Shaheen, U. & Farghaly, T. A. (2019). Mini Rev. Med. Chem. 19, 1015–1027.  CrossRef CAS PubMed Google Scholar
First citationAmirkhanov, V. M., Trush, V. A., Kapshuk, A. A. & Skopenko, V. V. (1996). Zh. Neorg. Khim. 41, 2052–2057.  CAS Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationCapdevila-Cortada, M., Castello, J. & Novoa, J. J. (2016). CrystEngComm, 16, 8232–8242.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDorosti, N., Afshar, F., Ghaziani, F., Gholivand, K. & Zarabi, S. (2019). Inorg. Chim. Acta, 489, 140–149.  CrossRef CAS Google Scholar
First citationGholivand, K., Alizadehgan, A. M., Arshadi, S. & Firooz, A. A. (2006). J. Mol. Struct. 791, 193–200.  Web of Science CSD CrossRef CAS Google Scholar
First citationGrimes, K. D., Lu, Y. J., Zhang, Y. M., Luna, A. V., Hurdle, J. G., Carson, E. I., Qi, J., Kudrimoti, S., Rock, O. C. & Lee, R. E. (2008). ChemMedChem, 3, 1936–1945.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGrynyuk, I. I., Prylutska, S. V., Franskevych, D. V., Trush, V. A., Sliva, T. Y., Slobodyanik, M. S., Hurmach, V. V., Prylutskyy, Y. I., Matyshevska, O. P. & Ritter, U. (2016). Materialwiss. Werkst. 47, 98–104.  CrossRef CAS Google Scholar
First citationHorniichuk, O. Y., Trush, V. A., Kariaka, N. S., Shishkina, S. V., Dyakonenko, V. V., Severinovskaya, O. V., Gawryszewska, P., Domasevitch, K. V., Watras, A. & Amirkhanov, V. M. (2021). New J. Chem. 45, 22361–22368.  CrossRef CAS Google Scholar
First citationKariaka, N. S., Trush, V. A., Dyakonenko, V. V., Shishkina, S. V., Smola, S. S., Rusakova, N. V., Sliva, T. Yu., Gawryszewska, P., Carneiro Neto, A. N., Malta, O. L. & Amirkhanov, V. M. (2022). ChemPhysChem, 23, e202200129.  CrossRef PubMed Google Scholar
First citationKariaka, N. S., Trush, V. A., Medviediev, V. V., Dyakonenko, V. V., Shishkin, O. V., Smola, S. S., Fadeyev, E. M., Rusakova, N. V. & Amirkhanov, V. M. (2016). J. Coord. Chem. 69, 123–134.  Web of Science CSD CrossRef CAS Google Scholar
First citationKariaka, N. S., Trush, V. A., Smola, S. S., Fadieiev, Y. M., Dyakonenko, V. V., Shishkina, S. V., Sliva, T. Y. & Amirkhanov, V. M. (2018). J. Lumin. 194, 108–115.  Web of Science CSD CrossRef CAS Google Scholar
First citationLlunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). SHAPE. Shape Software, Barcelona, Spain.  Google Scholar
First citationOroujzadeh, N., Gholivand, K. & Jamalabadi, N. R. (2017). Polyhedron, 122, 29–38.  Web of Science CSD CrossRef CAS Google Scholar
First citationPham, Y. H., Trush, V. A., Carneiro Neto, A. N., Korabik, M., Sokolnicki, J., Weselski, M., Malta, O. L., Amirkhanov, V. M. & Gawryszewska, P. (2020a). J. Mater. Chem. C. 8, 9993–10009.  CrossRef CAS Google Scholar
First citationPham, Y. H., Trush, V. A., Korabik, M., Amirkhanov, V. M. & Gawryszewska, P. (2020b). Dyes Pigm. 186, 108986.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTrush, V. A., Gubina, K. E., Amirkhanov, V. M., Swiatek-Kozlowska, J. & Domasevitch, K. V. (2005). Polyhedron, 24, 1007–1014.  Web of Science CSD CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds